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Determining the complete Arabidopsis (Arabidopsis thaliana) protein-protein interaction network is essential for understanding
the functional organization of the proteome. Numerous small-scale studies and a couple of large-scale ones have elucidated a
fraction of the estimated 300,000 binary protein-protein interactions in Arabidopsis. In this study, we provide evidence that a
docking algorithm has the ability to identify real interactions using both experimentally determined and predicted protein
structures. We ranked 0.91 million interactions generated by all possible pairwise combinations of 1,346 predicted structure
models from an Arabidopsis predicted “structure-ome” and found a significant enrichment of real interactions for the top-
ranking predicted interactions, as shown by cosubcellular enrichment analysis and yeast two-hybrid validation. Our success rate
for computationally predicted, structure-based interactions was 63% of the success rate for published interactions naively tested
using the yeast two-hybrid system and 2.7 times better than for randomly picked pairs of proteins. This study provides another
perspective in interactome exploration and biological network reconstruction using protein structural information. We have
made these interactions freely accessible through an improved Arabidopsis Interactions Viewer and have created community
tools for accessing these and ;2.8 million other protein-protein and protein-DNA interactions for hypothesis generation by
researchers worldwide. The Arabidopsis Interactions Viewer is freely available at http://bar.utoronto.ca/interactions2/.

Proteins rarely work alone, and most of the time they
function in concert with other proteins or macromole-
cules. In Arabidopsis (Arabidopsis thaliana), the total
number of binary interactions is estimated to be around
300,000 (Arabidopsis Interactome Mapping Consortium,
2011), but so far, only a small fraction of those interactions
have been studied. Currently, there are 36,329 experi-
mentally confirmed and 70,944 interolog-predicted
protein-protein interactions (PPIs) in the Bio-Analytic
Resource (BAR) interactions database (Geisler-Lee et al.,
2007) that can be queried through the Arabidopsis Inter-
actions Viewer (AIV). This huge gap indicates there is still

a long way to go in elucidating the Arabidopsis inter-
actome, both experimentally and computationally.
With the arguable exception of the yeast two-hybrid

method (Arabidopsis Interactome Mapping Consortium,
2011) or split ubiquitin method (Chen et al., 2012), tradi-
tional experimental methods for determining PPIs, such
as mass spectrometry (Van Leene et al., 2007), protein
microarrays (Popescu et al., 2007), and others (Zhang et al.,
2010; Fukao, 2012), cannot readily be extended to deter-
mine the whole Arabidopsis interactome. Interolog-based
computational PPI prediction methods (Geisler-Lee et al.,
2007) can have a large-scale predictive ability but cannot
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be used to predict the whole Arabidopsis interactome, as
they are limited to genes in Arabidopsis with homologs in
other species whose gene products are known to interact
(Zhang et al., 2010). Structure-based PPI determination
using docking algorithms may be a solution to this prob-
lem because it is the tertiary structure that determines
whether two proteins can bind to each other or not.

To predict the Arabidopsis interactome using a
structure-based PPI (S-PPI) prediction method, there are
two requirements: a high-throughput docking algorithm
that can distinguish true interactions from noninteractors
and a collection of Arabidopsis proteome-wide protein
structures. Most of the docking algorithms are designed
to restore the native complexes given the structures of
twoknown interactors, and there have been fewattempts
to use docking algorithms to infer PPIs. Mosca et al.
(2009) undertook the first high-throughput docking
analysis to explore the yeast interactome. Wass et al.
(2011) showed that a docking algorithm can be used to
distinguish true interactions from “background” nonin-
teracting protein pairs. The issue of Arabidopsis
proteome-wide protein structures is more challenging
because there are currently only 1,152 experimentally
determined Arabidopsis protein structures for 587 Ara-
bidopsis gene identifiers deposited in the Protein Data
Bank (PDB; www.rcsb.org; as available in Ensembl Plant
Genes 40), a considerable shortfall given that there are
27,655 Arabidopsis protein-coding genes in Araport11
(www.araport.org; Cheng et al., 2017).

In this study, we addressed these two issues by
showing that a widely used docking algorithm has the
ability to separate true interactions from randomly se-
lected protein pairs and that this discriminative ability
can be applied to interactions using proteome-wide pre-
dicted structure models to generate S-PPIs. We show that
there is an enrichment for true interactions for top-ranked
S-PPI pairs using both experimentally determined and
predicted structures. Our predicted structure-based in-
teractions using homology-based structure models were
further validated by cosubcellular localization analysis

and yeast two-hybrid assays. Our success rate for S-PPI
predicted interactors is 63% of the success rate for naively
retested protein interaction pairs that were determined
using the yeast two-hybrid method. As part of this pre-
diction effort, we also present new tools for viewing and
working with these and our extensive database of PPIs,
first described by Geisler-Lee et al. (2007) more than a
decade ago, includingweb services and a new initiative to
integrate interaction data from another well-curated re-
pository, BioGRID (Chatr-Aryamontri et al., 2017).

RESULTS

Characterization of the Arabidopsis Proteome-wide
Predicted Structure-ome

To fill the gap between the number of Arabidopsis
protein-coding genes and experimentally determined
structures (1,152 models for 587 Arabidopsis genes in
the PDB), we determined predicted structure models
for the entire Arabidopsis proteome using the Phyre2
(Protein Homology/analogY Recognition Engine)
protein fold recognition server (Kelley et al., 2015). This
predicted “structure-ome” contains 29,180 models
covering ;84% of Arabidopsis proteome. The iden-
tity score of the sequences (calculated by aligning the
sequence of the predicted model with the sequence of
its template) versus the sequence completeness score
(calculated by comparing the length of predicted
structure sequence to the length of the sequence) is
shown in Figure 1A, while the length distribution of the
predicted models is shown in Figure 1B. The sequence
completeness score is fairly evenly distributed, with
two small peaks at ;0.3 and ;0.9. The distribution of
the identity scores has one peak at ;0.3 (30% identity).
Predicted models with amino acid sequence complete-
ness scores over 0.8, and identity scores over 0.5 were
considered to be of high quality (for rationale, see
“Discussion”; these are highlighted by a rectangle in
Fig. 1A); the summarized information for these 1,346
“reliable” predicted models is shown in Figure 1, C and
D and listed in Supplemental Table S1.

To further evaluate the accuracy of the predicted
models, we aligned the predicted structures with their
corresponding experimentally determined structures
(real structures) and calculated the root mean square
deviation (RMSD) value between them. The alignment
process is divided into two groups: one where real
structures were published before our structure predic-
tion (231 structures) and one where the structures were
published after our prediction (91 structures). As ex-
pected, we found a very small average RMSD of 1.03 Å
between predictedmodels and the structures published
before the prediction, with 84.4% (195/231) of the pairs
having an RMSD smaller than 2 Å. This is not surpris-
ing, as Phyre2 used those 231 structures to model the
predicted structures. The average RMSD is 2.59 Å be-
tween predicted models and the structures published
after the prediction, with 59.3% (54/91) of the pairs
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having an RMSD smaller than 2 Å (Fig. 2A). Four pre-
dicted structures (blue) aligned with their correspond-
ing real structures (red and published after the Phyre2
prediction) with increasing RMSDs are shown in
Figure 2B. Considering that during PPI, 71% of the
complexes will have an RMSD, 2 Å between unbound
and bound states due to conformation change (Vakser,
2014), we considered the accuracy of our predicted
models to be sufficient for docking analyses.

Evaluation of Docking Performance Using Real Structures

To evaluate the ability of a docking algorithm to
separate real interactions from noninteractors, we used
the HEX program (Ritchie and Kemp, 2000) on 174
known interactions from Benchmark 4.0 (Hwang et al.,
2010; listed in Supplemental Table S2) and 50,000 ran-
dom pairs of proteins using structures from SCOP
(Murzin et al., 1995). We also included 1,629 protein
pairs fromNegatome 2.0 (Blohm et al., 2014). Negatome
is a collection of protein and domain pairs that are
unlikely to interact physically, and these 1,629 pairs
were used as a negative set. HEX is a computational
docking method to search for candidate low-energy
conformations of input protein pairs (or other ligands)
using a hydrophobic-excluded volume model calcu-
lated by electrostatic complementarity. A spherical

polar Fourier correlation is used in this method to ac-
celerate the search process. Effectively, HEX rotates
each protein in 3D space in 15 degree increments
(24 rotations for the x, y, and z axes for a total of 13,824
positions per protein) and then measures the docking
energy with the second protein, again for all 15 degree
increment positions for the second protein. It thus
computes the docking energy for 191.1 million confor-
mations per pair of proteins. The top 500 scores of each
interaction together with their interacting poses (total-
ing 25.9 million models in PDB format) were retained.
The score distribution of each benchmark interaction
and Negatome protein pair was plotted with the score
distributions of 50,000 random pairs. In Figure 3A, a
benchmark complex erythropoietin/EPO receptor has
a lower (better) docking score distribution using both
bound forms (red distribution) and unbound forms
(blue distribution) than the distributions of most of the
background pairs (gray distributions). A statistical
comparison between the distributions of benchmark
interactions (and Negatome protein pairs) and back-
ground pairs was done using Wilcoxon rank-sum test
(Wilcoxon, 1946), and the percentage of the background
pairs for each benchmark interaction (or Negatome
protein pair) was significantly less than was recorded.
In Figure 3B, 38% (66 out of 174) of the benchmark in-
teractions using bound structures and 24% (42 out of
174) of the benchmark interactions using unbound

Figure 1. Arabidopsis predicted structure-
ome. A, A scatter plot showing the identity
score versus sequence completeness score
of the 27,416 Phyre2-predicted structure
models. B, A bar graph showing the length
distribution of these 27,416 predicted
structure models. C, A scatter plot showing
1,346 “reliable” predicted models with
identity score over 0.5 and sequence
completeness score over 0.8, from high-
lighted area in A. D, A bar graph showing
the length distributions of these 1,346 high-
quality predicted models.
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structures have significantly lower (better) scores than
90% of the background pairs, which indicates an en-
richment of real interactions toward the lower (better)
end of the scoring spectrum. Regarding the negative set,
0.25% of the Negatome pairs have significantly lower
(better) scores than 90% of the background pairs, which
indicates a huge depletion of noninteracting pairs to-
ward the lower (better) end of the scoring spectrum. The
ability of HEX to separate the 174 benchmark interac-
tions and Negatome protein pairs from the 50,000
background pairs was also assessed using receiver op-
erating characteristic (ROC) analysis. The area under
curve (AUC) score is 0.75 for benchmark complexes us-
ing bound structures and 0.69 for the ones using un-
bound structures (Fig. 3C). Both of these AUC scores are
higher than the random value of 0.5, indicating a better
than random chance of discriminating true interactions
from random background pairs using HEX. Regarding
the negative set, the AUC score is 0.22 for Negatome
pairs, which indicates a better-than-random chance of

discriminating noninteracting pairs from random back-
ground pairs; most of the Negatome noninteracting
pairs are ranked toward the right side of the graph. The
benchmark interactions using bound structures behaved
better than the ones using unbound structures in our
docking analysis, and all the benchmark interactions
and random pairs behaved better than the Negatome
noninteracting pairs.

To further evaluate the performance of the docking
algorithm on benchmark interactions using unbound
structures, we compared residues at the actual bench-
mark interface of a given PPI in the in the Benchmark 4.0
set with the ones predicted to be at the interface in the top
500 HEX-docked models for that same interaction. The
predicted binding sites (the frequency of each residue
showing up in the interface among the 500 predicted
complex models) were aligned with the real binding sites
(Supplemental Table S1, D, E, I, and J). Similar peak pat-
terns between real and predicted interfaces (i.e. overlap
between red and blue lines in the graphs) indicated that
HEX was able to identify the real binding interface. The
predicted interface sites were also mapped onto the real
structures for a visual comparison (Supplemental Table
S1, B, C, G, and H). We observed that most of the
benchmark interactions with good score distributions
have at least one interacting partner with similar peak
patterns.We further calculated the residue propensities of
20 amino acids in five different structural environments:
real interface, predicted interface, exposed area, core area,
and all environment (Supplemental Table S2A). The res-
idue propensities at the real interface are similar to those
at the predicted interface, and both of them are similar to
the exposed area, with a slightly higher frequency in hy-
drophobic residues, which is further supported by high
Pearson correlation coefficient scores (.0.86) between
residue propensities at the real interface and predicted
interface/exposed environments (Supplemental Table
S2B). These results are consistent with previous findings
that binding (interface) surfaces are similar to general
surfaces (Levy, 2010). The higher frequency of the hy-
drophobic residues in the interface can be explained by
the fact that hydrophobic residues tend to show up in the
interface core area (Bickerton et al., 2011).

Evaluation of Docking Performance Using
Predicted Structures

To evaluate the performance of the HEX docking algo-
rithm with experimentally verified interactions and
Phyre2-predicted structures, we used the HEX program to
dock pairs of predicted structures for 128 experimentally
verified interactions in the BAR’s AIV database (listed in
Supplemental Table S4), 1,724 AIV interolog-predicted
interactions (listed in Supplemental Table S5), and 50,000
random protein pairs generated from 1,346 high-quality
predicted models. The docking score distribution for
each AIV interaction was compared with docking distri-
butions for 50,000 random pairs using the Wilcoxon rank-
sum test. These results were compared to Benchmark 4.0

Figure 2. Comparison between real and predicted structures. A, A plot
showing the RMSDdifference between two groups: predicted structures
aligned with real structures published before our Phyre2 prediction
(black) and after our Phyre2 prediction (gray). B, Four predicted models
(blue) aligned with their corresponding real structures (red) with dif-
fering RMSD values. The aligned residues (residue distance , 4 Å be-
tween real structure and predicted model) are colored in purple.
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interactions using unbound structures (Fig. 3D).We found
that the HEX docking algorithm performed better using
experimentally determined structures (interactions from
the Benchmark 4.0 set) compared to using predicted
structures (interactions from the AIV database set of ex-
perimentally confirmed interactions). Furthermore, the
HEX algorithm performed better when docking predicted
structures for AIV experimentally confirmed interactions
compared to docking predicted structures for interolog-
predicted interactions, relative to docking scores for ran-
dom pairs. Nevertheless, we found similar curve patterns
for all three categories toward the lower docking score
section (i.e. in the region of the graph where scores are
better than 80% to 100% of the background interactions);
thus, HEX-predicted interactions in this region were used
to distinguish the potentially true interactions from ran-
dom pairs of interactions based on predicted models.

Arabidopsis Predicted Structure-Based Interactome

There are 906,531 possible binary interactions (in-
cluding self-interactions) that can be formed from
1,346 high-quality predicted models. We used the HEX
docking algorithm on all;0.91 million interactions and
ranked their top 500 docking score distributions with
each other using the Wilcoxon rank-sum test. We
generated an interaction network using the top 1%
of ranked interactions (9,065 interactions listed in
Supplemental Table S6; these comprise our S-PPIs)

using Cytoscape (Shannon et al., 2003), as shown in
Figure 4. Currently, there are 663 experimentally de-
termined interactions in the public PPI databases (AIV,
BioGRID, and IntAct) among the 1,346 proteins, and
150 of them (22.6%) were recovered in our top 1%
ranked S-PPIs. There are also 2,440 high-confidence
interactions (score . 0.7, determined both experimen-
tally and using interolog information) in the STRING
database between the 1,346 proteins, with 198 of them
(14.7%) recovered in our top 1% ranked S-PPIs.
Proteins that bind to one another should be located in

the same subcellular compartment, at least some of
the time. To further evaluate our top-ranked S-PPIs,
we performed a cosubcellular localization enrichment
analysis for these 9,065 interactions (Fig. 5A). The sub-
cellular localization information of the predicted models
was retrieved from the SUBcellular localization database
for Arabidopsis proteins (SUBA3; Tanz et al., 2013;
Hooper et al., 2014), and the observed and expected
number of interactions for each subcellular localization
combination were calculated using the method de-
scribed by Geisler-Lee et al. (2007). There is a significant
enrichment of the interactions colocalizing in the endo-
plasmic reticulum, Golgi, nucleus, peroxisome, and
plasma membrane, especially in the nucleus, where we
observed a large enrichment (87 expected interactions by
chance and 330 observed interactions). These results in-
dicate that the interaction partners from the top 1%
ranked S-PPIs tend to be located in the same subcellular
compartment.

Figure 3. Performance of HEX using real
and predicted structures. A, The docking
score distribution of a benchmark inter-
action Erythropoietin/Epo receptor using
bound structures (red lines) and unbound
structures (blue lines) and 50,000 random
pairs of interactions (gray lines). B, A plot
showing the percentage of the background
pairs that the percentage of the benchmark
interaction and Negatome protein pairs
is significantly less than. C, ROC curve
showing the performance of the HEX dock-
ing method in discriminating the benchmark
interactions using bound (red) or unbound
(blue) structures and the Negatome protein
pairs (black) from 50,000 background sets.
D, HEX performance comparison between
using real structures and predicted structures
and the plot represents the percentage of the
background pairs that the percentage of the
test interactions is significantly less than.
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We further analyzed the 330 interactions colocalized
in the nucleus, with full details shown in Figure 5B,
where the S-PPIs confirmed by experiments are col-
ored red and S-PPIs confirmed by STRING high-
confidence interactions (experimental and interolog
combined evidence; Szklarczyk et al., 2015) are col-
ored pink. There are four major interaction types
among those 330 interactions. The first type is the in-
teractions between histone H2A and H2B variants.
Histones are abundant in the nucleus of the eukaryotic
cells, and dimers of H2A, H2B, H3, and H4 histones
assemble a protein octamer (Luger et al., 1997). The
interaction of these histone subunits was successfully
recovered in our top 1% ranked S-PPIs. The second
type is the interaction between RNA polymerase II
subunits (NRPB). RNA polymerase II in eukaryotes
contains 12 subunits (Liu et al., 2013), and the inter-
action of some subunits was successfully predicted.
The third type is the interactions between nuclear ex-
port proteins and importin alpha, which are nuclear
transport receptors. Certain exportins have importin
alpha-binding ability to be able to transfer importin
alpha from nucleus to cytoplasm (yeast Cse1; Kutay

et al., 1997; Cook et al., 2007). The fourth type is the
interactions between subunits of the 20S proteasome
(PBB, PAE, and PAF), and our top 1% ranked S-PPIs
successfully recovered the binding of some subunits
(Fu et al., 1998).

The other location combinations with an enrich-
ment of interactions compared to random combina-
tions are cytosol/mitochondrion, cytosol/plastid, plasma
membrane/endoplasmic reticulum, plastid/extracellular,
and Golgi/plasma membrane. The enrichment of interac-
tions for protein pairs locating in cytosol/mitochondrion,
cytosol/plastid, and plasma membrane/endoplasmic
reticulum can be explained by the direct contact be-
tween these organelles. For some of the proteins, there
is more than one subcellular localization, and this can
explain the enrichment of the interactions for protein
pairs locating in plastid/extracellular and Golgi/plasma
membrane combinations where the alternative localiza-
tion was used in the analysis. In contrast to enrichment,
there is also a significant depletion in the location com-
bination of the nucleus and other organelles, such as
extracellular, Golgi, peroxisome, plasma membrane,
plastid, and vacuole, where proteins located in these

Figure 4. A network created by the top 1% ranked
S-PPIs (9,065 interactions) in which proteins
(nodes) are colored according to their subcellular
location based on SUBA3 data. The interactions
where both of the interactors locate in the same
cellular compartment are colored in black, and
the interactions where the interactors locate in dif-
ferent cellular compartments are colored in gray.
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compartment pairs are unlikely to interact, which fur-
ther supports our results.
We undertook two more in silico validations of our

9,605 S-PPIs, namely, a comolecular function analysis
and cobiological process enrichment analysis, based
on GO annotations. We found a strong enrichment
of interactions where both proteins are involved in
transport, signal transduction, cell organization, and
biogenesis, DNA or RNA metabolism, and protein
metabolism processes (Supplemental Fig. S3A) and for
those where both proteins have kinase activity, DNA
or RNA binding activity, protein binding activity, and
transporter activity (Supplemental Fig. S3B). These en-
richment results corroborate our colocalization enrich-
ment results and suggest that our set of S-PPIs contains
true interactions. Note that the enrichment analyses are
contingent on the proteins actually having been anno-
tated as belonging to a particular category. In addition, if
proteins were annotated as being in multiple subcellular
compartments, we used the top-ranked compartment as
provided by SUBA.

Yeast Two-Hybrid Validation of S-PPIs

As a final validation step, we performed yeast two-
hybrid (Y2H) experiments to verify the reliability of the
top ranked S-PPIs and to compare the accuracy of the
structural-based PPI predictions with interolog-based
PPI predictions from Geisler-Lee et al. (2007). A total
of 183 interactions (listed in Supplemental Table S7)
were tested by Y2H using the DupLEX-A Y2H system.
These include 38 binary interactions from the top-
ranked S-PPI interactions (Top_1), 47 randomly cho-
sen binary interactions from the top 1% ranked S-PPI
interactions, 48 randomly chosen interaction pairs from
the entire 0.9 million ranked S-PPI interaction set (as a
random “background”), 20 randomly chosen interac-
tions from the BAR’s AIV database flagged as “exper-
imentally confirmed” interactions (AIV_confirmed),
and 30 randomly chosen interactions from the AIV
database flagged as interolog-predicted interactions
(AIV_predicted; Geisler-Lee et al., 2007). We cloned all
coding sequences of the interactors without their stop

Figure 5. Subcellular localization analysis of
the top 1% ranked S-PPIs. A, Colocalization
enrichment analysis on the top 1% ranked
S-PPIs (9,065 interactions). For each cellular
compartment pair, the number represents the
observed number of the interactions. B, A
network created by 330 top 1% ranked S-PPIs
(gray dotted lines) where both of the inter-
actors locate in the nucleus. Top 1% ranked
S-PPIs overlapped with experimentally con-
firmed interactions from AIV/Biogrid/Intact
databases are colored in red. Top 1% ranked
S-PPIs overlapped with STRING high confi-
dence interactions (score . 0.7) are colored
in pink.
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codons into both bait and prey plasmids and tested
each interaction in both bait-prey directions in three
experimenter-blinded replicates (Fig. 6A). The number
of confirmed interactions from each category in each
repeat was counted separately, and the results are
shown in Figure 6B. Around 26% of the Top_1 inter-
actions and around 30% of the Top_2 interactions were
confirmed in Y2H experiments, levels which are sig-
nificantly higher than the 10% of the interactions from
the background set of randomly picked protein pairs.
This indicates that there is an enrichment of true in-
teractions toward the top-ranked interactions pre-
dicted based on their structural features. Forty-five
percent of the interactions from AIV_confirmed cate-
gory and 30% of the interactions from AIV_predicted
category were confirmed in the Y2H tests. These Y2H
results show that not all experimentally determined
PPIs generate a positive signal in Y2H, in spite of all of
the retested pairs of experimentally determined PPIs

having originally been determined using the Y2H
system. It should be pointed out that the clones in
these cases may not have been full length, etc. For in-
stance, several of the interactions we retested were
fromKlopffleisch et al. (2011), where a complementary
DNA (cDNA) library of average insert size of 1.2 kb
was one of the inputs used to screen for G-protein
interactors. In our retests, we used “naive” full-
length clones, as one might initially do in a Y2H
study. Furthermore, it has been documented that there
is a high false negative rate in Y2H experiments (Ito
et al., 2001); thus, the value of around 30% we are
seeing for our “top” sets is likely an underestimate,
again because not all interactions that happen in the
cell can be detected by Y2H. There is little difference
between the “top” categories and the AIV_predicted
category, which indicates that structural-based pre-
diction has a comparable accuracy with interolog-
based predictions in the Y2H tests we conducted.

Figure 6. Yeast two-hybrid validation. A Yeast
strains were distributed over 384-well plates with
three different medium types: YNB(gal)-his-ura-trp
+leu as a growth control, YNB(gal)-his-ura-trp-leu
for the LEU activation test (growth is indicative of a
protein-protein interaction), and YNB(gal)-his-ura-
trp-leu+Xgal for the reporter gene activation test
(blue staining is indicative of a protein-protein in-
teraction). This process was replicated three times,
and the interaction was counted as positive only if
the blue stainingwas observed at least two times. B,
A bar graph showing the percentage of test inter-
actions having a positive result from each category.
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Integrating S-PPIs with Experimentally Determined PPIs

To explore whether the top-ranked interactions can
extend our knowledge of the known PPI networks in
Arabidopsis, we combined the network generated from
those 9,065 interactions (top 1% ranked S-PPIs) with
AIV-confirmed interactions. Using the S-PPIs, additional
proteins were identified that can potentially bind known
complexes. For example, known interactions among
protein kinase, rotamase, and calmodulin proteins
formed a small network (Fig. 7A), and this network was
extended based on our top 1% ranked S-PPIs; further
calmodulin, kinase, and chaperonin members could be
added to the network. Chloroplast GroES chaperonin
was previously reported to have calmodulin binding
ability (Yang and Poovaiah, 2000), and this interaction
was successfully predicted by our S-PPI method. Aside
from extending known networks, new connections be-
tween known complexes were also identified. For ex-
ample, potential interactions between a T-complex
protein 1/cpn60 chaperonin family protein and plasma
membrane intrinsic proteins connect the chaperone
complex with this plasma membrane protein complex
(Fig. 7B). The involvement of chaperone with plasma
membrane protein in Arabidopsis has been reported in
previous studies. Yang et al. (2010) showed that the
Arabidopsis chaperon J3 regulates H+-ATPase in the
plasma membrane by suppressing the protein kinase
SOS2-like 5 kinase. The existence of other chaperonin
proteins interacting with plasma membrane proteins is
possible, and these S-PPIs can be used to generate list of
candidates for experimental verification for their in-
volvement in protein complex assembly.

Exploring S-PPIs and Other Interaction Data Sets with a
New AIV

We added the 9,605 predicted S-PPIs to the BAR’s AIV
database, originally developed to view interolog predic-
tions from Geisler-Lee et al. (2007). When an interaction
based on an S-PPI is shown in the AIV, which is powered
by cytoscape.js (Franz et al., 2016), clicking on the edge
between the two predicted interacting proteins will open
a newview showing the two proteinmodels (as predicted
byPhyre2),with their surfaces colored to denotewhere on
each protein the other protein docks based on the 500 top
docking solutions for the S-PPI pair: the surface residues
are colored according to the frequency a given residue is
in the contact area between the two proteins of those 500
docking solutions, as shown in Figure 8.
In order to increase the utility of the AIV for hy-

pothesis generation, we introduced several other data
sets, in addition to the 70,944 interolog-predicted PPIs
fromGeisler-Lee et al. (2007) and 39,505 experimentally
determined interactions from the literature. We added
2,967 protein-DNA interactions (PDIs) from eight yeast
one-hybrid publications (Brady et al., 2011; Gaudinier
et al., 2011; Li et al., 2014; Taylor-Teeples et al., 2015; de
Lucas et al., 2016; Murphy et al., 2016; Porco et al., 2016;

Sparks et al., 2016), 2.7 million DNA affinity purifica-
tion sequencing PDIs from O’Malley et al. (2016), and
355 Arabidopsis-pathogen effector interactions from
Mukhtar et al. (2011). Outputs of the AIV were modi-
fied such that the promoters of genes are denoted by
squares and organized by chromosome number,
according to Shneiderman’s “overview first, zoom and
filter, then details-on-demand” data visualization
mantra (Shneiderman, 1996). Similarly, pathogen ef-
fectors are denoted by octagons to provide a visual
distinction from round nodes denoting Arabidopsis
proteins.
As the Provart lab does not have sufficient resources

to curate every literature instance of Arabidopsis in-
teractions, we further improved the AIV framework to
be PSICQUIC compliant. PSICQUIC stands for pro-
teomics standard initiative common query interface
(Aranda et al., 2011) and permits interaction databases
that are PSICQUIC enabled to be searched with a
standardized query so that users do not need to learn
each database’s user interface. We added the option to
use the AIV to query interactions not only from the AIV
database but also from the BioGRID (Chatr-Aryamontri
et al., 2017) and IntAct (Kerrien et al., 2012) interaction
databases. Such queries can provide a more complete
representation of a given protein’s interactors, as un-
fortunately no “canonical” Arabidopsis interaction
database exists. Interaction viewers such as Cytoscape
(Christmas et al., 2005) also contain built-in adapters
that permit interactions from PSICQUIC-compatible
databases to be retrieved with a few clicks. Hitting
“Alt” (Windows) or “Option” (Mac) plus the “L” key
will open the “Import Network from Public Databases”
dialogue box, and simply entering an AGI ID into the
search box and clicking “Search” will retrieve interac-
tions from the AIV database (denoted as “BAR”) and
other connected databases for exploration in Cyto-
scape. We also worked with BioGRID to share our
extensive database of experimentally determined in-
teractions with BioGRID and to import their ;40,000
Arabidopsis PPIs into our database to create an even
simpler way to access well-curated interactions.
Finally, in order to better understand interaction

networks within the AIV, we developed modules that
permit nodes to be “decorated”with MapMan (Thimm
et al., 2004) annotations or gene expression levels from
the BAR’s comprehensive database of around 35 mil-
lion expression measurements that are also accessible
via its eFP browser (Winter et al., 2007). Nodesmay also
be grouped according to subcellular localization or
layered to provide a “gene regulatory network-like
layout.” For S-PPIs, the docking results are repre-
sented as heat maps on the two respective structures.
See Figure 8, for some of these features.

DISCUSSION

We provide evidence that a structure-based docking
algorithm can be used to identify true PPIs, even using
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Figure 7. Experimentally determined PPI network
expanded by the top 1% ranked S-PPIs. Experi-
mentally determined interactions (red solid line)
are experimentally confirmed interactions from AIV/
BioGRID/Intact databases and predicted interac-
tions (gray dotted line) are from the top 1% ranked
S-PPIs. A, Calmodulin network expanded by top 1%
ranked S-PPIs. B, Two experimentally determined
complexes (chaperonin family proteins and plasma
membrane intrinsic proteins) connected by top 1%
ranked S-PPIs (gray dotted lines) between members
from both complexes.
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Figure 8. Example outputs from the updated Arabidopsis Interactions Viewer. A, “Stacked” layout from outside the cell (“ex-
tracellular”) to nucleus. Circular nodes represent proteins, and the numbers in each node representMapMan terms, while colored
“doughnuts” around the nodes represent subcellular localizations (predicted localizations have been turned off in this example)
from SUBA. Clicking on the square chromosomal containers (chromosome 5 in this example) calls up the protein-DNA
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predicted structures.We found a significant enrichment
of true interactions toward the top-ranked S-PPIs,
which was supported by colocalization enrichment
analysis and Y2H validation. This study evaluated the
possibility of PPI prediction using only structural in-
formation, which provides another perspective in PPI
exploration and biological network reconstruction. In
light of ever-increasing structure prediction accuracy
(the critical assessment of structure prediction compe-
tition has been running since 1994 and is now in its 12th
competition) along with increasing number of crystal
structures in the PDB to act as templates that lead to
better predictions, we suggest that predicting a com-
plete interactome (as opposed to partial interactome in
our case) via docking will become increasingly tenable.

A docking algorithm may not accurately predict the
correct binding interface between two binding partners,
but it can still distinguish true interactors from non-
interactors because protein binding is a multistep pro-
cess that is initiated by the formation of nonspecific
complexes, followed by rearrangements to get a more
stable state driven by different interactions (Blundell
and Fernández-Recio, 2006). The whole process be-
haves like a funnel-shaped energy landscape where
different sequential rearrangements are differential
pathways toward the bottom of the funnel (Tsai et al.,
1999), which indicates that binding information is not
only restricted to the interaction surface, but also con-
tained in the protein surface morphology (Wass et al.,
2011). Although the surface morphology information
from a protein structure might not be enough to reveal
the native interface, this information may be enough to
identify a real interaction when comparing it with the
other unlikely interacting pairs.

The docking problem is more complicated using
predicted models because this is a “double model”
situation, with both protein models and complex
models being predicted. This situation is confounded
the higher the docking resolution (Vakser, 2014), lead-
ing to false negatives. To fix this problem, one solution
would be to use docking algorithms that perform better
at lower resolution, such as HADDOCK (Dominguez
et al., 2003), RosettaDock (Lyskov and Gray, 2008), and
SwarmDock (Moal and Bates, 2010). In this study, we
chose HEX as the docking algorithm for two reasons:
HEX dock has been proven to be able to separate the
real interactors from the background (Wass et al., 2011),
and it requires fewer computational resources, which is
crucial when performing amillion docking simulations.
Another solution would be to use high-quality pre-
dicted models, which we have done, but at the cost of

greatly reducing the number ofmodelswe could use for
docking predictions. Most of the protein model pre-
diction algorithms are homology based, and 30%
identity would be considered as a cutoff for successful
homology modeling (Xiang, 2006). When a protein has
an identity of over 30% to a known structure, the ac-
curacy for the structural prediction is equivalent to a
low-resolution x-ray structure. When the identity is
over 50%, 90% of the backbone atoms will be correctly
predicted with an RMSD of , 1 Å (Sanchez and Sali,
1997). In this study, we used the identity threshold of
50% to the template to get a more faithful representa-
tion of the actual structures.

Among the top 1% ranked S-PPIs, we found a dra-
matic enrichment of interactions where both of the
interactors are located in nucleus (from 87 expected
interactions to 330 observed interactions; Fig. 5B). The
biggest contribution of the enrichment comes from 18
histone H2A and H2B variants, which encompass 108
interactions. Although some of those histone variants
are functionally redundant (Yi et al., 2006), different
histone variants can go through different posttransla-
tional modifications, like methylation, which will di-
rectly affect their interaction specificity with their
chaperones (Zhou et al., 2015); thus, we did not treat
those 108 interactions as being the same. Aside from
those 108 H2A/H2B interactions, there are 222 more
observed S-PPIs where many previously reported in-
teractions were successfully predicted, such as the in-
teractions between histone H3 and RNA polymerase II
(Stasevich et al., 2014). In light of just 87 expected in-
teractions, there is still significant enrichment of inter-
actions in the nucleus/nucleus location combination,
even discounting the histone S-PPIs.

In this study, we compared the accuracy of the
structural-based interaction predictions with interolog-
based interaction predictions and found a comparable
rate of positives in our Y2H validation tests (;30%).
Although both interaction prediction methods have a
seemingly low positive rate in the Y2H test (yet still 3-
fold better than randomly picked “background” pairs,
which are assumed to be noninteractors), the true in-
teraction rate for our S-PPIsmay be considerably higher
due to the low sensitivity of the Y2H system. Braun
et al. (2009) and Chen et al. (2010) both reported a
Y2H assay sensitivity of 25%, which indicates that not
all the interactions that occur in a plant cell can be
detected by Y2H and that there may be an underesti-
mation of the true interaction rate in our “top” cate-
gories. There is some similarity shared between these
two prediction methods. They both rely on the

Figure 8. (Continued.)
interactions (PDIs) associated with that chromosome (here 234 PDIs are associated with At1g19040). Dashed red line shows
connection from a Pseudomonas syringae effector, AvrC, through yellow highlighted proteins to a transcription factor,
At1g19040. B, Clicking on interaction edges between proteins that have been predicted as part of our S-PPI study (mouse pointer
in A) calls a page where the docking frequency for 500 runs of the HEX docking algorithm with the other protein is mapped onto
the surface of that protein as a heatmap (red, high frequency of docking at that location), and vice versa (the view for At4g16760
and At5g53160, ranked #8519 of 9065 S-PPIs presented in this paper, is shown here).
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experimentally determined results from other orga-
nisms, those results being either experimentally deter-
mined structures that can be used as templates for
structure modeling for docking input or experimentally
determined interactions that can be used as templates
to search for the corresponding orthologs in the target
organism. That said, there is an overlap of just 55 in-
teraction pairs between the 9,065 S-PPI set and our
earlier interolog prediction work (Geisler-Lee et al.,
2007), indicating a complementarity of the two predic-
tion methods. Both methods will improve in the future
as data encompassing more and more experimentally
determined protein structures and interactions are
generated and structure modeling and docking algo-
rithms become better. In the future, these two methods
could be further combined to get more reliable PPI
predictions based both on structural and functional
information.
We made our 9,065 S-PPIs available on the BAR’s

new AIV, along with BioGRID’s extensive collection of
42,605 Arabidopsis interactions, thereby almost dou-
bling the number of Arabidopsis PPIs available in one
tool (the AIV database now contains 62,626 unique
pairs of experimentally supported interactions, as in
some cases both groups curated the same interaction).
The predicted structure-ome is accessible through the
BAR’s ePlant app (Waese et al., 2017) at http://bar.
utoronto.ca, which is freely accessible by the plant
community.

MATERIALS AND METHODS

Arabidopsis Proteome-wide Predicted Structure-ome

The Arabidopsis (Arabidopsis thaliana) TAIR10 protein sequences were used
as input for Phyre2 (this project started before the Araport11 build was avail-
able). A total of 29,180 protein models were generated, and 1,346 of them were
considered reliable as follows. TAIR10 sequences corresponding to the protein
sequences in the predicted models were retained. The identity score was
computed by aligning the sequences used to predict the models with the se-
quences of the corresponding structural templates. Predicted models with an
amino acid sequence completeness score over 0.8 and an identity score over 0.5
were considered reliable, encompassing 1,346 models in total. The RMSD
values between experimentally determined and predicted structures were
calculated by the structural alignment function in PyMol (pymol.org).

Docking Analysis and Statistical Testing

The HEX 8.0.0 (Ritchie and Kemp, 2000) docking algorithm was used in our
analysis with a shape complementarity as the only scoring function (without
electrostatics function, as per Wass et al., 2011). All the structures were ran-
domized in their orientations prior to docking. The top 500 scores of each
docking interaction and their docking poses in PDB format were retained for
later analysis.

The Wilcoxon rank-sum test (Wilcoxon, 1946) was used to assess the sta-
tistical difference between the score distributions of the two kinds of docking
interactions: test interactions versus random pair sets. For each test interaction
in the Hwang et al. (2010) data set of 174 benchmark complexes, from the
Negatome data set of 1,629 protein pairs (Blohm et al., 2014) or from the 0.91 M
pairs generated from 1,346 reliable predicted structure models, an individual
Wilcoxon test was performed against each of the 50,000 background pairs
created using 988 real or 1,346 predicted structures, depending on the kind of
structures (experimentally determined or predicted) being tested for interaction

by docking. The percentage of the background interactions where the test in-
teractions exhibited a score better than P , 0.01 was recorded.

ROC curveswere used to evaluate the performance ofHEX in distinguishing
the test interactions from background, randomly picked pairs. The rank infor-
mationof the test interactionsamong thebackgroundbasedonscoredistribution
was used as input for ROC analysis, and the AUC was calculated. All the sta-
tistical tests were done using R version 3.2.4 (R Development Core Team, 2008).

Interface Analysis and Residue Propensity Calculation

The interaction interface is defined as any residue on one of the interacting
partnerswith its nonhydrogen atoms having adistance of less than 5Å fromany
nonhydrogen atoms on the other interacting partner. The true interface sites are
residues found at the interface of proteins in the benchmark complexes. Puta-
tive interface sites were mapped onto the benchmark structures with different
colors indicating the frequency of each residue showing up on the interface
among the top 500 complexes of each docked protein.

The exposed and core area are distinguished based on the solvent accessi-
bility.Residuesare classifiedascore residues if the relativeaccessible surfacearea
(ASA) is less than 7% and as exposed residues if the ASA is more than 7%
(Bickerton et al., 2011). The ASA of each residue was calculated using the
get_area function in PyMol. The propensities of 20 amino acids in different
environments (exposed, core, and interface) were calculated specifically. The
average amino acid propensities in the interface of the top 500 predicted
complexes were used as the residue propensities in the predicted interface. The
Pearson correlation coefficient score between the residue propensities in the real
interface and other environments was calculated.

Statistical Test for Coenrichment Analysis

nab is the observed number of interactions with one protein located in a and
another protein located in b. The expected number (�nab) of interactions is
given by

�nab ¼ ∑
j
∑
i, j

ðCiaCjb Or CjbCiaÞkikj
ð2Eþ kikjÞ

where k is the degree of protein (the numbers of proteins that interact with it)
and E is the total number of interacting pairs. For protein i, Cia equals 1 if
protein i is in location a and 0 if not.

The P value for the observed and expected number of interactions was
calculated using a Poisson distribution:

P
�
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The final P value was determined by a multiple-testing correction:

PðmultiÞ ¼ 12 ð12PÞm

P is the single-test P value, and m stands for the number of ab pairs. For
enrichment, m equals the number of ab pairs with at least one edge in the ob-
served network and for depletion, m equals the number of ab pairs possible in
the randomized networks.

Y2H Validation

The DupLEX-A Y2H system (Origene) was used in the biological validation
step. Approximately 400 expression clones for Arabidopsis sequences were
ordered from the Arabidopsis Biological Resource Center through TAIR (www.
arabidopsis.org). The coding sequences without their stop codons were cloned
into prey (pJG4-5 with TPR1, Ampr, and an inducible GAL1 promoter; the fu-
sion gene product contains a B42-HA tag) and bait (pEG202 with HIS3, Ampr,
and a constitutive ADH promoter expressing LexA) plasmids through a stan-
dard Gateway LR clone process (Gateway LR clonase II, Thermo Fisher). The
bait and prey plasmids carrying the sequences for both interacting partners
were cotransformed into yeast strain Saccharomyces cerevisiae EGY48 (MAT
alpha trp1 his3 ura3 leu2::6 LexAop-LEU2) carrying a reporter pSH-18-34
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(URA3, Ampr, LacZ) plasmid. Yeast colony PCR was performed to ensure the
target sequences were correctly cloned into the bait and prey plasmids and
transformed into yeast strains. The primers for the amplification of the target
sequences in pEG202 plasmids were 59-AGGGCTGGCGGTTGGGGTTATTCG
C-39 and 59-GAGTCACTTTAAAATTTGTATACAC-39. The primers for the
PCR amplification of the target genes in pJG4-5 plasmids were 59-AATATA
CCTCTATACTTTAACGTC-39 and 59-GAGTCACTTTAAAATTTGTATACA
C-39. A yeast strain carrying a prey plasmid (pJG4-5::hopF2), a bait plasmid
(pEG202::shcF), and a reporter plasmid (pSH18-34) was used as a positive
control, and a yeast strain carrying empty prey and bait plasmids together with
a reporter gene was used as negative control.

All the strains were spotted onto three different medium plates: YNB(gal)-
his-ura-trp+leu for positive growth control, YNB(gal)-his-ura-trp-leu for LEU
activation test, and YNB(gal)-his-ura-trp+leu+Xgal for reporter gene activa-
tion test. The Y2H validation process was done in three experimenter-blinded
repeats, and the identity of colonies showing blue staining was recorded for
each repeat.

Accession Numbers

The AGI ID pairs for the S-PPIs described in this article may be found in
Supplemental Table S6.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Binding site comparison between real complex
and predicted complex using unbound structures.

Supplemental Figure S2. Residue propensity comparison between differ-
ent environments.

Supplemental Figure S3. Molecular function and biological process coen-
richment analysis for the top 1% ranked S-PPIs (9,065 interactions).

Supplemental Table S1. List of 1,346 reliable Phyre2-predicted models.

Supplemental Table S2. List of 174 benchmark complexes.

Supplemental Table S3. List of 1,629 Negatome pairs.

Supplemental Table S4. List of 128 AIV_confirmed interactions.

Supplemental Table S5. List of 1,724 AIV_predicted interactions.

Supplemental Table S6. List of top 1% ranked S-PPIs.

Supplemental Table S7. List of interactions tested in Y2H.
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