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Abstract

Drugs are discovered through the biological screening of collections of compounds, followed by 

optimization toward functional endpoints. The properties of screening collections are often 

balanced between diversity, physicochemical favorability, intrinsic complexity and synthetic 

tractability.1 Whereas natural product (NP) collections excel in the first three attributes, NPs suffer 

a disadvantage on the last point. Academic total synthesis research has worked to solve this 

problem by devising syntheses of NP leads, diversifying late-stage intermediates or derivatizing 

the NP target. This work has led to the discovery of reaction mechanisms, the invention of new 

methods and the development of FDA-approved drugs. Few drugs, however, are themselves NPs; 

instead NP-analogs predominate. Here we highlight past examples of NP analog development and 

successful NP-derived drugs. More recently, chemists have explored how NP analogs alter the 

retrosynthetic analysis of complex scaffolds, merging structural design and synthetic design. This 

strategy maintains the intrinsic complexity of the NP but can alter the physicochemical properties 

of the scaffold, like core instability that renders the NP a poor chemotype. Focused libraries based 

on these syntheses may exclude the NP but maintain the molecular properties that distinguish NP-

space from synthetic space,2 properties that have statistical advantages in clinical progression.3,4 

Research that expedites synthetic access to NP-motifs can prevent homogeneity of chemical 

matter available for lead discovery. Easily accessed, focused libraries of NP scaffolds can fill 

empty but active gaps in screening sets and expand the molecular diversity of synthetic collections.
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Introduction

The “marketplace of ideas” refers to a symbolic open exchange where beliefs compete for 

uptake. This metaphor arose from Supreme Court opinions attempting to uphold free-speech 

rights enshrined by the First Amendment to the US Constitution.5 Justice William Brennan’s 

rationale6 behind an economic analogy points out that a ‘purchase’ of truth might only occur 

if the supply of ideas remains unsuppressed. The “marketplace” emphasizes the practical 

importance of diversity—diversity as a search parameter. If maximized, diversity increases 

the probability that a search is successful. In the search for truth, diversity of thought ensures 

that truth is available at all.

In the search for new medicines, molecular diversity within chemical libraries increases the 

probability that useful leads are identified.7 Put negatively, modest diversity limits the range 

of chemotypes identified as leads in a high-throughput screen. Low diversity reduces the 

probability of lead identification at all.8 What is molecular diversity? We were invited by 

JACS to provide a Perspective from our area of research: natural product (NP) synthesis.

Through the lens of chemical informatics, molecular diversity describes the distribution of a 

molecular set in an N-dimensional chemical space defined by molecular descriptors N.9 

Characterization of diversity within and between chemical libraries depends on which 

combination of the existing ~3,100 molecular descriptors are used to define a reference 

chemical space: formula weight, total polar surface area, fraction sp3 (Fsp3), hydrogen bond 

donor number, etc.9 A chemical library is said to be diverse if the distribution of molecules 

is broad relative to the chosen molecular descriptor(s) and their values. Hence a productive 

discussion of molecular diversity is contingent upon choice of meaningful molecular 

descriptors.10 In this Perspective, we emphasize molecular descriptors that differentiate NP 

space from synthetic collections.

When screening for drug leads, biological activity becomes a required molecular descriptor. 

In this context, a chemical library is diverse if it possesses a large number of target-active 

compound clusters (chemotypes), with a minimum number of compounds per cluster.11 At 

the extremes (Figure 1), all compounds are active, but clustered (similar, non-diverse); or all 

the compounds are active and unclustered (unique, diverse). Using this definition, it’s easy 

to see why mere increase in library size only ‘increases the chances of not finding leads.’11b 

To put it another way: low-diversity combinatorial chemistry doesn’t find more needles, it 

creates more hay.12

Characterization of lead quality does not depend on targeted activity alone. Instead, 

biological activity is one important molecular descriptor among others. If an active lead is 

covered in related patent space, its value is low.11a If a lead possesses poor physicochemical 

properties, its optimization begins from a disadvantaged starting point. Falling into this 

‘local minimum’ can prove costly: on average, only small changes occur during optimization 

between lead and drug candidate,10 and failure in clinical trials is expensive. On the other 

hand, if a lead is structurally advantaged but synthetically intractable, its quick advance 

through medicinal chemistry optimization is unlikely.
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Natural products have served historically as leads for drug development, either through 

anecdotal reports of active extracts, traditional medicine or high-throughput screens. Yet NPs 

inhabit the tension between favorable properties and synthetic intractability. They occupy 

areas of chemical space unpopulated by commercial, synthetic molecules and drugs (Figure 

3), as defined by high Fsp3, high stereochemical content, high oxygen content, high ring 

content, and low aromaticity.16,13 Many of these molecular descriptors have been earmarked 

as desirable since they correlate with increased progression through clinical trials—NP 

space may represent a series of clusters with statistical advantages.14,15 NPs have been pre-

optimized through evolution to bind biomolecules and penetrate cells.16 NPs contain 

‘constellations’ of functional groups, stereogenic centers, and ring motifs in high density.17 

Properties imparted by these constellations of features have been described as ‘emergent’ 

and therefore hard to design de novo.18 Inclusion of NPs, NP-analogs, or NP-like 

compounds in traditional synthetic or combinatorial sets increases the diversity of these 

collections because it fills unoccupied chemical space.2 Yet the synthetic complexity of NPs 

limits the representation of NP-space in synthetic commercial libraries and limits NP uptake 

in medicinal chemistry campaigns.19

One solution to the problem of synthetic intractability has been to target a structurally-

simplified version of a NP that retains its activity. This approach relies on a general 

correlation between intrinsic complexity and synthetic complexity: the more complex a 

structure, the more challenging its synthesis.20 These attributes are related, but non-identical: 

a complex molecule may be the product of spontaneous assembly from simple precursors 

(Figure 4).21 For example, Heathcock discovered that a simple squalene-related dialdehyde 

undergoes polycyclization to the core of the daphniphylene alkaloids when heated with 

methylamine and acid. Although the atom count (80) does not change at all, the information 

content22 (see paragraph below) increases 140% — a reflection of increased intrinsic 

complexity, comparable to adding 400 pages to a 1000-page book.

Intrinsic complexity, a fixed structural property, is easy to determine, whereas synthetic 

complexity is hard to define a priori and is time dependent: synthetic technology advances 

every day.20,23 Intrinsic complexity can be measured by structural topology,24 heteroatomic 

and stereochemical content,23 or as information content according to, for example, 

Böttcher’s method.22 This latter method, used in the sections below, accounts for atom 

count, connectivity, stereochemistry, heteroatomic content and symmetry. Its ease of 

calculation makes Böttcher’s method appealing (Excel tables can be found in the SI).

Reduction of intrinsic complexity has been correlated with loss of specificity.25 Reduced 

intrinsic complexity can remove a structure from NP space and push it towards more 

populated areas of synthetic chemical space. This approach rapidly arrives at function and 

can enable discovery (Function-Oriented Synthesis, FOS, see below),20 but sometimes at the 

cost of diversity and the physicochemical benefits associated with NP space.

Yet NPs themselves, narrowly defined by structure, are not highly represented among 

approved drugs. Instead, NP-derived analogs predominate. From 1981–2014, a period when 

385 NPs or NP-analogs became clinically approved new chemical entities (NCEs), NP-

derived analogs outpaced NPs 316:69. The ratio was higher (83:13) among anti-infective 
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drugs (antibacterial, antifungal, antiparasitic, and antiviral).26 Many of these NP-analogs 

retain all the complexity of the NP itself and reside squarely in NP-space (see Figure 2). 

These approved drugs are not direct products of biosynthesis. Given the predominance of 

NP-analogs over NPs, why recapitulate what nature has already made? To only target a 

single metabolite and its congeners is to strip a crucial design element from the synthetic 

chemist.27 Instead, the interplay between structure, synthesis, and function benefits from the 

powerful tools of chemistry.

Synthetic chemists have been tinkering with, altering, and studying NPs for decades. 

However, semisynthetic modification of NPs remains the major source of FDA approved NP 

analogs. Fully synthetic approaches leading to an approved NP analog are rare. In the 

following section, we highlight fully synthetic (de novo) routes to therapeutically relevant 

NP analogs. First, we highlight fully synthetic NP analogs that are approved therapeutics or 

are under clinical investigation. Second, we highlight fully synthetic NP analogs that are 

based on FDA approved NPs. As evidenced by Tanimoto indices28 and intrinsic complexity 

scores,22 these NP-analogs retain structural features of NP space without compromising 

intrinsic complexity/reducing information content. Both metrics are easy to calculate and 

provide some basis to evaluate deviation from the NP. Third, we highlight fully synthetic NP 

analogs that possess a promising path for future advancement. Finally, we cover recent 

examples of structural designs of NP analogs that shorten or alter synthetic routes compared 

to the NP itself. Progress in this area will expand the coverage of NP chemical space by 

enabling the synthesis of focused libraries of NP analogs with favorable properties for 

advance as clinical candidates. We conclude with a look to the future based on advances in 

molecular biology.

Selected Examples of Fully Synthetic Natural Product Analogs

Tetracycline.

Since the discovery of chlorotetracycline in 1948, the tetracyclines have engendered 

widespread use as broad spectrum antibiotics.29 Characterized by four linearly fused six-

membered carbon rings, tetracyclines inhibit protein synthesis by binding to the 30S 

ribosomal subunit thereby preventing attachment of aminoacyl-tRNA to the ribosomal 

acceptor (A) site.30 Like most β-lactam and macrolide antibiotics, nearly all tetracyclines 

approved for clinical use are derived via fermentation or through semisynthesis from 

fermentation products.

Despite this abundance, tetracyclines have attracted notable attention from synthetic 

chemists. Woodward’s first total synthesis of a tetracycline, a non-natural semisynthetic 

analog with superior stability to tetracyline, sancycline, featured a “left to right” D to A ring 

construction strategy.31 This D to A approach would serve as the basic strategy toward this 

class until crystal structures of tetracycline bound to the 30S ribosomal subunit suggested 

the D-ring would be a desirable site for modification.29 Since D to A ring construction was 

not ideally suited to rapidly access D-ring functionalized tetracyclines, the Myers group 

developed a concise synthesis in which the C ring was constructed via convergent coupling 

of functionalized D- and AB-ring precursors.32
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Using this D plus AB strategy, Tetraphase pharmaceuticals, a company established in 2006 

to commercialize the Myers group’s tetracycline synthetic platform, was able to construct 

over 3,000 tetracycline analogs, many of which would be inaccessible via semisynthesis.33 

One promising analog, Eravacycline (2), exhibited improved broad-spectrum antibiotic 

activity against multidrug-resistant bacteria (MIC90 = 0.008 – 2 µg/mL), relative to approved 

tetracyclines.34 Eravacycline’s superior activity is linked to its decreased susceptibility to 

tetracycline-specific resistance mechanisms such as ribosomal protection and efflux.35 

Furthermore, Eravacycline is highly active against vancomycin resistant E. faecalis and 

penicillin and macrolide resistant S. pneumonia. Eravacycline was recently approved by the 

FDA for the treatment of Complicated Intra-abdominal Infections and is currently the only 

fully synthetic tetracycline analog to achieve FDA approval.

Vorapaxar.

Himbacine (3), a piperdine alkaloid characterized by its linearly fused tricyclic lactone core, 

was isolated from the bark of the Australian magnolias, Galbulimima baccata, in the early 

1960’s.36 Himbacine initially attracted attention as a potential lead for Alzheimer’s disease 

(AD) owing to its potent muscarinic receptor antagonist activity against M1 and M2 

subtypes.37 Subtype selective antagonism of M2 receptors enhances synaptic acetylcholine 

levels—counteracting synaptic acetylcholine deficiencies observed in the cortical and 

hippocampal brain regions of dementia afflicted AD patients. To improve receptor 

selectivity and potency, Chackalamannil and coworkers developed a concise synthesis of 

himbacine and analogs.38

Although the AD therapeutic target was abandoned, the focused library of himbacine 

derivatives yielded a potent antagonist of PAR-1, a G-protein coupled receptor (GPCR) that 

mediates thrombin-induced platelet aggregation.39 Selective antagonism of PAR-1 was 

attractive for suppression of thrombin-induced platelet activation present in diseased states 

such as arterial thrombosis, without inhibition of other critical thrombin-dependent 

processes such as the formation of fibrin-based blood clots.40 SAR identified by the 

synthetic route resulted in the discovery of analog 4, also known as Vorapaxar, an 

antithrombotic agent approved in 2014 for the treatment of acute coronary syndrome and 

secondary prevention of cardiovascular events.41 Vorapaxar is an FDA approved natural 

product analog that was derived from fully synthetic efforts. From an AD lead to an 

approved drug to treat acute coronary syndrome, himbacine and its analogs exemplify the 

privileged activity possessed by NPs. The therapeutic endpoint can change, but the 

privileged nature of NP space remains constant.

Epothilone B.

Epothilone B (EpoB, 5), a 16-membered macrocyclic lactone isolated from the 

myxobacterium Sorangium cellulosum strain 90, was originally disclosed as a potential 

antifungal agent in 1987.42 Merck later rediscovered EpoB in 1995 as an agent possessing 

superior activity to paclitaxel in tubulin polymerization assays.43 Evaluation confirmed that 

EpoB binds to tubulin at the paclitaxel binding site and hyperstabilizes microtubules, 

resulting in mitosis inhibition and apoptosis.42 Unlike most antitumor agents, EpoB is much 
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less susceptible to Pgp-mediated efflux and as a result maintains significant potency against 

multi-drug-resistant cancer cell lines.42

The superior bioactivity of EpoB and its unique structural features captured the attention of 

multiple research groups in industry and academia. Kosan Biosciences and Bristol-Myers 

Squibb were among the first to develop fermentation processes to access epothilone B, with 

the goal to improve the pharmacological profile via semisynthesis.44 However, semisynthetic 

modification of the core proved challenging and the pool of available transformations was 

limited. These restrictions ignited intense competition to establish a fully synthetic route that 

could enable SAR exploration and optimization.

By 1997, Nicolaou and Danishefsky each established synthetic routes that proved 

instrumental to understand which structural elements were critical to bioactivity.45 The 

remarkable SAR data supplied by these two labs culminated in the discovery of several 

clinical candidates.46 One promising analog disclosed by Danishefsky, iso-fludelone (6) was 

shown to possess superior potency and bioavailability, a larger therapeutic window, and 

reduced nonspecific cytotoxicity relative to epothilone B (Figure 7).47 Specifically, removal 

of the epoxide decreased nonspecific cytotoxicity, unsaturation of C9-C10 improved potency 

and metabolic stability, incorporation of CF3 at C12 decreased cytotoxicity and broadened 

the therapeutic window, and replacement of the thiazole with isoxazole increased potency 

and solubility.48 Importantly, 6 achieved complete remission and cures in several xenograft 

mouse models including: extra-large MX-1, ovarian carcinoma SK-OV-3, and lung 

carcinoma A549.47 Iso-fludelone is currently in phase I clinical trials to examine dose 

escalation and pharmacokinetics in patients with advanced solid tumors.49 Despite 

significant fully synthetic efforts, Ixabepilone, a semisynthetic EpoB analog developed at 

Bristol-Myers Squibb, remains the only epothilone analog approved by the FDA.44b

Erythromycin.

Isolated from a Philippine soil sample in 1949, erythromycin (7) is the forerunner natural 

product of clinically approved macrolide antibiotics, a class characterized by 14-, 15-, and 

16-membered macrocyclic lactones with one or more pendant glycosidic residues.50 

Erythromycin’s antibacterial activity results from protein synthesis inhibition via reversible 

binding to the 50S ribosomal subunit.51 Although erythromycin was the first clinically 

approved macrolide (1952), the undesired gastrointestinal side-effects derived from its acid 

instability inspired the search for second-generation macrolides.52 However, erythromycin’s 

complex scaffold proved challenging for early synthetic efforts and the production of novel 

erythromycin- based antibiotics was mostly limited to semisynthetic modification of 

erythromycin. Clarithromycin (1991), azithromycin (1991), and telithromycin (2004) are 

FDA approved semisynthetic analogs derived from erythromycin in 6-, 4-, and 12-steps 

respectively.53 Semisynthesis from fermentation-derived material can provide clear 

advantages from a supply perspective but semisynthesis can also limit the diversity of 

accessible analogs. Selective modification of a complex NP is challenging and usually only a 

few positions can be effectively modified.54

The limitations of semisynthesis coupled with growing resistance to approved macrolide 

antibiotics prompted the Myers group to develop a highly convergent and fully synthetic 
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route to erythromycin analogs.55 From 8 simple building blocks (Figure 8a) 14- and 15-

membered azaketolides, and 14-membered ketolides were assembled in 10–14 steps (LLS). 

The efficiency of the route enabled the synthesis of more than 300 erythromycin analogs, 

many inaccessible via semisynthesis. 83% of these fully synthetic erythromycin analogs 

exhibited a minimum inhibitory concentration (MIC) ≤ 4.0 µg/mL against wild-type S. 
pneumoniae. One of the more promising analogs, analog 8, (Figure 8b) is more potent than 

all clinically approved macrolides in challenging strains such as: S. pneumoniae expressing 

both ermB and mefA genes (MIC ≤ 0.03 µg/mL), vancomycin-resistant Enterococcus 
expressing ermB (1.0 µg/mL), methicillin-resistant Staphylococcus aureus (16.0 µg/mL), 

and Pseudomonas aeruginosa (16.0 µg/mL). Analog 8 also possessed superior potency 

relative to clinically approved macrolides in Gram-negative bacteria. Though many 

erythromycin analogs such as 8 would require preclinical development, the versatility of 

Myer’s convergent fully synthetic route broadened the coverage of erythromycin’s local 

chemical space and enabled rapid access to unprecedented erythromycin analogs.

Vancomycin.

The flagship member of glycopeptide antibiotics, vancomycin (9), was discovered by Eli 

Lilly in 1952, and has long been used as a drug of last resort for the treatment of resistant 

and lethal infections.56 Characteristic of glycopeptide antibiotics, vancomycin inhibits 

bacterial cell wall synthesis by binding and sequestering the peptidoglycan peptide terminus 

D-alanine-D-alanine (D-Ala-D-Ala).57,58

Sequestration of this key precursor prevents transpeptidation and cell wall cross-linking, 

which results in cell lysis.

In response to vancomycin treatment, resistant bacteria such as VanA and VanB 

enterococcal, modify the precursor peptidoglycan terminus D-Ala-D-Ala to D-Ala-D-Lac.59 

This elegant resistance mechanism—exchange an amide linkage for an ester linkage—

results in a 1000-fold decrease in binding affinity to vancomycin. Analysis of vancomycin 

complexed with D-Ala-D-X (X = Alanine, Lactic acid, or isobutyric acid) revealed that loss 

of a central H-bonding interaction and a repulsive lone pair interaction between C4 carbonyl 

and D-Ala-D-Lac ester oxygen were likely responsible for the loss in binding affinity—the 

repulsive lone pair interactions predominating (Figure 9a).60 Since selective semisynthetic 

modification of vancomycin at C4 was not yet possible, a divergent total synthesis was 

developed by Boger to access a series of C4 functionalized vancomycin aglycons.61 Notably, 

replacement of C4 amide with an amidine was hypothesized to bind D-Ala-D-Lac and retain 

affinity for D-Ala-D-Ala by both removing destabilizing electrostatic interactions and 

providing an additional handle for H-bonding (Figure 9b).

Indeed, C4 amidine analog 10 (Figure 9c) not only exhibits a 600-fold increase in binding 

affinity to D-Ala-D-Lac (Ka = 6.9 × 104 M−1) over that of vancomycin aglycon (Ka = 1.2 × 

102 M−1), 10 also retains binding to D-Ala-D-Ala (Ka = 7.3 × 104 M−1).62 Furthermore, 10 
possessed significant activity (MIC = 0.31 µg/mL) against VanA resistant E. faecalis (VanA 

VRE, BM4166), one of the most challenging strains of vancomycin-resistant bacteria. 

Importantly, 10 maintains significant activity against vancomycin sensitive bacteria (MIC = 

0.30—2.0 µg/mL)—equipotent to vancomycin and vancomycin aglycon. These efforts 
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exemplify how synthetic route development toward a rationally designed NP analog can be 

useful in both exploration of a biologically interesting hypothesis and improvement of the 

activity of the parent natural product.

Vinblastine.

Isolated from Catharanthus roseus in the late 1950’s, vinblastine (11), a Vinca alkaloid 

dimer containing velbanamine and vindoline-derived subunits, was among the first small 

molecules shown to bind to tubulin and inhibit microtubule formation and mitosis.63 Despite 

its introduction as an anti-cancer therapeutic in 1965, vinblastine remains efficacious and is 

used in combination therapies to treat Hodgkin’s disease, testicular, ovarian, breast, and head 

and neck cancer. However, prolonged use of vinblastine leads to development of 

phosphoglycoprotein (Pgp)-mediated resistance. Identification of vinblastine analogs that 

address Pgp resistance is of paramount importance and a primary focus in the Boger group.

To develop vinblastine analogs with activity against Pgp overexpressing cancers, the Boger 

lab leveraged their previously developed Fe(III)-promoted oxidative coupling between 

vindoline and catharanthine and late stage Fe(III)/NaBH4-mediated radical alkene oxidation 

at C20’.64 These C20’ vinblastine analogs included N3, NH2,CN, SCN, NHCONH2 Cl, and 

F substitution using their in-house hydrofunctionalization methods.64c Particularly 

noteworthy were C20’ urea-based analogs, which displayed both increased potency over 

vinblastine and increased activity against a Pgp overexpressing, vinblastine resistant tumor 

cell line.65 Further exploration of urea analogs resulted in the discovery of 12.65b Urea 12 
was found to be, on average, 30-fold more potent than vinblastine across a panel of 15 tumor 

cell lines (avg. IC50 = 200 pM) and 100–200-fold more active against the clinically relevant 

vinblastine resistant HCT116/VM46 cell line (IC50 = 3.5 nM)–improved affinity to tubulin 

confirmed increased target binding correlated to enhanced potency.65b Further exploration 

revealed amides, not only ureas, to exhibit high on-target (tubulin) affinity but low off-target 

(Pgp) affinity and exceptional potency against vinblastine-sensitive and vinblastine resistant 

cell lines.65c

Boger’s contributions to vinblastine analogs exemplify how the drive to produce and 

improve modern medicines can lead to the development of new and far reaching synthetic 

methodology. The significant progress in HAT chemistry observed in recent years66 is 

indebted to the pursuit of vinblastine and analogs thereof.

Diazonamide

A. A poly-heteroaromatic macrocyclic marine metabolite and potent cytotoxin, diazonamide 

A (DZA, 13), was isolated from the colonial ascidian Diazona Chinesis in the late 1980’s.67 

Though DZA possessed potent in vitro activity against human colon and melanoma cancer 

cell lines, the mechanism of action was initially unclear. Like vinca alkaloids and taxanes, 

DZA inhibited cell division during mitosis, and caused a loss in spindle microtubules.68 Yet 

direct interaction with traditional tubulin binding sites was not observed in early reports, 

indicating DZA either possessed a unique binding interaction with tubulin or perturbed 

microtubule dynamics indirectly through interaction with an alternative biological target.67 

Evidence to support the latter hypothesis was proposed when ornithine δ-amino transferase 
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was discovered to both directly interact with DZA and play a role in regulating mitotic cell 

division.69

The unique architecture of DZA, its potent antitumor activity, and seemingly unique 

mechanism of action inspired extensive investigations from many, including the Harran lab.
70 Following completion of their total synthesis in 2003, Harran and co-workers began to 

explore the mechanism of action through the construction of diazonamide analogs. During 

these investigations it was found that unlike most microtubule-targeting agents (MTAs), 

diazonamide treatment did not cause weight loss and neutropenia at doses sufficient to 

regress human tumor xenografts in nude mice.71 Neutropenia (decreased neutrophil count) is 

a primary dose-limiting toxicity during treatment with MTAs such as vinca alkaloids and 

taxanes, and often leads to discontinuation of drug or reduction in dose.72 The clinical 

implications of the observed lack of overt toxicity by DZA triggered the establishment of 

Joyant pharmaceuticals in 2005, a company that leveraged Harran’s established route to gain 

key insights into diazomamide SAR.

Critical knowledge gained from these studies included: 1) introduction of a fluorine atom to 

the indoline ring and replacement of the isopropyl group with a tert-butyl group improved 

the pharmacokinetic profile 2) The parent bis oxazole framework outcompeted other 

oxazole-heterocycle combinations and 3) The eastern macrocycle was not necessary for 

activity.73 The above insights led to the discovery of DZ-2384 (14), an analog chosen for 

preclinical development at Diazon pharmaceuticals.

DZ-2384 is efficacious in several preclinical cancer models including metastatic triple-

negative breast cancer and subcutaneous xenograft models of pancreatic adenocarcinoma 

and colon cancer.74 Furthermore, DZ-2384 was shown to have a much wider safety margin 

than FDA approved vinorelbine. Notably, peripheral neuropathy, a major toxicity issue for 

MTAs, was not observed at therapeutically relevant doses. Detailed mechanistic 

investigations revealed DZ-2384 binds to tubulin at the vinca alkaloid site and inhibits the 

growth rate of microtubules. However, unlike vinca alkaloids, DZ-2384 preserves the 

microtubule network in interphase cells and primary cortical neurons. This preservation is 

proposed to arise from the pronounced straightening in the curvature and pitch of 

microtubule protofilaments upon formation of DZ-2384-tubulin complexes relative to 

vinblastine-tubulin complexes. The straightening of tubulin dimers is necessary for 

incorporation into the microtubule lattice and may be responsible for DZ-2384’s higher 

microtubule rescue frequency.74 Taken together, DZ-2384, a complex natural product analog 

of diazonamide A, is a safety enhanced MTA that inhibits microtubule growth through a 

novel mechanism of action.

Pleuromutilin.

First isolated from the Basidiomycetes Pleurotus mutilus and P. Passeckerianus in 1951, 

pleuromutilin (15) is a potent antibacterial that inhibits protein synthesis by binding to the 

peptidyl transferase center (PTC) of the 50S ribosomal subunit.75 Pleuromutilin’s tricyclic 

core forms key interactions with residues essential to RNA transfer binding and induces 

structural rearrangements that tightly lock the binding pocket.75b Resistance to pleuromutilin 

through spontaneous mutation is slow to occur due to a binding site and pose where multiple 
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residue changes are required to reduce affinity yet maintain PTC function. Exploration of 

pleuromutilin analogs has mostly been limited to semi-synthetic modification of the C-14 

sidechain. Extensive investigation of C-14 derivatives led to the discovery of Retapamulin, 

an FDA approved topical antibiotic used to treat methicillin resistant Staphylococcus aureus 
(MRSA) infections, and Lefamulin, currently under clinical investigation (NDA filed 

December 2018) for the treatment of community acquired bacterial pneumonia.76 Until 

recently, most mutilin analogs were explored for topical application only, since first-pass 

liver metabolism oxidizes the mutilin core to an inactive form.77 Nabriva delivered a major 

breakthrough in the discovery of a C-14 sidechain that reduced P450 binding and thus 

provided the potential for systemic treatment.78

Five groups have reported syntheses of the mutilin core, of which three reports have 

occurred in just the last six years (summarized in Figure 12).79 While the strategies and step 

counts differ, the overall yields to 15 are similar and the potential for discovery of interesting 

analogs are equally high. Notably, the Herzon group also accessed 12-epi-pleuromutilin (16) 

(19 steps, 1.1% overall yield), which was previously shown by researchers at Nabriva to 

possess extended-spectrum activity.80 Given the inevitability of bacterial resistance, the 

development of an arsenal of mutilin analogs is crucial. The systemic compatibility imparted 

by Nabriva’s sidechain and the new synthetic developments of Figure 12 make useful and 

diverse analogs more possible than ever.

Analogs targeted to change synthetic design.

The compounds described above are not themselves NP, but NP-analogs that remain in NP-

chemical space. As demonstrated by Tanimoto indices and complexity scores, these 

compounds provide to total synthesis all the challenges and opportunities for innovation as 

NPs. But they also provide opportunities to reach a functional endpoint: resistant strain 

potency, increased stability, increased selectivity or decreased toxicity. Notably, the 

compounds in Figures 5–12 arose from derivatization of a NP total synthesis intermediate: 

divergent total synthesis.81 However, perturbation of NP structure, i.e. analog design, can 

alter the main strategy. Using Corey’s nomenclature, the EX-TGT tree108 changes: some 

branches disappear, and others emerge.

Waldmann, Ertl, and others have used cheminformatics to organize existing NP scaffolds 

according to bioactivity and identify theoretical scaffolds within this hierarchy. In this case, 

NPs represent biologically-active nodes in chemical space about which analogs are 

clustered. These clusters can be reasonably predicted to contain multiple, biologically active 

compounds—experimentation has indeed produced novel scaffolds targeting ERα, pyruvate 

kinase, and monoamine oxidase A.82 By organizing these clusters in a hierarchy according 

to intrinsic complexity, scaffolds can be identified that may retain activity, but reduce 

synthetic burden. This method can be transformative for identifying fragments or simple 

scaffolds, but at the cost of NP-attributes like complexity. It is interesting to consider that 

movement along NP-based scaffold chains from high to low structural complexity resembles 

retrosynthetic analysis where the synthetic target (TGT) is dynamic not static.

A similar strategy might be used to identify analogs that retain intrinsic complexity but 

reduce synthetic complexity. While intrinsic complexity can be measured by several 
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methods,22–23,24,25 there are fewer computational packages capable of reasonably evaluating 

synthetic complexity (tractability) of novel compounds. SciFinder has for years delivered 

full synthetic routes to known compounds by compiling literature reports. De novo design of 

syntheses, however, is still in its infancy. Retrosynthesis software in development may 

provide a way forward, but it must incorporate the ‘fuzzy logic’ of methods development or 

the predictive rigor of transition state calculation. Empiricism seems unavoidable. In the 

meantime, some synthesis groups have stepped in to bridge the gap.

Artemisinin.

Artemisinin (34), a tricyclic sesquiterpene lactone featuring a structurally unique 

endoperoxide bridge, was discovered in the early 1970’s after Chinese scientists performed a 

low temperature ether extraction of the herb, Artemesia annua.83 Artemisinin possesses 

potent anti-malaria activity—killing the parasite at most of its asexual development stages in 

human blood.84 Although artemisinin’s mechanism of action is not fully understood, 

oxidative stress induced parasite death and non-specific protein modification, initiated via 

heme-mediated homolytic cleavage of the endoperoxide bridge, remains a widely accepted 

mechanism.85

Since its debut in 1987, artemisinin and more soluble semisynthetic analogs artemether 

(1987), artesunate (1987), and artether (2000) have been deployed in artemisinin-based 

combination therapies (ACT) to treat malaria. As of 2016, ACT is the first-line treatment 

policy in 80 countries with 409 million treatment courses reported in 2016.86 Reports from 

the World Health Organization highlighting the progression of ACT resistant P. falciparum, 

have motivated some to develop artemisinin analogs as alternative therapeutic agents and 

biological probes.

Despite notable synthetic achievements, including Avery’s diverted total synthesis and 

Cook’s concise 9-step total synthesis, artemisinin analogs are predominately supplied via 

semisynthesis.87 Functional groups susceptible to semisynthetic modification, however, are 

limited; mostly the D-ring lactone has been modified.88 To uncover the little explored effects 

of C-ring functionalization, Oguri and co-workers designed a concise synthesis of 6-aza-

artemisin analogs.89 Strategically targeting an aza-artemisinin analog lacking a C6 carbon 

enabled the exploration of a deep-seated core modification. More importantly, this C to N 

perturbation changed the available retrosynthetic transforms and opened a new strategy.

Leveraging the newly available disconnections, Oguri and co-workers designed a modular 4-

step sequence to the anti-malarial tetracyclic scaffold from three simple building blocks: an 

amine, aldehyde, and alkyne (Figure 13). Simple Cu-catalyzed condensation using 

Carreira’s catalyst (CuBr/(R,M)-PINAP) assembled the three component linear precursor in 

high yield (92%) and high ee (93%).90 Next, Ti(II)-mediated cyclization of the ene-yne 

followed by protonation afforded the desired piperidine (29) as a single diastereomer. 

Finally, the tetra-cyclic scaffold was constructed via a one-pot procedure featuring: ketal 

deprotection and formation of the ammonium salt, [3+2] cycloaddition from the less 

hindered face to form the molozonide, migration of the silyl group to form the aldehyde and 

trimethyl silyl peroxide, which in the presence of additional trifluoroacetic acid cyclized to 

form trioxane 32.
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Efficient access to 32 enabled the synthesis of N-substituted analogs via reductive amination 

with a variety of aldehydes. One 6-aza-artemisinin analog, 33, was more potent than 

artemisinin in the P. berghei rodent malaria model and comparable in potency to the first-

line semisynthetic drug artesunate.

Strategic perturbation of artemisinin’s chemical structure permitted access to unprecedented 

artemisinin analogs and new retrosynthetic disconnections. Elemental substitution17 from 

C6 to N6 enabled the convergent assembly of three linear building blocks at C5a, a position 

that is minimally involved in previous artemisinin total syntheses. At 7 total chemical 

transformations, Oguri’s synthesis is among the most concise fully synthetic routes to 

artemisinin’s local chemical space. The consequences of intrinsic complexity in this space 

has yet to be explored, but comparison to the simpler OZT endoperoxides may prove 

instructive.

Spongistatin 1.

Isolated in 1993, spongistatin 1 (35) is a complex marine macrolide with remarkably potent 

antitumor activity against the NCI panel of 60 human cancer cell lines—boasting an average 

GI50 value of 0.12 nM.91 Like vinblastine, spongistatin 1’s antitumor activity derives from 

mitosis inhibition via binding to the Vinca alkaloid domain of tubulin.92 Despite interest as a 

potential payload for antibody-drug conjugates, limited supply via isolation has prohibited 

clinical development. The synthetic community has attempted to solve the supply problem 

but streamlined access to a 42-membered macrolide ring with 24 stereocenters, two pyranyl 

subunits, and two spiroketals is no simple task.93 The particularly challenging CD-ring 

spiroketal exists as a thermodynamically less stable singly anomeric stereoisomer. Attempts 

to acquire the desired spiroketal from dihydroxy ketone precursors requires iterative 

separations from the major doubly anomeric product.93 The high intrinsic complexity (1,504 

mcbits) led to total syntheses of spongistatin 1 that require >30 steps in the longest linear 

sequence (LLS) and >105 total steps.93

To develop a more concise route to spongistatin 1 functional chemical space, the Leighton 

group designed a new synthetic target that they hypothesized would retain potency and 

intrinsic complexity but decrease synthetic complexity (Figure 14).94 In a brilliant insight, 

the singly-anomeric CD spiroketal was identified as a source of synthetic complexity and 

instability, but biological irrelevance. Stereochemical inversion to the stabilized, doubly-

anomeric spiroketal could occur via CH2→O interchange, which necessitated removal of the 

C25 hydroxyl. The newly designed CD spiroketal was hypothesized to be isostructural to 

spongistatin 1 and hence retain potency. Importantly, however, spiroketalization could be 

thermodynamically controlled by simple acid-catalyzed dehydration of a ketodiol—a 

synthetically simplifying maneuver. Such a structural perturbation might prove 

advantageous in the context of ADC development since the increased acid stability of the 

spiroketal might render it resistant to isomerization in the low-pH cellular 

microenvironments of endosomes and lysosomes.

Analog 36 was prepared in 37 fewer steps than the shortest synthesis of spongistatin 1 or 2 

and shown to possess comparable potency to spongistatin 1 (GI50 = 0.06 nM, 1A9 ovarian 

cells; 33x more potent than taxol). Its synthetic complexity is lower, but its intrinsic 
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complexity is nearly identical (1487 vs. 1504 mcbits). Up to 40 g of key fragments in the 

synthesis could be prepared.95

Salvinorin A.

The neo-clerodane diterpene, salvinorin A (SalA, 37), was identified as the primary 

psychoactive component of the hallucinogenic herb, Salvia divinorum.96 Unlike prior 

hallucinogenic natural products, SalA did not target the serotonin 5-HT2A receptor. Instead, 

SalA was discovered to be a potent and selective agonist of the kappa-opioid receptor (κ-

OR), a GPCR expressed throughout the central and peripheral nervous system that 

modulates consciousness, mood, and pain.97 Selective agonism of κ-ORs has garnered 

significant attention as a promising pain-relieving strategy because antinociceptive activity is 

observed in the absence of euphoria and respiratory suppression. The latter activity, or lack 

thereof, is significant since the majority of antinociceptive drugs that target µ-opioid and δ-

opioid receptors induce respiratory suppression—the cause of death in opioid overdose.98

The potency and selectivity of SalA, coupled with the need to remove hallucinogenic side-

effects, have stimulated semisynthetic and fully-synthetic efforts toward the development of 

SalA analogs.99 While most SalA analogs are made via semisynthesis, core instability limits 

the pool of available chemical transformation, and hence the diversity of semisynthetic SalA 

analogs. Specifically, C8 epimerization occurs under basic and acidic conditions to favor the 

less potent 8-epi-SalA (154–356 fold potency loss).100 The driving force for the trans- to cis-

ring fusion had not been identified. Our group hypothesized that C20 axial strain was the 

driving force responsible for core instability.

To stabilize the core and attenuate epimerization, our group deleted the C20 methyl from the 

target (Figure 15a, 38).101 This new structure not only probed our strain driven 

epimerization hypothesis but also changed the available retrosynthetic disconnections. 

Deletion of the C20 methyl stabilized decalone intermediates and significantly enhanced 

access to simple starting materials, resulting in a 10-step synthesis, which compares 

favorably to the 20–29-step syntheses of SalA itself. The equilibrium of 20-nor-SalA and its 

C8 epimer is reversed from SalA and 8-epi-SalA (Figure 15b). An additional modification to 

change the C-ring lactone to a cyclohexanone completely suppressed epimerization. 

Notably, this work identified a new carboxylate-directed Heck reaction to install aryl rings 

on the SalA scaffold, providing paths forward for method development, analog development, 

and SAR discovery. This carboxylate directivity enables the first example of intermolecular 

Heck reactions with simple, tetrasubstituted alkenes.102 Modification of NP structure to ease 

synthesis does not preclude the design of new methods, rather it opens new retrosynthetic 

paths.

Discussion.

Molecular diversity describes the coverage of active clusters (chemotypes) within a chemical 

space. The greater the number of chemotypes in a library, the more likely a useful molecular 

lead will be identified. One privileged subset of chemical space, natural product chemical 

space, possesses properties that have been shown to be more successful in early screening 

and in the clinic. However, interrogation of this privileged area of chemical space is limited 
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by synthetic access. The ~385 NP/NP-derived analog new chemical entities are primarily 

supplied by isolation/fermentation and semisynthesis. Fully synthetic campaigns are rare.

If a goal of synthesis is to enable rapid access to useful molecules, the target of synthesis 

campaigns need not be the NP itself. The target could be the functional NP space around the 

NP. A dynamic approach to retrosynthesis changes the TGT from a constant to an 

independent variable. The structure of the TGT is no longer static and hence can be changed 

to influence the retrosynthesis. Discoveries in the forward synthesis can influence what 

structural modifications can and should be made to the dynamic target.

This approach complements current strategies to access NP analogs. Divergent81 or 

diverted103 total synthesis relies on developing a route to the static NP target and 

diversifying late stage intermediates to NP analogs. Function oriented synthesis (FOS) relies 

on simplifying the NP target such that only the component necessary for biological activity 

is retained.20 In some cases, these changes also enable scaffold stabilization by removal of a 

structural liability,104 or significant reductions in synthetic burden.105 In other cases, FOS 

moves the target from privileged NP space towards areas of chemical space that are already 

populated.106 FOS is particularly attractive for large, highly complex structures 

(halichondrin→eribulin107). For small but dense NPs, a dynamic approach may prove 

helpful, and analogy to the heuristics of retrosynthetic analysis makes a good starting point.

Alteration of structure to change synthetic complexity is a fundamental aspect of 

retrosynthetic analysis.108 From a static target, retrosynthetic transforms are applied to 

iteratively reduce intrinsic complexity. Transforms may also strategically increase intrinsic 

complexity if the net result is to reduce synthetic complexity. A dynamic approach adds the 

constraint of biological function but removes the constraint of the transform. That is, change 

of final TGT structure need not correspond to a chemical reaction: ‘nonsense’ transforms 

like replacement of CH2 with NH in artemisinin are allowable. Otherwise, the ideas are the 

same as Corey’s hierarchies of transforms108: perturbation of structure can have a positive 

(+1), negative (−1) or no effect (0) on intrinsic complexity (see Figure 16), yet each may 

reduce synthetic complexity by opening a new retrosynthetic path. The added constraints of 

biological function and proximity in chemical space to the NP help guide structural changes. 

Like the heuristics of retrosynthetic analysis, these ideas are meant to encourage others to 

discover NP alterations and strategies for themselves, not dictate rules.

A dynamic retrosynthetic analysis may be most useful when an active NP is limited by its 

chemical or metabolic instability. Peripheral instability may not impact retrosynthesis, but 

instability at the core requires redesign. Crystal structures of natural products bound to 

proteins or other biomolecular targets of therapeutic interest are available in the literature. 

Known binding sites and poses of a NP with its target can inspire and guide structure 

editing. These data are not necessary to modify a target and measure the functional effects of 

a revised structure, but they may provide the clearest path forward.

Conclusion.

Over the last few decades, biology has become increasingly molecular. How has synthesis 

changed? In some ways, it has not and should not: the goals of efficient, economical and 
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benign synthetic processes remain significant and open-ended. In other ways, changes have 

come quickly, especially at the interface of biology and medicine. Spectroscopy, 

crystallography and microscopy have characterized protein structure to expedite the 

optimization of drug candidates, in some cases designed from small fragments.109 In the 

absence of known structure, homology modeling using genomic data has aided medicinal 

chemistry synthesis campaigns.110 High-throughput screens111 including activity-based 

protein profiling112 have provided big-data applications for large molecular libraries, some 

generated by combinatorial synthesis.

The underlying theory behind natural product total synthesis has remained untouched by 

these trends. We wonder if an interface between molecular biology and the heuristics of 

retrosynthetic analysis might provide a useful direction.

The synthetic chemist already evaluates how strategic structural changes expedite synthesis 

in the context of retrosynthetic analysis. Molecular biology allows this theory to be extended 

towards functional goals. Diversity of NP structure perturbation and the diversity of 

synthetic strategies it imparts can lead to new ways of looking at NP leads, even well-

investigated targets. This Perspective is not a declaration but an invitation: the creative 

editing of natural product structure invites discovery.
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Figure 1. 
Extremes of non-diverse vs. diverse leads (chemical targets) in a molecular collection sorted 

by chemotype.
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Figure 2. 
FDA-approved NP analogs.
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Figure 3. 
Used from Ref. 16 (Ertl, Roggo and Schuffenhauer, J. Chem. Inf. Model. 2008, 48, 68). 

Natural products differ from most synthetic molecules, but overlap with drugs, which have 

been optimized for biocompatibility. NPs are preoptimized.
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Figure 4. 
Structural complexity and synthetic complexity are related, but not identical.
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Figure 5. 
Eravacycline, an analog of tetracycline from Tetraphase.
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Figure 6. 
A screen of synthetic himbacine analogs enabled the discovery of Vorapaxar.
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Figure 7. 
Isofludelone, a fully synthetic epothilone B analog under clinical investigation.
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Figure 8. 
Myers’ erythromycin / solithromycin analog FSM-100573.
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Figure 9. 
Activity against VanA-resistant bacteria restored by Boger’s vancomycin amidine analog.
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Figure 10. 
A urea side-chain restores potency of vinblastine alkaloids against resistant cell lines.
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Figure 11. 
DZ-2384 inhibits microtubule dynamics via a novel mechanism of action.
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Figure 12. 
Recent total syntheses of pleuromutilin.
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Figure 13. 
Substitution of C6 carbon with nitrogen enables the design of a 4-step route to artemisinin 

chemical space.
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Figure 14. 
CD spiroketal redesign decreases synthetic complexity and enables the discovery of a 

thermodynamically more stable and equipotent analog, 36.
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Figure 15. 
Methyl deletion and oxygen substitution stabilize the SalA scaffold, maintain potency and 

selectivity, and enable a short synthesis.
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Figure 16. 
Dynamic retrosynthetic analysis expands the basis set of retrosynthesis to include structural 

perturbations.
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