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Abstract

In cancer genomic studies, an important objective is to identify prognostic markers associated with 

patients’ survival. Network-based regularization has achieved success in variable selections for 

high-dimensional cancer genomic data, due to its ability to incorporate the correlations among 

genomic features. However, as survival time data usually follow skewed distributions, and are 

contaminated by outliers, network-constrained regularization that does not take the robustness into 

account leads to false identifications of network structure and biased estimation of patients’ 

survival. In this study, we develop a novel robust network-based variable selection method under 

the accelerated failure time (AFT) model. Extensive simulation studies show the advantage of the 

proposed method over the alternative methods. Two case studies of lung cancer datasets with high 

dimensional gene expression measurements demonstrate that the proposed approach has identified 

markers with important implications.
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2 Introduction

In cancer research, profiling studies have been extensively conducted to identify prognostic 

markers that may contribute to the development and progression of cancer. Important 

prognostic markers have the potential to shed deep insight in elucidating the genetic basis of 

cancer, and provide assistance in cancer prevention, diagnosis and treatment selection. The 

generation of unprecedented amount of high dimensional genomics data from the high-
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throughput profiling studies has led to the development of extensive regularized variable 

selection methods(Fan and Lv (2010)). The genomics features, such as gene expressions and 

single nucleotide polymorphism (SNPs), are treated as variables within the regularization (or 

penalization) framework. As the correlations among genomics features have been widely 

recognized, multiple studies have developed network based regularization methods to 

accommodate interconnections among these features, including gene expressions (Li and Li 

(2008)), SNPs (Ren et al. (2017)), copy number variations (Peng et al. (2012); Shi et al. 

(2015)) and DNA methylations (Sun and Wang (2012)).

The network based methods have unique strength to effectively capture correlations by 

incorporating prior biological information via the network (or graph) structure, where the 

vertices of networks are the genomic features and the edges of the networks denote certain 

regulatory relationship among the features. Incorporation of the network structure in 

regularized variable selection has led to significant improvement in both identification 

accuracy and predictive performance, as demonstrated in aforementioned studies, as well as 

many other studies. Nevertheless, these methods have limitations. First, network–

constrained regularization methods under survival outcomes have not received much 

attention. As markers identified under patients’ survival have important implications in 

cancer prognosis, the network–based regularized variable selection will improve accuracy in 

both identifying prognostic markers and predicting patients’ survival. However, the disease 

outcome investigated from published studies are mainly continuous (Li and Li (2008); Peng 

et al. (2012); Shi et al. (2015)), binary (Ren et al. (2017); Sun and Wang (2012); Min et al. 

(2018)) and multi-nomial (Tian et al. (2014)). Markers identified from these studies, though 

important, cannot be treated as potential prognostic markers directly. Second, existing 

network (or graph) based methods lack robust properties, which are critical to accommodate 

data contamination and long-tailed distributions. In studies that investigate the regulations of 

between CNVs and gene expressions (Peng et al. (2012); Shi et al. (2015)), as gene 

expressions may have heavy tailed distributions (especially at high expression levels) or be 

contaminated, inference of gene regulatory relationship based on non-robust methods might 

be biased.

We use the lung squamous cell carcinoma (LUSC) data collected by The Cancer Genome 

Atlas (TCGA) as a motivating example. For the 461 subjects analyzed in this study, five 

subjects have survival time 150.13, 151.15, 154.20, 156.54 and 173.69 months, respectively, 

while the rest 456 subjects have survival times ranging from 0.03 to 139.98 months. Figure 1 

shows the plots of both empirical density function of the log survival time as well as the 

corresponding best-fitted normal density. The deviation from normal is observed. Moreover, 

the Kolmogorov-Smirnov test yields a pvalue less than 0.01, which suggests a significant 

difference from normal distribution. Such a pattern may happen for multiple reasons. For 

example, when multiple cancer subtypes exist, the largest subtype can be viewed as being 

“contaminated” by small subtypes. Contamination of survival can also be caused by 

misclassification of causes of death (Rampatige et al. (2013)) and unreliable extraction of 

survival times from medical records (Fall et al. (2008)). Without taking robustness into 

consideration, non-robust network based methods will lead to biased estimation and thus 

false identification of network structure, even in the presence of only one contaminated 

observation. As shown in Wu and Ma (2015), for high-dimensional genomic data, the robust 
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variable selection methods are still not well developed, which is particularly true for the 

network–constrained approaches, possibly due to the extra complexity from incorporating 

network structure to accommodate interconnections among genomic features.

In this article, we propose a robust network–based regularization and variable selection 

method for high-dimensional genomics data in cancer prognosis. Our method has the 

following novel features to distinguish itself from existing ones. First, we adopt the least 

absolute deviation (LAD) loss function to accommodate heavy-tailed distribution and data 

contamination. Although no robust loss function universally outperforms the rest, the LAD 

loss function, as a special case of quantile-based loss functions, is especially appealing for 

high-dimensional data due to its L1 form (Wu and Ma (2015); Huang et al. (2007); Wu et al. 

(2018)). Other robust loss functions, including exponential square loss (Wang et al. (2013b)) 

and rank based loss (Shi et al. (2014); Wu et al. (2015)), do not enjoy such a computational 

convenience for data with high-dimensionality. Second, as our goal is to robustly identify 

important genomic signatures while accommodating correlations under survival outcomes, 

we develop robust network based penalization under the accelerated failure time (AFT) 

model with Kaplan-Meier weights. The proposed penalty function is of an “MCP + L1” 

form, where MCP, the Minimax Concave Penalty, encourages sparsity (Zhang (2010)) and 

the L1 term promotes network structure. Besides, although the weighted LAD estimator has 

been investigated in Huang et al. (2007), the strength of its regularized counterpart has not 

been fully explored, especially for network structure estimation and identification. Third, we 

develop an effective algorithm within the coordinate descent framework. On the contrary, the 

computational cost for many robust variable selection methods are prohibitively high under 

complicated data and model settings (Wu and Ma (2015)). The advantage of our method 

over alternatives has been convincingly demonstrated in both simulation studies and two 

case studies. To the best of our knowledge, identifying important genomic features in cancer 

prognostic studies through robust penalization by incorporating network structures has not 

been reported before. It is also noting that our method is not restricted to cancer survival 

only. Instead, it can be readily extended to other types of response, such as the continuous 

disease phenotypes.

3 Statistical Methods

We consider the AFT model for cancer prognosis. For high-dimensional genomics data, the 

AFT model is adopted over the Cox model and other alternatives due to its lower 

computational cost. From now on, we use gene expression as a representative example of 

genomics features.

3.1 The LAD Regression for Censored Data

Denote the ith subject by using the subscript i. Let (Ti, Xi, Zi) (i = 1,…, n) be n independent 

and identically distributed random vectors, where Ti is the logarithm of survival time, Xi = 

(xi1, xi2…, xip)T is the p–dimensional vector of gene expressions, and Zi = (zi0, zi1…, ziq)T 

is the (q + 1)–dimensional vector of which the first component zi0 = 1 and the last q 
components are clinical/environmental covariates. Usually, q and p are of low and high 

dimensionality, respectively. The AFT model postulates that
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Ti = Ziα + Xiβ + εi

α = (α0, α1,…, αq)T where α0 is the intercept and the last q components are the regression 

coefficients for the clinical covariates. β = (β1,…, βp)T is the regression coefficient vector 

for the gene expressions, and εi is the error term with an unspecified distribution. Denote Ci 

as the logarithm of the censoring time. Under right censoring, we observe (Yi, δi, Zi, Xi), 

where Yi = min(Ti, Ci), and δi = I(Ti ≤ Ci) is the indicator of event. Without loss of 

generality, we assume that {(Yi, δi, Zi, Xi), i = 1,…,n} have been sorted with respect to Yi in 

an ascending order.

We adopt the Kaplan-Meier weights for censoring. Let Fn be the Kaplan–Meier estimator of 

the distribution function F of T. Then by following Stute and Wang (1993), we have 

Fn(y) = ∑i = 1
n vi1 Y i ≤ y , where the Kaplan–Meier weights vi (i = 1,…, n.) are defined as

v1 =
δ1
n , vi =

δi
n − i + 1 ∏

j = 1

i − 1 n − j
n − j + 1

δ j
, i = 2, …, n .

To accommodate data contamination, consider the weighted LAD loss function

L(α, β) = 1
n ∑

i = 1

n
vi Y i − Ziα − Xiβ (1)

The robustness comes from the L1 form of the loss function. For a contaminated observation 

with Yi significantly deviating from Ziα + Xiβ, the predicted value from model (1), the L1 

based loss down-weighs such a deviation, while the non-robust loss, for example, least 

square based loss, results in a much larger deviation.

3.2 Robust Network-based Penalized Identification

As only a small subset of gene expressions is associated with cancer prognosis, and the total 

number of gene expressions is much larger than the sample size, identification of important 

prognostic markers is of a “large p, small n” nature, and can be achieved through regularized 

variable selection. Consider the regularized loss function:

Q(α, β) = L(α, β) + P(β; λ, γ) (2)

where λ and γ are tuning parameters. A nonzero component of regularized estimate β
indicates that the corresponding gene expression is associated with cancer prognosis. One 

possible choice for the penalty function is
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P(β; λ, γ) = ∑
m = 1

p
ρλ1, γ βm ,

where ρλ1, γ(t) = λ1∫ 0
|t| 1 − x

γλ1 +
dx is the Minimax Concave Penalty (MCP) with tuning 

parameter λ1 and regularization parameter γ (Zhang (2010)).

The effects of gene expressions are represented by β, the vector of regression coefficients. 

We impose MCP on β, and components of non-zero regularized estimate suggests that the 

corresponding gene expressions are associated with cancer prognosis. A major disadvantage 

of this penalty is that correlations among gene expressions are not considered. Multiple 

studies, including aforementioned ones, have shown that failure to accommodate 

correlations results in biased estimation and false identification of important effects. To 

overcome this issue, we use a network structure to describe the interconnections among gene 

expressions. In the gene expression network, a node corresponds to a gene expression, and 

two nodes are connected by the edge if corresponding gene expressions are associated 

statistically or biologically. We propose the following penalty function to incorporate 

network information:

P(β; λ, γ) = ∑
m = 1

p
ρλ1, γ βm + λ2 ∑

1 ≤ m < k ≤ p
amk βm − sgn amk βk , (3)

where ρλ1,γ(·) is the MCP defined above, βm is the coefficient corresponding to the m-th 

gene expression and amk measures the strength of connection between the m-th and k-th 

gene expression. The first term of (3) imposes MCP on all the p components of β, thus it 

encourages sparsity in the regularized estimate. The second term promotes the smoothness 

among pairwise coefficient profiles of correlated gene expressions. It encourages their 

regression coefficients to be of similar magnitude. The extent of “encouragement” is 

adjusted by amk. The penalty shares certain similarity with the sparse Laplacian penalty 

(Huang et al. (2011)). However, it also has remarkable difference due to the L1 form, which 

is adopted for the “consistency” purposes with the weighted LAD loss function.

In (3), |amk| is the network adjacency which plays a critical role in quantifying the strength 

of connection between two nodes. We consider the approach from Zhang and Horvath 

(2005) to specify adjacency. Denote rmk as the Pearson correlation coefficient between the 

mth and kth gene expression. Let A = (amk, 1 m, k ≤ p) be the adjacency matrix, where 

amk = rmk
α ⋅ I rmk > r  with α = 5. A properly defined network adjacency measure can keep 

the sign of rmk, retain strong correlations and tune down weak ones (that are possibly 

noises). We choose the power transformation and the value of α following existing studies 

(Huang et al. (2011); Zhang and Horvath (2005)). We calculate the cuto r based on Fisher 

transformation zmk = 0.5log((1 + rmk)/(1 − rmk)). If the correlation between mth and kth 

gene expressions is 0, n − 3zmk approximately follows N(0, 1), which can then be adopted 
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to calculate a threshold δ for n − 3zmk. Then the threshold for rmk is 

r = exp(2δ/ n − 3) − 1)/(exp(2δ/ n − 3) + 1). The network is weighted and sparse. Please refer 

to Huang et al. (2011) and Zhang and Horvath (2005) for more details. There are alternative 

ways of constructing network adjacency. For instance, biological information (like pathway) 

is used to define adjacency in some studies. We conjecture that they are equally applicable. 

As our objective is not to compare different network constructions, we focus on this specific 

network structure.

3.3 Computation

Consider the following iterative algorithm:(a) initialize α and β; (b) update α as the 

minimizer of (1) with β fixed at β; (c) update β as the minimizer of (2) with α fixed at α; (d) 

iterate step (b) and (c) until convergence. The non-convexity of MCP in the penalty function 

(3) makes that computation of step (c) particularly challenging. Here, we develop an 

effective algorithm that borrows strength from MM (majorization-minimization) within the 

coordinate descent (CD) framework. More specifically, the nonconvex MCP in (3) is 

replaced by its majorization function to create a surrogate regularized loss function first, 

then optimization is conducted over the surrogate loss function with respect to one predictor 

at a time, and cycled through all predictors untill convergence.

We define a majorization function for the MCP function ρλ1, γ( β ) at the d-th iteration (d = 1, 

2, …) as

ϕ
βm

(d − 1) βm = ρλ1, γ βm
(d − 1) + ρλ1, γ′ βm

(d − 1) + βm − βm
(d − 1) , m = 1, …, p

where βm
(d − 1) is the value of βm at the end of the (d-1)-th iteration, and ρλ1, γ′ βm +  is the 

limit of ρλ1, γ′ t  as t βm  from the above. ρλ1, γ′ βm +  exists for all βm due to the piecewise 

differentiability of MCP. We can see that

ϕ
βm

(d − 1) βm ≥ ρλ1, γ βm  for all m

where the equality holds when βm = βm
(d − 1). Hence, ϕ

βm
(d − 1), m = 1, …, p majorizes the MCP 

function ρλ1, γ( β ). Subsequently, the regularized loss function in (2) is majorized at the d-th 

iteration by

Q
β(d − 1)(α, β) = L(α, β) + ∑

m = 1

p
ϕ

βm
(d − 1) βm + λ2 ∑

1 ≤ m < k ≤ p
amk βm − sgn amk βk
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Next, we update the value of β at the d-th iteration by minimizing the surrogate regularized 

loss function:

β(d) = argmin
β

Qβ(d − 1)(α, β) (4)

This minimization can be conducted within the coordinate descent framework. With α and β
−m held fixed at the current estimate, we have

βm
(d) = argmin

βm

1
n ∑

i = 1

n
vi|Yi − Ziα − ∑

j ≠ m
Xi jβ j − Ximβm| + ∑

j ≠ m
ϕ

β j
(d − 1) β j + ϕ

βm
(d − 1) βm

+ λ2 ∑
j ≠ m

∑
j < k ≤ p

a jk β j − sgn a jk βk + λ2 ∑
m < k ≤ p

amk βm − sgn amk βk

= argmin
βm

1
n ∑

i = 1

n
vi|Yi − Ziα − ∑

j ≠ m
Xi jβ j − Ximβm| + ρλ1, γ′ βm

(d − 1) + βm

+ λ2 ∑
m < k ≤ p

amk βm − sgn amk βk

Therefore, (4) can be equivalently expressed as a minimization problem for weighted 

median regression. We re-write (4) as

βm
(d) =  argmin 

βm

1
n + 1 + p − m ∑i = 1

n + 1 + p − mwim uim (5)

where

uim
(d) =

Y i − Ziα − ∑ j ≠ m
p Xi jβ j

(d − 1)

Xim
− βm i = 1, 2, …, n

0 − βm i = n + 1
 sgn  amk βk − βm i = n + 2, …, n + 1 + p − m

(6)

and

wim
(d) =

1
nvi Xim i = 1, 2, …, n

ρλ1, γ′ βm
(d − 1) + i = n + 1

λ2 amk i = n + 2, …, n + 1 + p − m

(7)
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where m and k follow the same definition as in (3). The minimizer of (5) is the weighted 

median of (n + 1 + p − m) pseudo observations. Similarly, we can update the (q + 1)− 

dimensional vector α(d) component-wisely by minimizing the loss function (1) using 

weighted median regression. Specifically, for each l = 0, …, q, update αl
(d) using the 

weighted median in (1) with β and α−l held fixed. With fixed tuning parameters, the 

coordinate descent algorithm is described in Table 1

Selection of proper tuning parameters is crucial to the proposed method. Here, we have 

tuning parameters λ1 and λ2, as well as a regularization parameter γ. In MCP, γ balances 

between the concavity and unbiasedness. As suggested by Zhang (2010), Shi et al. (2015) 

and other studies, in our numerical study, we experiment γ with a sequence of values, 

including 1.5, 3, 5, 7 and 10, and find that the results not sensitive to the choice of γ. 

Therefore, we set γ=5. We choose the optimal pair of tuning parameters (λ1, λ2) via a two-

dimensional grid search on independent testing data sets. That is, we first obtain regularized 

estimates from training data, then evaluate prediction performance over independently 

generated testing data. In simulation, the tunings determined from V-fold cross validation 

are very close to those based on independent testing data, but computationally more 

intensive. In real data analysis, we use cross validation to choose optimal tuning parameters 

since independent testing data sets are not available. In both simulation study and case study, 

convergence has been achieved in a small to moderate number of iterations. We compute the 

CPU time of running 100 replicates of simulated 300 × 500 gene expression data with AR 

structure and fixed tuning parameters on a regular laptop. The CPU time in seconds are 53.0 

(LAD_Network), 36.1 (LAD MCP), 34.9 (LAD LASSO), 39.1 (Network), 24.3 (MCP) and 

24.7 (LASSO), respectively.

To facilitate computation, we implement the proposed method, as well as the alternatives in 

C++ and provide the R package regnet with detailed documentation and examples (Ren et al. 

(2018)).

4 Simulation

To demonstrate the utility of the proposed approach, we evaluate the performance through 

simulation study. In particular, we consider right censored survival data under the 

accelerated failure time (AFT) model. We generate datasets for different correlation 

structures and correlation levels, each with 300 subjects. For each subject, we simulate 5 

clinical covariates and the expression of 500 genes, from multivariate normal distributions 

with marginal means equal to zero and variances equal to one. Among the 500 genes, there 

are 100 clusters with 5 genes per cluster. For the gene expression, we consider three 

correlation structures. (1) the auto-regression (AR) structure, in which gene i and j within the 

same cluster have correlation coefficients ρ i − j , and they are independent cluster–wisely. 

We consider ρ = 0.5 and 0.8, representing moderate and strong correlation, respectively. (2) 

banded correlation structure where the ith and jth genes have ρ = 0.5 if |i − j| = 1 and ρ = 0 

otherwise. Gene expressions in different clusters are independent. (3) banded correlation 

structure where the ith and jth genes have correlation coefficient 0.5 if |i − j| = 1, 0.25 if |i − 

j| = 2 and 0 otherwise. 10% of clusters are randomly selected to have nonzero regression 
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coefficients generated from Unif[0.2, 0.8]. For the clinical covariates, we simply use a 

multivariate normal distribution with ρ = 0.7 in all scenarios. All clinical covariates have 

non-zero coefficients generated independently from Unif[0.2, 0.8]. The log event times are 

generated under the AFT model with random errors from N(0, 1) (Error1), T(1) (Error2), 

85%N(0,1) + 15%Cauchy(0, 1) (Error3) or 75%N(0,1) + 25%Cauchy(0, 1) (Error4). The log 

censoring times are generated from uniform distribution. The average censoring rate is about 

30%. We choose the tuning parameters based upon the prediction performance of the 

corresponding model in an independently simulated validation dataset.

For comparison, besides the developed robust network-constrained approach 

(LAD_Network), we also consider two robust approaches, robust MCP (LAD MCP) and 

robust LASSO (LAD LASSO), as well as three non-robust approaches, Network (Huang et 

al. (2011)), MCP and LASSO. All the robust methods adopt the weighted LAD loss 

function, while non-robust methods adopt the weighted least square loss. In particular, 

robust MCP is equivalent to the proposed approach when λ2 = 0 in (3). Similarly, Network 

reduces to MCP when the tuning parameter corresponding to the Laplacian term is 0. 

Comparison between robust and non-robust methods has fully demonstrated the advantage 

of not only robustness in accommodating data contamination in survival response, but also 

the network based penalty from LAD_Network in accommodating interconnections among 

genetic measurements.

Simulation results for the gene expression data under AR structure are tabulated in Table 2. 

We can observe that from the upper panel of Table 2 where ρ = 0.5, LAD_Network has 

better performance than LAD_MCP and LAD_LASSO for all four error types. For example, 

under Error2, LAD_Network identifies 31.63(sd 13.55) out of the 50 true positives, with a 

relatively small number of false positives 14.93(sd 9.85). LAD_MCP identifies a lower 

number of true positives 23.1(sd 9.64) with a higher number of false positives 56.17(sd 

81.31). LAD_LASSO has a true positives 30.33(sd 6.57), but a much higher false positives 

103.17(sd 49.89). Compared with non-robust methods, the proposed method has significant 

advantage when heterogeneity exists in the data (Error2, Error3 and Error4). When there is 

no heterogeneity (Error1), performance of the proposed method is comparable to that of the 

non-robust Network method and outperforms MCP and LASSO.

As correlation increases, the proposed one outperform other alternatives more significantly. 

As what we can observe from the lower panel of Table 2 where ρ = 0.8 under AR structure, 

LAD_Network achieves ideal true positives and satisfactory false positives. For example, 

LAD_Network has a TP 43.8(sd 12.34) and a FP 15.07(sd 13.55) for Error 2 and a TP 

47.23(sd 7.11) and a FP 4.53(sd 5.05) for Error 3, outperforming all other alternatives. To 

further examine the performance of the proposed approach, we also conduct simulation 

under banded structures. Results are summarized in Table 3 in the Appendix. The proposed 

LAD_Network delivers a consistent performance under different covariance structures: it 

outperforms robust alternatives when moderate to strong correlation exists among genetic 

variants, and it has significant advantage over non-robust methods when heterogeneity exists 

in the data.
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In the second set of simulation, we consider more realistic correlation structures. 

Specifically, We generate gene expression datasets based on correlation structure extracted 

from real data in cancer studies. 500 genes are selected from Non-small cell lung cancer 

(NSCLC) data and Lung squamous cell carcinoma (LUSC) data, respectively. Two gene 

expression datasets, each with 300 subjects, are simulated with a multivariate normal 

distribution with marginal means zero and correlation matrix computed from genes selected 

from NSCLC data and LUSC data, respectively. 10% of genes are assigned to have nonzero 

regression coefficients generated from Unif[0.2, 0.8]. The 500 genes from real data are 

selected in a way that they form group-wise correlation structure. Unlike the first set of 

simulation where there are 5 genes per cluster, the clusters in this setting form more closely 

to real data based upon the calculated correlation coefficient. Results are shown in Table 4 

and 5 in the Appendix. In Table 4, under Error 3, LAD_Network has the highest TP, 

43.00(6.79), and the lowest FP, 3.14(3.91), among all the six approaches. The superior 

performance has also been observed under other heavy-tailed distributions. With standard 

normal error (Error 1), LAD_Network is comparable with the non-robust Network method, 

and outperforms the other two non-robust methods. Similar patterns have also been observed 

from Table 5. The conclusions from the simulations based on real gene expression data are 

consistent with the ones we have from the first setting.

In the third set of simulation, we examine whether the proposed one demonstrates superior 

performance over the alternatives on simulated single-nucleotide polymorphism (SNP) data. 

We consider two schemes to simulate SNP data. With the first SNP generating scheme, the 

SNP data are simulated by dichotomizing expression values of each gene at the 1st and 3rd 

quartiles, with the 3–level (2,1,0) for genotypes (AA,Aa,aa) respectively, where the gene 

expresison values are generated under the first set of simulation. Results are given in Table 6 

and 7 under AR structure and banded structure respectively in the Appendix. Under the 

second approach, the SNP genotype data are simulated based on a pairwise linkage 

disequilibrium (LD) structure. Let q1 and q2 be the minor allele frequencies (MAFs) of two 

alleles A and B for two adjacent SNPs. We denote LD as δ, and the frequencies of four 

haplotypes are calculated as pAB = q1q2 + δ, pAb = q1(1 − q2) − δ, PaB = (1 − q1)q2 − δ, and 

Pab = (1 − q1)(1 − q2) + δ. Under Hardy-Weinberg equilibrium, SNP genotype (AA, Aa, aa) 

at locus 1 can be generated from a multinomial distribution with frequencies 

q1
2, 2q1 1 − q1 , 1 − q1

2 . Based on the conditional genotype probability matrix (Cui et al. 

(2008)), we can simulate the genotypes for locus 2. With MAFs 0.3 and pairwise correlation 

r = 0.6, we have δ = r q1 1 − q1 q2 1 − q2 . The simulation results based on LD structure are 

given in Table 8 in the Appendix. Under both SNP generating schemes, the patterns are 

similar as those observed from the gene expression data.

5 Real Data Analysis

We analyze lung cancer data with gene expression measurements from two studies, 

separately. The first dataset is from the study of Xie et al. (2011), and the second one is the 

Lung squamous cell carcinoma (LUSC) data from TCGA (https://cancergenome.nih.gov/).
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5.1 Non-small cell lung cancer (NSCLC) data

In the USA, lung cancer is the most common cause of cancer death. About 80% to 85% of 

lung cancers are non-small cell lung cancer (NSCLC). To identify genetic markers 

associated with the prognosis of NSCLC, gene profiling studies have been extensively 

conducted. As individual studies usually have small sample sizes, we follow the study of Xie 

et al. (2011) and collect data from four independent studies with gene expression 

measurements. After matching clinical variables and gene expression data, we have total 348 

subjects and 22,283 gene expressions. Among the 348 subjects, 180 died during follow up, 

with survival times ranging from 0.03 to 204 months (median 26.19 months). To reduce the 

computational cost, we rank the probes by their variations and select the top 700 for 

downstream analysis. We include five clinical covariates, age, gender, smoking history, 

tumor stage and chemotherapy. Age is a normalized continuous variable, and dummy 

variables are created for categorical variables: smoking history, tumor stage and 

chemotherapy.

We apply all the methods to the lung cancer dataset. First, we conduct the logrank test to 

evaluate the prediction performance after splitting the patient group into training and testing 

sets. By dichotomizing the patients according to the median risk scores from the testing set, 

two risk groups can be created. Larger log rank test statistic indicates more significant 

survival difference between the low-risk and high-risk groups, thus better prediction 

performance. The log-rank statistics are 206.5 (LAD_Network), 130.7 (LAD_MCP), 132.7 

(LAD_LASSO), 77.0 (Network), 11.1 (MCP) and 133.0 (LASSO), respectively. The 

proposed method has the best predictive performance, as indicated by the log-rank test 

statistic.

As a representative example, we examine the sub-network of gene PCLAF, PCNA Clamp 

Associated Factor. PCLAF is identified by five methods (all methods except MCP) as one of 

the most important genes. PCLAF encodes a PCNA-binding protein and is a regulator of 

DNA repair during DNA replication. It has been found to be overexpressed in various 

tumors, including lung tumor tissues (Yu et al. (2001); Hosokawa et al. (2007); Kato et al. 

(2012b)). Figure 2 shows the sub-network of PCLAF, where the red nodes indicate the probe 

of PCLAF. Thickness of the edges denotes the strength of correlation between genes. 

Comparing different methods, it can be clearly observed that the proposed approach has 

identified much more highly correlated prognostic genes, since the interconnections among 

genes have been accommodated by the approach that incorporates the network structure 

information. Eight genes are directly connected to PCLAF in the sub-network identified by 

the proposed approach. They are TOP2A, ASPM, SELENBP1, MAD2L1, CDC20, PRC1, 

TYMS and DLGAP5. All of them are positively correlated to PCLAF, except SELENBP1. 

PRC1 (Protein regulator of Cytokinesis 1) has the highest correlation with PCLAF (r=0.83). 

It is interesting that PCLAF and PRC1 are located closely on Chromosome 15. Similar as 

PCLAF, PRC1 is overexpressed in lung cancer cells. Higher level of PRC1 is found to be 

associated with poor survival of lung cancer patients (Zhan et al. (2017); Hanselmann et al. 

(2017)). However, none of the alternative methods capture this important prognostic marker 

in the PCLAF network. In addition, TOP2A (DNA Topoisomerase II Alpha) (Hou et al. 

(2017); Huang et al. (2015)), CDC20 (Cell Division Cycle 20) (Kato et al. (2012a); Wang et 
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al. (2013c)), DLGAP5 (DLG Associated Protein 5) (Schneider et al. (2017); Shi et al. 

(2017)) and MAD2L1 (MAD2 mitotic arrest deficient-like 1) (Shi et al. (2016)) have been 

identified as negative prognostic markers in NSCLC by recent studies. Studies report that the 

over-expression of TYMS (thymidylate synthase) (Wang et al. (2013a); Chamizo et al. 

(2015)) and ASPM (Kuo et al. (2015)) are related to drug-resistance in advanced NSCLC. 

Among the genes, SELENBP1 (selenium-binding protein 1) is negatively correlated with 

PCLAF and other genes in the network. Selenium-binding proteins are known to play 

important roles in cancer prevention effects of selenium. Down-regulation of SELENBP1 is 

associated with poor prognosis in NSCLC patients (Zeng et al. (2013); Tan et al. (2016)). 

Overall, the proposed approach identifies more informative prognostic markers.

5.2 Lung squamous cell carcinoma (LUSC) data

Lung squamous cell carcinoma (LUSC) is one of the most common types of NSCLC. It 

comprises 25–30% of all lung cancer cases (Zappa and Mousa (2016)). LUSC is more 

strongly correlated with cigarette smoking history than most other subtypes of NSCLC 

(Kenfield et al. (2008)). We analyze TCGA (The Cancer Genome Atlas) data on the 

prognosis of LUSC (The Cancer Genome Atlas Research Network (2012)). We consider 

four clinical covariates: age at diagnosis, gender, smoking history and tumor stage. The total 

number of genes is 20,499 and the sample size is 461. 203 died during follow-up among all 

the subjects. The survival times range from 0.03 to 173.69 months, with a median of 17.84 

months. Similar as the NSCLC study, we select the top 700 genes for further analysis.

We applied the six methods to the working dataset. The log-rank statistics are 155.0 

(LAD_Network), 116.9 (LAD_MCP), 102.8 (LAD_LASSO), 76.4 (Network), 40.6 (MCP) 

and 96.1 (LASSO), respectively. The proposed method has the largest log-rank statistic and 

thus superior prediction performance.

We use the sub-network of gene IRS4 (Insulin receptor substrate 4) as a representative 

example. IRS4 is identified by five methods (all expect Network) as a prognostic gene. IRS4 

plays a tumor-promoting role in NSCLC (Hoxhaj et al. (2013); Weischenfeldt et al. (2017)). 

The proposed method identifies 13 genes in the sub-network of IRS4 (Figure 3). Ten genes 

are uniquely identified by the proposed method, and the rest three (PSMD10, CMTX5 and 

LOC158602) are also identified by other methods. Both PSMD10 (Proteasome 26S Subunit, 

Non-ATPase 10) and CMTX5 (also known as PRPS1, phosphoribosyl pyrophosphate 

synthetase 1) are positively correlated with IRS4 and have been reported as oncogenes (He 

et al. (2017); Luo et al. (2016)). Among the 13 genes in IRS sub-network, three of them 

(PSMD10, CMTX5, PHEX) are located on chromosome X, the same as IRS4. LOC158602 

is a gene with unknown function, but highly correlated with both PSMD10 and CMTX5. 

DRG1 (Developmentally regulated GTP binding protein 1) is only identified by the 

proposed method. DRG1 plays important roles in regulating cell growth. Overexpression of 

DRG1 leads to chromosome missegregation and promotes tumor progression in NSCLC (Lu 

et al. (2016)). GSR (glutathione reductase) is one of enzymes in the glutathione (GSH) 

metabolism system, which is a major redox regulatory systems in mammals that support 

increased tumor growth (Tobe et al. (2015)). It has been reported that GSH levels in cells, 

regulated by GSH-synthesising enzymes such as GSR, is associated with resistance to 
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epidermal growth factor receptor (EGFR) inhibitors in NSCLC (Li et al. (2016)). In this 

network, GSR has a strong correlation with RIT1 (Ras Like Without CAAX 1) (r =0.69). 

RIT1 encodes a RAS-family small GTPase. It has been reported as an oncogene. Mutations 

in RIT1 may also induce resistance to EGFR inhibition, but in a MEK-dependent manner 

(Berger et al. (2014)).

6 Discussion

In cancer genomics studies, much effort has been devoted to developing variable selection 

methods to identify important genomics features associated with survival outcomes 

(Tibshirani (1997); Huang and Ma (2010); Sha et al. (2006)). In recent decades, it has been 

recognized that network (or graph) based regularization methods are particularly effective in 

accommodating the correlation among genomic variants in a number of studies, 

nevertheless, their development and application in cancer survival studies are quite limited. 

Besides, although the lack of robustness might lead to biased estimation and false 

identification of sparse network structures, robust network–based variable selection has not 

received much attention in cancer prognosis studies. Motivated by the limitations of existing 

studies and analysis of the cancer genetic data, we have proposed a robust network 

constrained regularization and variable selection method to accommodate correlations 

among gene expressions in the search of important prognostic markers. The proposed 

method outperforms alternatives, both robust and non-robust, under a diversity of simulation 

setups. In the analysis of cancer prognosis data with high-dimensional gene expression 

measurements, it leads to biologically sensible findings and improved prediction.

Our method significantly distinguishes from and complements existing ones in the following 

aspects. We adopt a weighted LAD objective function to accommodate data contamination, 

with Kaplan-Meier weights for censoring. To incorporate the interconnections among gene 

expressions, we propose a network-constrained penalty of the “MCP+L1” form, and develop 

an efficient algorithm within the coordinate descent framework. The MM step is critical for 

the formulation of the convex surrogate objective function, which naturally leads to a 

weighted median regression problem. The effectiveness of smoothing the non-convex 

penalty function has been demonstrated in Peng and Wang (2015) and studies alike.

Here we describe the correlation among genomic variants through network structures. We 

acknowledge that, first, different network structures can be constructed (Huang et al. (2011)) 

and, second, there exists a variety of ways to incorporate correlations in penalized estimation 

and identification, not necessarily through network based penalty functions. For example, 

the spatial correlation among CNVs can be taken into account by using the adaptive fused 

LASSO penalty (Gao and Huang (2010a)). Comparisons to other network structures and 

structures other than networks are not the focus of this paper, thus not pursued. We also 

acknowledge that Bayesian methods can be robust depending on the prior distribution 

assumptions. For example, Sha et al. (2006) consider AFT models with the t prior 

distribution. Note that the robustness of our proposed method is not only restricted to certain 

type of heavy–tailed distribution or data contamination, and Sha et al. (2006) will not lead to 

networks among genomic variants. Moreover, comparisons between frequentist and 

Bayesian methods is beyond of the scope of this paper, and will be postponed to the future.
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The proposed algorithm for LAD_Network under survival response is essentially a first 

order method. The first order method, such as gradient descent and proximal gradient 

descent, can enjoy a linear convergence rate when the objective function has strong 

convexity (Boyd and Vandenberghe (2004)). The LAD_Network loss function is, however, 

not differentiable and not strongly convex, which poses challenge on establishing the rate of 

convergence. We conjecture that the rate of convergence of LAD_Network can be shown by 

following that of the subgradient method (Bertsekas (2010)). It is also worth noting that Wu 

and Lange (2008) has given a detailed discussion of LASSO in LAD regression, although 

the rate of convergence has not been provided. The iteration cost of our algorithm is not 

cheap, due to the MM step and the sorting step for solving weighted median regression. 

From a practical point of view, the fast convergence of our algorithm is guaranteed by the C

++ core module of R package regnet. In addition, Gao and Huang (2010b) has investigated 

estimation and selection consistency of LAD_LASSO, which is important for developing 

consistency properties of LAD_Network case. In this paper, we focused on the development 

of statistical methodology. Investigations on the theoretical properties will be conducted in 

future studies.

Regularized objective function of robust penalization methods share a common structure of 

“robust objective function + penalty function” (Wu and Ma (2015)). The computational 

advantage of the proposed method roots in the L1 form of the objective function. It is 

conjectured that the robustness can be achieved by coupling the penalty function with other 

robust loss functions, such as the exponential squared loss (Wang et al. (2013b)) and rank 

based loss (Shi et al. (2014); Wu et al. (2015)). However, since additional tunings and 

smoothing are demanded for these loss functions, the computational expenses are even high 

under low dimensional settings.

In this study, we focus on prognostic outcomes. Extension of our method to continuous 

disease phenotypes can be made readily by changing Kaplan-Meier weights to equal 

weights. In addition, the proposed method is not limited to the analysis of gene expression 

measurement. The network structure has been widely adopted to describe correlations 

among other genomics features, such as SNPs (Ren et al. (2017)), CNVs (Peng et al. (2012); 

Shi et al. (2015)) and DNA methylations (Sun and Wang (2012)), where robust network 

based penalization is also of great interest.

Acknowledgments

We thank the editor, associate editor and the reviewer for their careful review and insightful comments, which have 
led to a significant improvement of this article. This study has been partially supported by NIH grant CA191383, 
CA204120, and P50CA196530; a Junior Faculty Development Award from University of North Carolina at 
Charlotte; an Innovative Research Award from the Johnson Cancer Research Center at Kansas State University, and 
a Kansas State University Faculty Enhancement Award.

Funding information:

Grant sponsor: NIH; Contract grant numbers: CA191383, CA204120, P50CA196530; and Grant Sponsor: a Junior 
Faculty Development Award from University of North Carolina at Charlotte; and Grant sponsor: an Innovative 
Research Award from Johnson Cancer Research Center at Kansas State University; and Grant sponsor: Kansas State 
University Faculty Enhancement Award.

Ren et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A: Appendix

Table 3:

Simulation for gene expression data (n, p) = (300, 505). 50 genes have nonzero regression 

coefficients. 5 clinical covariates are not subject to selection. The gene expressions have 

Banded.1 (upper panel) or Banded.2 structure (lower panel) with ρ = 0.5. mean(sd) of true 

positives (TP) and false positives (FP) based on 100 replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

Banded.1 ρ = 0.5

Error1 TP 41.30(6.26) 36.87(3.16) 32.80(6.73) 35.37(4.41) 27.93(2.35) 45.30(2.38)

FP 13.43(10.74) 8.57(8.39) 105.53(45.21) 8.37(3.65) 8.63(6.67) 85.40(10.19)

Error2 TP 24.93(9.84) 19.77(15.93) 26.93(12.59) 2.00(5.55) 2.47(8.90) 3.17(5.34)

FP 23.00(24.92) 79.87(124.43) 105.27(67.09) 11.93(44.98) 17.97(79.54) 14.10(33.67)

Error3 TP 39.63(9.88) 32.00(4.88) 33.70(6.93) 18.77(10.76) 16.87(9.36) 30.17(14.13)

FP 11.80(9.28) 17.97(31.91) 111.17(46.28) 9.40(6.98) 7.03(4.06) 60.30(32.13)

Error4 TP 36.03(11.87) 30.43(5.37) 30.33(7.91) 12.97(11.78) 11.40(10.67) 22.80(16.40)

FP 11.90(10.46) 21.57(29.67) 109.40(48.10) 8.23(8.18) 6.73(7.25) 52.83(36.92)

Banded.2 ρ = 0.5

Error1 TP 43.63(7.89) 42.43(3.22) 33.53(9.72) 34.20(4.34) 25.20(4.13) 47.40(1.69)

FP 8.07(7.72) 10.83(14.28) 101.17(48.16) 9.17(4.89) 10.07(4.64) 80.93(12.3)

Error2 TP 31.77(11.31) 26.60(10.75) 33.33(5.57) 3.43(8.64) 3.27(7.98) 6.27(8.48)

FP 24.73(43.87) 100.50(119.98) 129.90(45.73) 17.00(69.35) 15.03(61.68) 19.40(24.64)

Error3 TP 41.40(8.58) 35.50(5.47) 33.50(7.66) 15.17(11.58) 12.37(8.46) 29.93(15.21)

FP 12.97(27.18) 10.80(17.94) 114.40(54.39) 8.80(8.26) 7.33(5.57) 61.27(30.46)

Error4 TP 37.57(11.66) 32.87(5.69) 34.03(7.3) 14.87(13.23) 11.83(10.39) 26.33(16.11)

FP 9.60(8.62) 19.00(31.61) 113.30(50.56) 9.30(9.34) 7.97(7.45) 55.17(33.04)

Table 4:

Simulation for gene expression data using correlations calculated from LUSC data. (n, p) = 

(300, 505). 50 genes have nonzero regression coefficients. 5 clinical covariates are not 

subject to selection. mean(sd) of true positives (TP) and false positives (FP) based on 100 

replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

Error1 TP 46.88(3.61) 46.29(2.89) 40.47(6.29) 45.66(2.21) 43.42(2.38) 48.09(1.18)

FP 1.28(2.00) 3.83(4.83) 1.97(2.69) 1.44(1.92) 1.58(2.20) 13.27(3.66)

Error2 TP 33.65(6.54) 32.59(8.21) 33.69(5.54) 11.02(7.35) 18.25(7.12) 18.14(8.35)

FP 9.92(23.64) 28.03(45.27) 13.27(14.75) 23.94(52.35) 73.50(71.82) 17.14(21.58)

Error3 TP 43.00(6.79) 41.63(5.95) 41.15(6.03) 30.24(11.93) 28.81(8.41) 39.35(9.46)

FP 3.14(3.91) 5.58(6.60) 3.85(6.80) 5.52(12.42) 12.43(29.37) 21.83(11.31)

Error4 TP 40.91(6.53) 40.02(5.67) 39.72(5.82) 22.99(11.13) 23.39(8.16) 35.02(9.72)

FP 3.07(3.41) 8.60(10.37) 3.12(6.07) 7.07(22.44) 18.22(37.61) 26.29(25.11)
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Table 5:

Simulation for gene expression data using correlations calculated from NSCLC data. (n, p) = 

(300, 505). 50 genes have nonzero regression coefficients. 5 clinical covariates are not 

subject to selection. mean(sd) of true positives (TP) and false positives (FP) based on 100 

replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

Error1 TP 43.10(6.57) 43.32(3.41) 41.01(6.91) 47.12(3.08) 39.67(3.12) 45.91(1.65)

FP 1.40(2.00) 3.02(3.77) 5.68(9.65) 0.83(1.44) 1.44(2.27) 23.01(12.09)

Error2 TP 36.44(9.83) 33.73(6.75) 34.46(5.28) 25.23(6.41) 11.27(3.03) 19.72(5.92)

FP 13.80(25.85) 34.36(55.80) 23.14(42.02) 43.94(34.98) 15.86(18.95) 14.23(8.96)

Error3 TP 41.51(8.41) 39.23(6.68) 38.17(6.52) 38.20(10.43) 24.93(9.19) 35.45(8.77)

FP 4.75(6.41) 11.10(12.24) 13.47(20.48) 13.66(37.16) 8.64(34.40) 22.71(21.76)

Error4 TP 42.13(7.50) 38.58(6.86) 39.72(6.14) 34.56(10.60) 19.90(9.03) 30.23(9.58)

FP 7.03(9.27) 13.33(25.09) 16.63(28.77) 30.02(72.28) 13.17(42.50) 19.57(27.40)

Table 6:

Simulation for SNP data (n, p) = (300, 505) under AR structures. 50 genes have nonzero 

regression coefficients. 5 clinical covariates are not subject to selection. The SNPs have AR 

structure with ρ = 0.5 (upper panel) and ρ = 0.8 (lower panel). mean(sd) of true positives 

(TP) and false positives (FP) based on 100 replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

AR ρ = 0.5

Error1 TP 39.97(9.05) 39.77(3.54) 34.50(6.24) 33.50(6.60) 29.83(6.88) 46.03(2.30)

FP 8.83(5.80) 9.33(7.71) 106.03(37.94) 9.13(6.26) 8.77(5.17) 84.53(11.25)

Error2 TP 23.23(10.57) 22.43(10.93) 27.43(8.64) 5.17(9.41) 6.93(14.32) 6.10(8.79)

FP 23.93(40.56) 57.97(95.48) 110.17(66.55) 32.03(86.43) 45.67(126.72) 23.67(39.83)

Error3 TP 37.03(10.07) 36.17(4.53) 34.30(6.39) 16.17(11.50) 15.07(10.51) 28.30(16.74)

FP 9.00(6.44) 15.93(26.06) 107.77(43.29) 8.50(5.76) 8.30(5.45) 58.40(34.86)

Error4 TP 38.13(7.35) 34.17(6.01) 34.90(7.04) 10.63(10.55) 9.83(9.89) 19.90(17.49)

FP 10.17(6.86) 27.17(41.85) 109.70(45.23) 6.73(6.10) 6.07(6.49) 40.63(41.16)

AR ρ = 0.8

Error1 TP 46.87(5.11) 45.30(2.87) 42.87(6.06) 48.70(1.42) 26.07(3.49) 48.73(1.01)

FP 3.80(2.96) 3.47(2.66) 104.20(30.42) 10.00(7.89) 6.67(3.39) 60.00(12.99)

Error2 TP 38.80(10.71) 26.17(6.93) 35.93(4.16) 5.97(10.07) 6.10(12.41) 5.70(7.53)

FP 12.20(8.02) 44.20(83.64) 105.40(32.2) 35.30(89.14) 43.57(111.1) 25.77(42.43)

Error3 TP 46.70(6.02) 39.90(5.94) 43.17(3.65) 33.23(16.9) 18.10(9.78) 33.97(15.77)

FP 6.77(5.88) 6.10(10.6) 105.63(28.03) 18.97(16.06) 20.83(65.59) 60.93(29.47)

Error4 TP 42.87(10.92) 36.03(6.83) 42.17(4.47) 25.93(16.99) 13.43(8.39) 29.33(15.39)

FP 5.67(4.56) 10.30(21.71) 120.90(48.61) 19.77(13.39) 7.57(6.82) 50.30(31.1)
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Table 7:

Simulation for SNP data (n, p) = (300, 505) under banded structures. 50 genes have nonzero 

regression coefficients. 5 clinical covariates are not subject to selection. The SNPs have 

Banded.1 (upper panel) or Banded.2 structure (lower panel) with ρ = 0.5. mean(sd) of true 

positives (TP) and false positives (FP) based on 100 replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

Banded.1 ρ = 0.5

Error1 TP 39.17(9.57) 36.87(8.19) 30.13(8.40) 31.80(3.95) 26.57(4.39) 43.97(3.18)

FP 9.10(5.92) 13.53(21.54) 91.63(43.74) 8.27(5.30) 8.53(6.22) 81.93(12.6)

Error2 TP 19.17(9.70) 18.30(13.42) 25.43(8.69) 2.83(7.39) 3.60(9.97) 3.17(5.17)

FP 14.93(13.16) 57.30(93.44) 97.63(51.97) 17.30(60.78) 24.20(89.50) 13.10(27.14)

Error3 TP 33.33(10.57) 32.47(4.61) 29.97(8.37) 14.60(13.06) 12.83(11.25) 24.40(17.98)

FP 8.00(4.61) 18.57(38.32) 101.23(52.47) 8.13(7.21) 6.63(6.19) 53.10(37.71)

Error4 TP 33.53(13.54) 29.43(8.05) 31.00(6.77) 11.43(8.63) 10.83(7.73) 24.40(12.76)

FP 16.37(12.94) 18.30(36.76) 108.90(39.14) 7.07(7.91) 6.53(5.78) 56.57(30.96)

Banded.2 ρ = 0.5

Error1 TP 41.23(8.78) 40.57(3.30) 34.23(7.57) 32.23(6.74) 27.77(5.10) 45.93(1.76)

FP 10.83(7.68) 9.17(7.45) 113.63(46.59) 9.63(6.7) 9.30(4.23) 84.00(12.91)

Error2 TP 21.10(7.69) 20.53(13.05) 27.27(8.2) 1.60(1.96) 1.63(2.11) 3.03(4.19)

FP 17.27(10.43) 76.43(122.77) 93.57(49.76) 5.10(10.5) 5.00(10.3) 11.40(15.40)

Error3 TP 35.60(9.11) 34.90(4.48) 34.20(5.11) 15.30(10.17) 14.37(9.68) 28.67(16.14)

FP 10.60(7.02) 15.63(38.21) 117.63(38.53) 9.80(7.23) 9.50(7.10) 66.77(37.00)

Error4 TP 38.50(8.44) 36.47(5.17) 33.20(7.07) 12.43(10.86) 11.80(10.26) 21.80(18.26)

FP 18.77(13.23) 41.57(69.17) 109.73(42.16) 11.13(26.16) 12.90(30.37) 45.90(38.12)

Table 8:

Simulation for SNP data based on the linkage disequilibrium (LD) structure. (n, p) = (300, 

505). 50 genes have nonzero regression coefficients. 5 clinical covariates are not subject to 

selection. mean(sd) of true positives (TP) and false positives (FP) based on 100 replicates.

LAD-Network LAD_MCP LAD_LASSO Network MCP LASSO

Error1 TP 46.47(4.62) 42.94(5.09) 43.10(3.54) 46.25(2.17) 44.94(2.62) 45.93(2.03)

FP 4.30(6.29) 9.43(16.91) 28.10(13.34) 2.59(3.12) 2.85(4.23) 21.52(5.25)

Error2 TP 38.22(7.42) 34.44(7.76) 27.45(4.70) 23.90(5.28) 12.15(9.04) 10.34(9.56)

FP 18.84(18.76) 46.88(69.94) 49.31(16.43) 95.05(59.21) 36.10(82.64) 20.73(22.59)

Error3 TP 45.38(4.71) 40.16(5.59) 39.12(5.01) 26.16(15.89) 27.16(13.09) 33.03(13.71)

FP 5.85(6.66) 11.17(23.56) 35.25(12.73) 10.22(32.97) 25.37(77.51) 36.70(18.09)

Error4 TP 42.65(6.21) 39.28(5.35) 36.40(5.03) 21.66(15.24) 25.14(12.31) 28.30(14.80)

FP 5.99(5.63) 17.00(31.33) 39.82(14.83) 13.95(38.37) 44.58(108.55) 36.91(21.17)
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Figure 1: 
Distribution of log(survival time) in the TCGA LUSC dataset.
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Figure 2: 
Sub-network for PCLAF.
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Figure 3: 
Sub-network for IRS4.
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Table 1:

Coordinate descent algorithm.

Algorithm Coordinate descent for the robust penalized network-based regularization

 Initialize d = 0, α(0) and β(0)

 Repeat

  update α(d+1) component-wisely using weighted median regression

  for m = 1, 2, … , p

   compute um and wm via (6) and (7)

   update βm
d + 1

 using the weighted median in (5)

   m ← m + 1

  end for

  d ← d + 1

 until convergence
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Table 2:

Simulation for gene expression data (n, p) = (300, 505). 50 genes have nonzero regression coefficients. 5 

clinical covariates are not subject to selection. The gene expressions have AR structure with ρ = 0.5 (upper 

panel) and ρ = 0.8 (lower panel). mean(sd) of true positives (TP) and false positives (FP) based on 100 

replicates.

LAD_Network LAD_MCP LAD_LASSO Network MCP LASSO

AR ρ = 0.5

Error1 TP 44.90(5.65) 40.67(4.59) 38.90(5.19) 40.07(4.70) 28.53(3.92) 48.27(1.20)

FP 9.77(7.59) 8.63(8.16) 121.93(36.26) 8.13(5.37) 7.67(3.96) 75.57(10.64)

Error2 TP 31.63(13.55) 23.10(9.64) 30.33(6.57) 1.57(2.84) 1.50(2.76) 4.07(6.35)

FP 14.93(9.85) 56.17(81.31) 103.17(49.89) 3.37(7.73) 3.27(7.94) 11.40(19.09)

Error3 TP 43.68(7.64) 36.28(5.79) 34.88(7.74) 20.03(12.84) 15.42(9.45) 31.83(16.71)

FP 16.05(29.77) 12.64(20.27) 114.35(57.49) 9.81(6.57) 7.97(5.47) 60.73(33.39)

Error4 TP 39.03(10.15) 31.57(4.70) 34.10(6.26) 11.83(10.91) 9.73(8.51) 20.57(16.26)

FP 14.33(11.20) 13.50(19.47) 109.87(40.55) 8.93(8.02) 7.67(7.77) 38.83(30.69)

AR ρ = 0.8

Error1 TP 46.93(5.77) 41.00(6.36) 43.70(4.94) 49.60(0.62) 23.93(2.97) 48.27(1.14)

FP 5.27(6.35) 2.43(2.58) 94.20(38.45) 12.00(8.39) 7.70(5.38) 61.67(15.77)

Error2 TP 43.80(12.34) 23.93(5.46) 38.57(5.9) 10.97(15.16) 4.77(7.68) 9.47(10.68)

FP 15.07(13.55) 14.20(22.23) 101.42(41.99) 18.50(33.77) 16.07(64.74) 21.82(25.00)

Error3 TP 47.23(7.11) 37.07(5.93) 43.90(4.37) 33.33(20.10) 15.47(10.68) 30.60(18.05)

FP 4.53(5.06) 11.87(35.83) 91.37(24.94) 27.93(40.69) 19.07(66.48) 49.33(27.36)

Error4 TP 44.37(10.23) 32.30(5.03) 44.30(3.28) 32.57(19.21) 13.63(8.72) 28.27(14.97)

FP 10.17(9.43) 6.03(8.22) 105.00(32.13) 26.90(20.39) 10.73(6.20) 47.60(26.05)
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