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Abstract

Many disciplines of scholarship are interested in the Relative Age Effect (RAE), whereby

age-banding confers advantages on older members of the cohort over younger ones. Most

research does not test this relationship in a manner consistent with theory (which requires a

decline in frequency across the cohort year), instead resorting to non-parametric, non-direc-

tional approaches. In this article, the authors address this disconnect, provide an overview

of the benefits associated with Poisson regression modelling, and two managerially useful

measures for quantifying RAE bias, namely the Indices of Discrimination and Wastage. In a

tutorial-like exposition, applications and extensions of this approach are illustrated using

data on professional soccer players competing in the top two tiers of the “Big Five” European

football leagues in the search to identify paragon clubs, leagues, and countries from which

others may learn to mitigate this form of age-discrimination in the talent identification pro-

cess. As with OLS regression, Poisson regression may include more than one independent

variable. In this way we test competing explanations of RAE; control for unwanted sources

of covariation; model interaction effects (that different clubs and countries may not all be

subject to RAE to the same degree); and test for non-monotonic versions of RAE suggested

in the literature.

Introduction

Relative Age Effects (RAEs) occur when schools and sports group children into age-banded

cohorts. Within each cohort, older children study and compete at an artificially conferred

advantage over younger children [1–3]. Since the start-points and end-points for age-bandings

rarely change, such advantages are conferred consistently throughout childhood. Initial suc-

cess tends to breed longer-term success for two good reasons. First, there is a psychological
advantage to being cohort-older. Because it is easy to mistake age-advantage for intrinsic tal-

ent, cohort-older children will tend to be nourished on a richer diet of positive regard from

teachers, coaches, parents, and peers who see them as more competent than cohort-younger

children–as indeed they are [4]. Affirmations from the world tend to become internalised by

the child in the form of greater confidence [5] and willingness to engage in competitive
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activities [6]. Second, there is an organizational advantage, in that initial success can also insti-

tutionalise success. Specialised training centres, such as football academies, tend to select

young – when a year can make a big difference – and so their squads grossly over-represent

cohort-older children. They also often select once, meaning that an academy intake tends to

resist future revision. Selecting young and once results in the same large RAE bias propagating

from first- to last year in the academy [7–9]. In summary, RAEs are ubiquitous and long-lived

into adulthood [1]; they operate by pervasively boosting self-esteem (the psychological advan-

tage) and / or by a time-frozen selection bias onto elitist training programs (the organizational
advantage).

The goal of this paper is to develop, explain and advocate a unified set of analyses that, in

Boisot’s [10] terms, can help codify, and thus communicate, diffuse, accumulate and ultimately

apply, knowledge. It is our contention that RAE researchers have not always extracted enough

from their data. This limitation occurs both at the local level, in that analyses are often ended

prematurely; and at the global level, in that analyses of a present set of results cannot easily be

compared with past sets of results that were analysed differently. Perhaps this is to be expected,

given that RAE research exists across many disciplines including sports science, education,

psychology, health and economics, each with their own traditions of analysis. Although under-

standable, it is not to be encouraged.

A central place in our framework is occupied by the Poisson regression model (PRM) to

analyse the frequency data typical of RAE research. Since many RAE researchers may not be

familiar with Poisson regression, we offer a short tutorial introduction structured around sub-

stantive research questions raised in the recent RAE literature. Being an “advanced” technique,

for an “advanced” audience, PRM is often presented in a way that is inaccessible to the major-

ity—but for digestible overviews, see [11–13]. This is regrettable, as PRM is in fact a relatively

straightforward analogue of the popular Ordinary Least Squares (OLS) regression method.

In particular, the PRM shape parameter (the counterpart of the OLS slope) acts within the

PRM framework as the common format by which minimally-processed statistical analyses can

be translated into more diagnostic but insightful indices and measures, thereby moving RAE

research along the Data-Information-Knowledge-Wisdom trajectory [14]. The principal two

are: the Index of Discrimination (ID), which measures the relative odds of someone meeting a

criterion given they are born at the start versus end of the cohort year; and two variants of the

Index of Wastage (IW1 and IW2), which highlight the degree of talent lost because of RAE. The

PRM model is also able to measure the change in RAE, consequent on policy changes to how

the cohort year is defined [15].

The empirical analysis is based on an examination of all domestic players in the top two

tiers of the “Big Five” European football leagues for the season 2016/17, involving nearly 4000

players. This is more than an illustrative example, but is a proper contribution to the RAE liter-

ature. Studies are beginning to emerge using Poisson regression. For instance, Doyle and Bot-

tomley [16] searched, albeit unsuccessfully, for paragon clubs and countries within a European

context from which others might learn how to minimise this form of age discrimination. Simi-

larly Brustio et al. [17] documented a diminution of RAE among cohorts of Italian youth as

they progressed through the Serie A academy system. Rada et al. [18] raised the interesting

possibility that second-tier clubs may provide a second chance for cohort younger players to

establish themselves. Sadly, the RAE was just as pronounced among professional players in

second-tier clubs as in first-tier clubs in England, France, Germany, Italy, and Spain.

The rest of this paper proceeds as follows. We begin by discussing the basics of Poisson

regression modelling and contrast this with the more conventional Ordinary Least Squares

approach. Next, we provide a simple illustration with one predictor to the Big Five European

football leagues, and show how the Indices of Discrimination and Wastage act as effective
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measures to summarise RAE bias. We then expand the model with the addition of a second

predictor by examining the impact of population birth and death rates, and the challenges

posed by multiple cohort year start and end-dates. Finally, we discuss the modelling of interac-

tion terms as the search for paragon clubs, leagues and countries continues [16,18].

The basics of Poisson regression

Whereas simple bivariate Ordinary Least Squares (OLS) regression finds a best fit to paired (x,

y) data of the form:

y ¼ aþ bx; ð1Þ

the Poisson regression model (PRM) finds a best fit of the form:

y ¼ eðaþbxÞ: ð2Þ

Poisson is the default method of analysis when dealing with small expected counts, for

instance, the mean number (λ) of unscheduled births a hospital might expect per hour. Stu-

dents meet the Poisson in “Statistics 101”, where the problem is to build up a profile of the

underlying discrete probability distribution (or density function). In this example, the distri-

bution would be the probability of 0 births, 1 birth, 2 births, and so on per hour. Knowing this

could help make informed decisions about staffing levels and bed requirements. If instead the

window of analysis is one day rather than one hour, then we would expect λ to be 24 times

larger as the event is assumed to occur at the same constant rate throughout the interval.

Although the distribution is ever more positively skewed for smaller and smaller λ, the Poisson

is still the appropriate method.

PRM extends the problem, from λ as a fixed average per unit of time or distance, to situa-

tions where λ might vary. The λ governing the expected number of punctures per 100 miles of

cycling, for instance, might vary with terrain, speed, tyre pressure, depth of tread, and so on.

But at any particular combination of these conditions, there will still be a λ that governs the

distribution we might expect; and the Poisson distribution of punctures for that particular λ
will look just as it did in Statistics 101. But as the λ for one combination of terrain, speed, and

tyres, might be an order of magnitude greater than the λ for another combination, the scale
and shape of each distribution may look very different, though in an entirely lawful and expli-

cable way.

Returning to the algebraic formulation, y = e(a + bx), PRM starts from a given set of x and y

and infers the a and b parameter estimates that best relate them. Just as the intercept, a, in OLS

shifts the entire regression line up or down, the a in PRM does an analogous job by magnifying

or shrinking the scale of the entire curve. To see this, notice y = e(a + bx) = ea.ebx = Aebx, with A
(= ea) thereby being the multiplier. Likewise, whereas b measures the slope in OLS, the b in

PRM governs the shape or degree of curvature of the (x, y) relationship. In both OLS and

PRM, a positive b implies that y increases as x increases; and a negative b implies that y

decreases as x increases. Statistical tests of the b coefficient are tests of the null hypothesis

b = 0, which translates into a flat horizontal line in both PRM and OLS regression. Given RAE,

we anticipate a decrease in frequency across the cohort year, thus b should be negative; and the

more severe the RAE bias, the more negatively large b should be. In the less likely situation of

reverse RAE, the b should be positive and significant for an underdog effect [19,20]. In what

follows, we focus almost entirely on b, the Poisson shape parameter.

Just as there is multiple OLS regression, so too can more than one independent variable be

included in the PRM estimating equation, and for all the same kinds of reasons. But, one

unique feature of PRM not shared by OLS is that for a genuine Poisson process, the
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mean = variance (= λ), whatever level of λ is observed. The dispersion coefficient is an (aggre-

gated) ratio of variance divided by mean. If dispersion exceeds 1 by a sufficient amount, the

likelihood is either that variables are missing from the model which acts to cause more varia-

tion than expected, or that the assumptions of Poisson are not being met. The dispersion coef-

ficient is sometimes called the Variance Inflation Factor (VIF) because standard errors of all

regression parameter estimates should be scaled by the square root of the VIF to provide

more accurate inference, a procedure known as "quasi-Poisson". One corollary is that if disper-

sion� 1, the assumptions of Poisson are met and there are no missing variables that could

improve the model. So the ultimate goal of Poisson regression is not to end up with no residual

variance (i.e., R2 = 1), as it is in OLS regression. This would result in suspicious levels of

under-dispersion, implying that the randomness which underpins the Poisson process had

been explained. Instead, the goal is to have residuals in about the “right amounts”, as suggested

by a Poisson process. It follows that researchers must keep a careful eye on the dispersion

coefficient.

Poisson application: Big Five European soccer leagues

The data comprise domestic players in the first-team squads of the 204 football clubs compet-

ing in the top two tiers of the “Big 5” European leagues (England, France, Germany, Italy,

Spain), at the start of season 2016/17, compiled from club websites (see S1 Appendix for com-

plete dataset). Domestic players are defined as those whose nationality matches the league they

play in, (e.g., Germans in the Bundesliga). There are 882, 734, 609, 882, and 868 such players

in England, France, Germany, Italy, and Spain respectively; in total 3975 of 6644 registered

players. This restriction minimises ambiguity due to players learning their trade in a foreign

academy, while ensuring that the correct cohort year definition is applied [20]. Players in

France, Germany, Italy and Spain are analysed using 1st Jan. to 31st Dec. as the domestic com-

petition (cohort) year, while in England it is defined 1st Sep. to 31st Aug.

How many players were born on each day of the year is the dependent variable (y). The

independent variable (x) is time of birth, tB, measured as a decimal fraction of the cohort year

(0,1), such that players with earlier birthdays have smaller values of tB and the mid-year point

is tB = 0.50. Specifically, tB = (j – 0.5) / 365, where (j—0.5) denotes that players are notionally

born at midday on the jth day of the cohort year, and these values are rescaled by 365 to lie in

the one year interval (0,1).

Analysis begins with the overall model, pooled across both countries and tiers, before test-

ing the legitimacy of these assumptions shortly. The best fitting Poisson equation is:

Daily birth frequency ¼ e2:7952� 0:8786tB ; ð3Þ

And this model explains 40.8% of the variation (McFadden’s pseudo R2). The slope coeffi-

cient for tB is negative and significantly different from zero (t (df = 363) = -15.81, p< .001).

This shows that the frequency curve trends downwards over the cohort year, consistent with

their being more early-born than later-born players, as per RAE. The Poisson a coefficient is of

little interest. It merely scales the equation to account for the number of observations. Disper-

sion is 0.985, close to the ideal 1; but all reported significance tests still apply the quasi-Poisson

correction. The best fitting model is also presented in Fig 1. From this, we illustrate next the

derivation of the Indices of Discrimination and Wastage. These managerially useful, highly

interpretable measures, quantify the size of the Relative Age Effect in a standardized way,

thereby enabling comparison across future studies.

Relative age effect and Poisson regression
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Indices of Discrimination and Wastage: A graphical and algebraic

understanding

The black curve in Fig 1 shows the best fitting Poisson model. Clearly, players born at the end

of the cohort year (point B) have a much smaller chance of reaching the upper echelons of

European soccer than players born at the start of the cohort year (point A). The odds of A

being selected relative to B is shown by the relative length of the heavy vertical lines projecting

to the x-axis from A and B. This is a graphical representation of the Index of Discrimination

(ID). In algebraic terms, given the Poisson equation y = e(a + bx), A occurs when x (= tB) = 0;

thus y = p(selected | tB = 0) = ea. Likewise, B occurs when x (= tB) = 1; thus y = p(selected | tB =

1) = e(a + b). It follows that:

ID ¼
ea

eðaþbÞ
¼

1

eb
¼ e� b ð4Þ

Returning to the overall model (Eq 3), and substituting in values for tB = 0 and tB = 1 for the

selection cut-off dates gives expected player frequencies of 16.37 and 6.80 respectively. Taking

Fig 1. Poisson regression curve with tercile frequencies shown as bars.

https://doi.org/10.1371/journal.pone.0213988.g001
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the ratio of extremes, the Index of Discrimination (ID) = 16.37 / 6.80 = 2.41. Or put more sim-

ply, ID is e−b = e+0.8786. Thus players born right at the start of the cohort year are nearly two-

and-a-half times more likely to reach the upper echelons of professional football than those

born right at the end. This ID accords quite closely with Doyle and Bottomley’s [16] 2.67, but

their analysis involved 11 nations and was restricted to players in a "top 1000” worldwide list-

ing, as judged by transfer value.

It is important to note that there are several alternative but less precise ways of defining ID

which, if ever they entered the RAE literature would immediately undermine the precision of

using Poisson regression. In our definition, ID is the ratio of two point estimates which lie at

the extreme opposite ends of the cohort year. When seen in this way, forming the ratio of any

other pair of points in the cohort year is clearly rather arbitrary (like measuring someone’s

height from knee to nose, or from ankle to chin), and would necessarily reduce the size of ID.

Furthermore, it may be tempting to form a simplified ID ratio, instead, from the numbers born

in January versus December; or players in Quarter 1 versus Quarter 4. However, points are no

longer being compared, but intervals. And given that such ratios ignore 10 / 12 (months) or 2 /

4 (quarters) of the data respectively, they are particularly vulnerable to sampling fluctuations.

So, if researchers wish to make meaningful comparisons across different age groups, countries,

sports, times, activities and so on, then it is imperative that they avoid arbitrary redefinitions

of ID in favour of a single definition of ID.

The fact that A players per day born at the start of the cohort year reached a certain criterion

suggests that in the absence of RAE, A players per day born anytime during the year should be

able to reach that same criterion. If that were so, in Fig 2 the Poisson curve frequency distribu-

tion would run along the horizontal line going through A. The totality of players meeting this

criterion is given by the area beneath that line. Importantly, this area is partitioned into two

sub-areas by the Poisson regression curve. Below the curve are those players the model sug-

gests are currently selected given existing RAE constraints (namely, area h + H + G). In con-

trast, above the curve are those might-have-beens, the anonymous but equally talented players

that remain undiscovered (namely, area g + q). The ratio of undiscovered to discovered areas

gives our second diagnostic statistic, the Index of Wastage (IW1). It too can be derived algebrai-

cally (see S2 Appendix for mathematical details), as follows:

IW1 ¼
g þ q

hþH þ G
¼

1þ b � eb

eb � 1
ð5Þ

Returning to the overall model (Eq 3) and substituting in b = -0.8786, we find IW1 = 0.503.

Thus, for every player selected, IW1 is the estimated number of players who might have been

selected, but have disappeared from the game because they passed through a selection process

that rewarded greater maturity in youth. In this instance, for every two talented players who

established themselves as professionals, there is one equally talented player that remains undis-

covered. In a world without RAE, clubs from the top two tiers could expand their squads by

50%, without sacrificing overall quality. However, this is rather naïve because not only would

the wage bill increase dramatically, but players in the now enlarged squads would struggle for

game time. Indeed, an even more exaggerated form of squad enlargement would befall football

academies, where typically IW1 > 1, suggesting that their squads would at least double in size.

Consequently we have developed a second Index of Wastage IW2, assuming clubs would

not increase squad size, but keep to their same quota that they have in the current RAE-biased

world. In Fig 2 maintaining quota amounts to finding a frequency α (instead of A), uniform

across the cohort year that has the same area under it as the area under the exponential RAE

curve. In other words, q + G + H = h + G + H. Immediately we see that q = h. To maintain

Relative age effect and Poisson regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0213988 April 3, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0213988


quota, the number of newly selected cohort-younger players (q) must balance the number of

cohort-older players de-selected or “let go”. The mathematical derivation of IW2 is a little more

involved (see S2 Appendix for details), but can be computed using the following equations:

IW2 ¼
q

GþH
¼

q
/ � q

ð6Þ

a ¼
Aðeb � 1Þ

b
;where A ¼ ea

q ¼
A
b
ðebT � 1Þ � aT;where T ¼

1

b
loge

a

A

h i

Rather more simply, α = N / 365, where N is the number of observations (here, N = 3975

players) in the analysis. For the Big Five leagues data α = 10.89, using either calculation

Fig 2. Indices of Wastage: IW1 and IW2.

https://doi.org/10.1371/journal.pone.0213988.g002
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method. Obviously from Fig 2, A > α> B, which it is: 16.37 > 10.89 > 6.80. Likewise T is

the point in the cohort year where the horizontal no-RAE dashed line cuts the RAE curve. It

marks the boundary between the unfairly advantaged early-borns and the unfairly disadvan-

taged, later-borns. For the Big Five leagues data, T = 0.4636, which corresponds to the

boundary about two weeks (= (0.5–0.4636) � 365 days) before the cohort year mid-point.

Finally, IW2 = 0.122. Under the new, stricter criterion implied by α, the quota-preserving

club would be able to reject h (the least able players born before tB = T) in favour of q (those

now retained who would before not have been). The new players (q) as a proportion of the

total players selected (G + H + q) accounts for 11% of the players, which can also be calcu-

lated as:

IW2

ð1þ IW2Þ
:

While IW2 is much smaller than IW1 (0.122 versus 0.503) it is nonetheless economically

important. Based on IW2, out of domestic 3975 players, 437 (= 3975�0.11), around two players

per first-team squad (437 / 204) actually have lower skills than another 437 players who are not

included in this sample–either they play in lower leagues or gave up their dream of becoming

professional footballers altogether–but would have had the potential to reach the top echelons

and be included in this sample, had they faced a selection process that took into account their

lower maturity in youth. In other words, because clubs rely on a selection process that rewards

greater maturity in youth, two players per squad were wrongly selected and could have been

replaced by better players to the benefit of owners of soccer clubs, soccer institutions and of

course, soccer fans. (We thank our review team for these astute insights).

IW2 concerns one-for-one player replacement, with no net loss or gain in player numbers

overall. However, IW1 concerns pure supplementation, necessarily leading to an increase in

overall numbers (but with no players lost). It follows that the kinds of claims and language that

can be made based on IW1 will not be the same as those based on IW2. In fact, IW1 and IW2 are

really just special cases of a more general model in which players can be replaced and the over-

all numbers increased (or even decreased). See S2 Appendix.

To summarise, IW2 measures how much more talent we could get out of the football system,

assuming we put no more in beyond eliminating RAE. In contrast, IW1 measures just how

much more untapped talent is out there, with no provisos. The fact that IW2 is much smaller

than IW1 may suggest one reason why clubs persistently ignore RAE. Although there are 2.4

times as many footballers born at the start of the cohort year than at its end (a stark inequality

from the player perspective), the gains to the quota-preserving club of removing that inequality

are less striking. Just slightly more than two players per squad (who are relatively older) would

be replaced (by two relatively younger players).

Together, these indices emphasise the real bias inherent in RAE from different perspectives.

This knowledge should also be useful for decision-making purposes where the consequences

of RAE bias must be made explicit, and enable comparisons across clubs, tiers, countries, and

ultimately time.

Having outlined the benefits of Poisson regression, in the interests of exposition, next we

expand the estimating equation by adding a second predictor. Not only will this demonstrate

the flexibility of this method compared to conventional chi-squared testing of contingency

tables, but it enables us to address pertinent questions raised in the RAE literature, such as the

benefits of including data on population births, and the implications of idiosyncratic competi-

tion years (e.g., England, Japan).

Relative age effect and Poisson regression
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Extensions to Poisson regression: Two independent variables

Multiple cohort years. For domestic inter-academy games, English clubs define their

cohort year as 1st Sept. to 31st Aug. following the academic school year; yet when competing in

international club and country competitions they must respect the more usual calendar year

definition. It is therefore possible that the calendar year entrains a second RAE bias, albeit

more subtle, superimposed on the dominant school year bias; but only for English players.

After all, it makes no sense looking for a corresponding September-August effect, in say

French or German players, because they will never have competed within that definition of a

cohort year when progressing through their youth academy system.

Accordingly, we examined, just for English players, whether TB (Jan.-Dec.) in addition to

the domestic tB (Sept.-Aug.) improved the explanatory power of the Poisson regression model.

Only the school year (b1 = -0.9360, t(363) = -6.16, p< 10−8) entrains an RAE bias among

English players, and not the calendar year (b2 = -0.0004, t(363) = -1.12, p> 0.25). The superi-

ority of the restricted model is confirmed by a model specification F-test< 1.

Within-year fluctuations in population births. Most RAE studies treat population births

as a uniform distribution across the year, an assumption that is only broadly true [21]. While,

it is good practice to control for such fluctuations [22], this can be difficult to achieve when

datasets span many countries. Nevertheless, deviations from the uniform are much smaller

than typical RAE effects, suggesting it is unlikely that they could be solely responsible for any

apparent RAE bias.

The UK Office of National Statistics (ONS) has published the number of births in England

and Wales for each day of the year during the period 1995–2014. Analysis reveals there is a

slight elevation of births during the summer, and somewhat sharper spike in late September /

early October, nine months after the Christmas holidays. There are also fewer than expected

births on 25th and 26th December suggesting that hospitals can manage this process to some

degree.

Overall, �tB ¼ 0:4998 � 0:5 when tB is measured using the September to August school

year, indicating birth rates are not unfairly delivering an overall boost for or against RAE. For

the calendar year, �tB ¼ 0:5032. While this data does not perfectly align with current football

players’ ages, it being too inclusive of more recent years, and Wales (population: 3m) as well as

England (53m), it is the best we have found to use as a control variable. Again, when added as

the x2 variable, population births did not improve model fit beyond the simple one-variable

specification of tB alone, F< 1.

Within-year fluctuations in population deaths. The theory guiding this analysis assumes

that whatever seasonal factors increase mortality rates may also bring about ill-health in babies

during their critical first months of life. Consequently, such children may be less athletic and

have less chance of being selected into elite sporting academies.

ONS publishes detailed statistics about the numbers of deaths on each day of the year, from

1970 through to 2014. Perhaps not surprisingly, there is much more seasonality in deaths than

births (coefficient of variation = 0.110 vs. 0.033), peaking when days are shortest and coldest in

mid-winter. Having isolated data for 1980–2000 inclusive, we calculated the average number

of deaths occurring on each day of the year. This timeframe corresponds to current football

players aged 17 to 37 years old. In the event, the second variable is not significant: t(363) =

1.62, p> 0.10, and whatever marginal trend there may have been present runs counter to our

hypothesis.

Additional non-linearity. Hjertstrand et al. [23] proposed an “underdog hypothesis”,

such that those in the middle of the cohort year gain longer term benefits from having to work

harder to keep up with their cohort-older peers, whereas for the youngest, the competition is
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just too strong. They contend that “those born late–but not too late–will thus end up with the

highest skill levels as adults” (p.1). While the Poisson is a non-linear function, a standard way

to determine whether there is a discernible bulge or dip relative to the underlying distribution

is to add a quadratic term. We found no evidence of acceleration or deceleration for the effect

of tB on the Poisson curve, as the coefficient on tB
2 is non-significant and model specification

test, F< 1. So, while there might be evidence for those born “late but not too late” in the cohort

year doing better in terms of educational development, the analogy does not appear to hold

with football skills.

Having introduced the notion of a quadratic here, we outline next how to include interac-

tion terms. Although this is slightly more complicated in PRM than in traditional OLS

regression, it will likely be important when investigating the generalisability and boundary

conditions associated with the RAE phenomena.

Poisson regression with interaction terms: Clubs, tiers, and leagues

It seems plausible that the intensity of RAE bias may vary between different levels of talent,

and in different countries, and for different clubs. There is also a practical side to these investi-

gations, for instance to identify clubs (countries) that may have managed to avoid or attenuate

RAE, in order to examine more closely how they have done it. Interestingly, Doyle and Bot-

tomley’s [16] country-by-country analysis for the 11 nations that contributed most profession-

als to the top 1000 players by transfer value found no evidence of paragon countries. Similarly,

their club-by-club analysis of the 32 teams competing in the 2014–15 UEFA Youth Cup,

(junior version of the Champion’s League), found no differences in the clubs’ RAE slope coeffi-

cients (no club x tB interaction). In a related vein, Rada et al. [18] analysed similar data to that

reported here, for the 2014–15 season, to determine whether clubs competing in the second

tier of England, France, Germany, Italy, and Spain provided a second chance for later-born

players to catch up. But the magnitude of RAE was similar across first and second tiers, both

strongly favouring more early-born players. In the interests of generalizability, we conduct a

close replication, taking this opportunity to illustrate how interactions are incorporated into

the PRM.

Tiers, Leagues and Clubs must be modelled using dummy (factor or category) variables, as

all are between-category effects. As such, the data must be disaggregated, not just by days, but

by days separately for each Tier. So, the y-variable would be 730 observations, 365 birth fre-

quencies for Tier 1 and 365 birth frequencies for Tier 2, while the x-variables are (i) tB (listed

for each Tier), with (ii) a dummy variable for Tier, coded 0 or 1. Similarly, in the case of Lea-

gues, there are 1825 observations (365 days x 5 leagues), and for Clubs there are 74460 observa-

tions (365 days x 204 clubs). Clearly, in the latter scenario most of these values will be zero, as

the likelihood is that nobody from a particular club will be born on a particular day, but this is

not a problem for PRM. The complication arises as the model of interest is not just a series of

dummies (xi), and associated bi for each of the i categories:

y ¼ eðaþaþb1x1þSbixiÞ; ð7Þ

where xi = 1 for observations belonging to category i, otherwise xi = 0. Instead, we also need a

set of interaction terms for each of these dummy variables with x1 (= tB). Thus:

y ¼ eðaþb1x1þSbixiþSbiðx1xiÞÞ ¼ eð½aþbixi�þ½b1þSbixi�x1Þ; ð8Þ

The interaction term for tB × Tier indicates how to modify b1 to derive Poisson shape

parameters for each Tier (League, Club): the second square-bracketed term shows us we add

Sβixi. But because of the mutually exclusive nature of the xi, we only end up adding a single βi
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for variable xi which codes for category i: all the other βj6¼i get multiplied by corresponding

zeros in xj6¼i.

The results from adding interaction terms were all non-significant: Tiers (F< 1), Leagues

(F< 1), and Clubs (F (203, 22817) = 1.104, p = 0.15). Full data are provided in S1 Appendix.

This is a truly surprising set of results. Once again, there is a main effect for tB indicating that

there are more early than later-born players, but the intensity of RAE does not differ systemati-

cally between the talented players in Tier 2 and the highly talented players in Tier 1. Nor does

RAE differ between the Big 5 leagues–the financially solvent French Ligue 1 and uber-rich

English Premier League, where lucrative broadcasting deals alone guarantee many clubs return

a profit, leading one acerbic media commentator to suggest doing away with ticket sales alto-

gether and playing behind closed doors [24]!

Discussion and conclusions

The Poisson regression model (PRM), despite being the standard statistical technique for ana-

lysing low frequency count data [11–13], remains under-used in Relative Age Effect (RAE)

research [16–18]. This tutorial exposition hopes to demonstrate the application and benefits of

this approach for this burgeoning research area which is attracting interest from not only

those in sports science, but also economics, psychology, education and management. The stan-

dard practice is to use non-parametric Chi-squared tests [25] to show that observed quarterly

or monthly player frequencies differ from the distribution of a reference population, typically

peers that practice the same sport, who are born within the same cohort year. However, should

such information be unavailable, for instance, when comparing across large numbers of coun-

tries, a uniform distribution may be substituted instead [26].

Yet RAE anticipates a decline in player frequency across the cohort year. Hence, the slope

coefficient associated with the Frequency on Birth-time regression forms the basis of two use-

ful and highly interpretable measures, quantifying the magnitude of the Relative Age Effect in

a standardized way, namely the Indices of Discrimination (ID) and Wastage (Iw). The ID shows

the relative odds of a player born at the very start (tB = 0) of the competition year, compared to

a player born on at the very end (tB = 1) being selected. This should not be confused with the

ratio of players born in Month 1 versus Month 12 or Quarter 1 versus Quarter 4 or whatever

the granularity of the data maybe. Our results suggest that players born right at the start of the

cohort year are nearly two-and-a-half times more likely (ID = 2.407) to reach the upper eche-

lons of European professional football than those born right at the end. This accords quite

closely with Bottomley and Doyle’s [16] 2.67 based on a subset of players in the “top 1000”

from 11 leading nations, and Rada et al.’s [18] 2.13 and 2.22 for comparable analyses of first-

tier and second-tier players.

In addition, the Indices of Wastage (Iw1 and Iw2) capture the loss of talent because few play-

ers are fortunate to be born at the very start of the competition year, and thereby avail them-

selves of the greater opportunities it provides. Iw1 measures just how much more untapped

talent is out there, with no provisos. Here, Iw1 = 0.503 which suggests that for every two players

identified, there was one equally skilful player that remains undiscovered. In contrast, IW2

measures how much more talent we could get out of the football system, assuming we put no

more in beyond eliminating RAE. Here Iw2 = 0.122 which suggests just slightly more than one

player per team, or two players per squad (3975 players / 204 teams) who were relatively older

would have been replaced by one player who was relatively cohort-younger in an RAE “free

world”. Consider only the English Premier League which comprises 20 teams. If one player

per team was wrongly selected because they passed through a selection process that rewarded

greater maturity in youth, in England there are at least 20 players (about one entire squad)
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who either play soccer at lower levels or gave up playing soccer altogether but would have had

the potential to play in the Premier League and to be better than some current players. Not

everybody has the persistence of Leicester City’s Jamie Vardy who was still playing non-league

football aged 20. (Again, we thank our review team for these astute observations).

It is only by adopting standardised reporting procedures can we hope to facilitate compari-

son, build a coherent body of knowledge, and start addressing policy related issues. Unlike

analyses based on chi-squared, Poisson regression can easily model more than one explanatory

variable in the same analysis. For instance, we disentangled the effects of birthtime in the com-

petition year (tB) from background variations in the population birth and death rates across

the year. We also investigated mixed cohort definitions, as when school year and sports year

are different. While our findings remained unchanged, it nevertheless offers a more nuanced

understanding of the RAE phenomena, and addresses concerns often raised as limitations in

prior studies. With PMR it is also legitimate to perform more disaggregated analyses with

smaller samples of data. Thus, we might anticipate witnessing an increase in more micro-anal-

yses, such as club-by-club, academy-by-academy, or even year-group-by-year-group within

academy analyses tracking the evolution of the RAE phenomena.

Finally, compared to OLS regression, the modelling of interaction terms is somewhat more

complex. But such analyses exploring the conditional nature or contingencies linked to RAE

perhaps offers the greatest value added and insights to policy-makers. Presently, there is no

evidence to support the existence of paragon clubs, leagues or countries [16,18] from which

other organisations may learn. Indeed, there have been few studies exploring the evolution of

the RAE phenomena over time [17]. Clearly there is much work to do. Moving beyond another

descriptive study documenting the existence of RAE, be it in a different country, competition,

cohort, country or time-frame, is paramount. We believe that Poisson regression modelling

provides scholars with the necessary tools to do this, and hope you agree!
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