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Abstract

Identifying protein coding regions in DNA sequences by computational methods is an active

research topic. Welan gum produced by Sphingomonas sp. WG has great application

potential in oil recovery and concrete construction industry. Predicting the coding regions in

the Sphingomonas sp. WG genome and addressing the mechanism underlying the explana-

tion for the synthesis of Welan gum metabolism is an important issue at present. In this

study, we apply a self adaptive spectral rotation (SASR, for short) method, which is based

on the investigation of the Triplet Periodicity property, to predict the coding regions of the

whole-genome data of Sphingomonas sp. WG without any previous training process, and

1115 suspected gene fragments are obtained. Suspected gene fragments are subjected to

a similarity search against the non-redundant protein sequences (nr) database of NCBI with

blastx, and 762 suspected gene fragments have been labeled as genes in the nr database.

Introduction

Genetic information is a set of general instructions that directs the translation from DNA to

proteins. The vast majority of life on the earth stores genetic information in DNA sequences

(some viruses store genetic information in RNA sequences). The information carried by DNA

is expressed as proteins to construct cell components and perform genetic instructions for life

[1]. Gene is a nucleotide sequence that can encode a substance with a certain biological func-

tion, which is the main carrier of the genetic inheritance of biological traits carrying protein

information. The coding sequences of eukaryotic genes are not continuously arranged on the

DNA molecule but are separated by non-coding introns, and the synthesis of protein is guided

by the coding exons. Therefore, after a given genomic sequence, it is one of the central issues

in bioinformatics to correctly identify the range of protein coding region in the DNA sequence

and the precise position in the genomic sequence [2, 3].

Training the parameters of the biological signal model with a training set of known gene

structures is an effective method for gene prediction. In general, computational methods for
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gene prediction can be generally categorized into three classes: (1)similarity-based prediction

methods, (2) ab into techniques based on statistical models, and (3) machine learning-based

methods [4–8]. For (1) and (2), various algorithms, including the Dynamic Programming

(DP) or the Hidden Markov Model (HMM), are utilized to process the information gathered

from these methods and subsequently predict the potential coding region of the genomic

sequence [9]. Merging biological knowledge with computational techniques, machine learning

aims to build a predictive model by learning the difference between coded and non-coded

regions and use the learned model to predict the coding regions in the DNA sequence. The

Hidden Markov Model (HMM) is the foundation of many current gene recognition algo-

rithms [10–14]. The Hidden Markov Model considers the DNA sequence as a random process

and automatically finds its internal hidden rules based on the difference in the frequency of

nucleotide selection between the encoded and non-encoded DNA sequences. There are many

gene identification softwares developed based on the HMM model, for example, Augustus,

GeneMark.hmm [15], GENSCAN [16–20], GENIE [21], TWINSCAN [22], DOUBLESCAN

[23] and Glimmer [24–28]. Among them, Augustus which is one of the most accurate gene

prediction programs, adopted the Viterbi algorithm to define a probability distribution in the

DNA sequence and gene structure [29–31]. After training the model with the appropriate

training set, they predict the coding area with extremely high accuracy. However, training

models that depend on known sequences greatly limit the adaptability of these methods, espe-

cially for new sequences from unknown organisms with no or small training sets. Therefore,

in the absence of available additional information (training set), it is essential to develop some

new methods to predict the locations of coding regions without any training process.

Deoxyribonucleotide (DNA) is a chain structure arranged in a certain order by four bases

of A, G, T, and C. Protein is composed of polypeptide chains that are formed by 20 different

amino acids. Encoding an amino acid in a protein, the genetic code requires reading 3 bases of

the gene. Because of this coding relationship, the triplet of bases is called a codon. It is noted

that, in most species, synonymous codons are used with different frequencies (known as

codon bias) and the order with which codons are used for one protein is far from random,

which raises a universal property in coding regions [32–34], called the “Triplet Periodicity

(TP)”. The TP property of genes is considered to be a simple and universal distinction between

coding and non-encoding regions, and studying the application of it may be an effective

method to predict gene coding regions and solve other genetic problems [35–39].

In 1982, Fickett first proposed the TP property [40]. After his work, various theoretical

tools were applied by researchers to investigate the TP property, such as the hidden Markov

chains [41–44], the Fourier transform [17, 18], Neural Networks [45, 46], the information the-

ory [32, 35], the time series [47–50]. Based on the Fourier transform, a method called spectral

content measurement (SCM) was developed to study the TP property by Tiwari et al [18].

Since researchers have expanded and improved Tiwari’s original method in many ways, a

series of methods have been developed from the original SCM [51–54]. By optimizing four

coefficients in the sequence mapping and the short time Fourier transform, Anastassiou [55]

proposed the optimized spectral content measure (OSCM) to compute TP property of genes.

Based on the information derived from the magnitude of the discrete Fourier transform,

Kotlar and Lavner [54] proposed a spectral rotation measurement (SRM) method that uses the

information of the phase component such as the phase angles’ expected values and variances,

to maximize the differentiation between protein coding and non-coding regions. Marhon and

Sajid [56] proposed a spectrum-based technique that uses a dynamic representation scheme to

map DNA sequences into a numerical form. And a post-processing method was proposed to

detect the period-3 peaks instead of an empirical threshold value.
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However, most high-performance methods based on TP require known genetic data from

the target organism or homologous sequence data for training. Relying on training, such as the

HMM-based methods, restricts the application of methods on unknown organisms, which can

not offer known genetic data and homologous biological data. In addition, most of SCM

related methods employ the moving slide window to investigate the TP properties for local sec-

tions of the gene sequence, and then find potential coding regions in the sequence [40, 42].

The sensitivity of these methods is highly dependent on the size of the sliding window. So,

how to choose the appropriate size of the moving slide window is also one of the key issues in

determining accuracy.

The research object of our work is the whole-genome sequences data of Sphingomonas sp.

WG with independent intellectual property rights. Due to the lack of known genetic data and

homologous biological data, the prediction methods depending on the training process cannot

be employed for the whole-genome sequences data of Sphingomonas sp. WG. Chen et al. pro-

posed a method called Adaptive Spectral Rotation (SASR) [57], which is based on the TP prop-

erties of the coding region to visualize the DNA sequence without any training process and

extra information, realizing the prediction of the gene coding region. When there is insuffi-

cient training set or no extra information available, the SASR method is helpful for identifying

protein coding regions on unacquainted DNA sequences. Therefore, in our work, we used the

SASR method to visualize the coding region of Sphingomonas sp. WG’s whole-genome data

without any training process, and the code of the SASR method is obtained from Chen’s

paper.

Suspected gene fragments are obtained by manually distinguishing the position of the cod-

ing region. With comparing suspected gene fragments with the known gene in the NCBI data-

base, we can make judgments about which the suspected gene fragments have been labeled as

genes in the NCBI database. Besides, there is a high probability that real genes newly discov-

ered in the whole-genome sequences data of Sphingomonas sp. WG will be found in the unla-

beled suspected gene fragments.

Materials and methods

The Sphingomonas sp. WG’s whole genome data

Welan gum is an extracellular polysaccharide produced by aerobic fermentation of Sphingo-

monas sp [58]. With interesting rheological properties, Welan gum has been widely used as a

stabilizing, suspending, emulsifying, and thickening agent in several areas such as coating

materials, food, medicine, concrete additives, and enhanced oil recovery [59, 60]. Welan gum

has become the hot spot of science research. In the petroleum fields, Welan gum is a new type

of biological oil-displacing agent, which is of great value in tertiary oil recovery in the oil fields

[61, 62]. With the deepening of the research on biochemical properties of Welan gum, its

industrial value has been continuously developed. In the field of oil and natural gas extraction,

Welan gum has shown great market value as an excellent tertiary oil-displacement agent.

In order to increase the yield of Welan gum and create more commercial profits, it is neces-

sary to analyze the whole-genome sequences data of Sphingomonas sp. WG, a producer of

Welan gum, and explore the biological mechanism of Welan gum synthetic route. The Bioen-

gineering and Technology Center, Chinese University of Petroleum (East China), screened a

strain of Sphingomonas sp. WG, a high-yielding strain of Welan gum, from the sea mud of

Jiaozhou Bay, Qingdao. The whole-genome sequences data of Sphingomonas sp. WG was

obtained by whole genome sequencing. The genomic data contains 31 scaffold sequences,

4,042,223 base pairs (bps), and the GC content of 65.88%.

Prediction of coding regions with the SASR method
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SASR

The TP profile of the base sequence is represented by a triple periodic matrix (TPM), which

presented by Frenkel and Korotkov [32, 33]. The TPM is a 3 × 4-sized matrix, each row i
(i = 1, 2, 3, 4) stands for a nucleotide base # (# = A, T, C or G), each column stands for a posi-

tion j (j = 1, 2, 3) in the period and the entry mij is the count by which the base i appears at the

position j. In the SASR, for a certain base sequence X = {xt | t = 1, 2, 3, . . ., N}, the posterior

subsequence of base sequence X at position t0 is expressed as PX(t0) = {xt | t0 < t� N}. The TP

sequence, converted from the base sequence X, is represented by a sequence of TP vectors

S(X) = {st | t = 1, 2, 3, . . ., N}, and TP verctor st ¼ Mxt
ðPXðtÞÞ. That is, for each position t, the

TP vector for each base of the posterior subsequence PX(t) of the current position is calculated,

ie, MA(PX(t)), MT(PX(t)), MC(PX(t)) and MG(PX(t)), and st is selected from them, according to

the base at the position t. The TPM of the posterior subsequence at each position t is calculated

by recursively computing M #(PX(t)) from M #(PX(t + 1)), with the initial value and the recur-

rence formula:

M#ðPXðNÞÞ ¼ ð0; 0; 0Þ ð1Þ

M#ðPXðtÞÞ ¼
M#ðPXðt þ 1ÞÞ >> 1 ; Xtþ1 6¼ #

M#ðPXðt þ 1ÞÞ >> 1þ f1; 0; 0g ; Xtþ1 ¼ #

�

ð2Þ

Remarkably, PX(t + 1) is the sequence of the posterior subsequence of PX(t). The operation

“V>> n” means that the right circular shift operation is performed n times on the triplet row

vector V.

fZ1;Z2;Z3g ) fZ3;Z1;Z2g

The TP walk is a movement trajectory in the complex plane generated from the TP

sequence. The moving trajectory is represented by the sequence W = {Wt | t = 0, 1, 2, . . ., N},

with the initial value W0 = {0, 0, 0}, and for each step t>0:

Wt ¼
Wt� 1 þ

LðstÞ
jLðstÞj

; jstj 6¼ 0

Wt� 1 ; jstj ¼ 0

(

ð3Þ

The function L(xt) maps the vector st = {Z1, Z2, Z3} into a complex number by:

LðstÞ ¼ Z1 � e� i
2p
3 þ Z2 � e� i

4p
3 þ Z3

ð4Þ

The process of converting a DNA sequence into a TP vector and then generating a TP walk

is called a SASR process. The recurrence equation means that, for each step t, the unit length is

moved toward the corresponding complex number of the TP vector, in the complex plane.

Therefore, TP walk can provide a good visualization of the TP properties in the complex plane.

For the coding region (the region with the TP property), TP walk shows clearly and certain

movement trends, and for the non-coding area, TP walk moves randomly around the stable

points with insignificant movement trends. Stated thus, the difference in the visualization of

the TP properties can be exploited as a basis for distinguishing the coding area from the non-

coding area.

Prediction of coding regions with the SASR method
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Data experiments

Verify the reliability and validity of the SASR method

In this work, we first apply SASR to the known gene coding regions and non-coding regions

to verify the reliability and validity of the SASR method. Fig 1 shows the TP walk result of the

coding region (No. J8VWM6), which encodes the proteins of Sphingomonas sp. LH128 partial

Fig 1. The TP walk of the coding region downloaded from the UniProt database. (a) Plot the walk trace in the complex plane. (b) Plot the real part

(red) and imaginary part (green).

https://doi.org/10.1371/journal.pone.0214442.g001
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outer membrane autotransporter barrel. The gene data is downloaded from the UniProt data-

base and the length of it is 5244 bps. Fig 2 shows the TP walk result of an artificial DNA

sequence generated randomly, whose length is 5000 bps. In Fig 1(a), TP walk moves 5244

steps in the complex plane, moving rightward from zero (0, 0) to around (1600, -100), but in

Fig 2(a), after TP Walk moves 5000 steps in the complex plane, the walking result is randomly

distributed near the zero with no specific direction. In Fig 1(b), the real part value keeps

increasing with the increase of the t value, and the imaginary part remains relatively constant.

However, in Fig 2(b), the real part and the imaginary part change more freely, and there is no

fixed change pattern.

To further verify the validity of SASR, the Sphingomonas gene in the above is inserted into

a randomly generated artificial DNA sequence, with the insertion position starting from 2000

to 7243, to generate a new base sequence that includes both a coding region and non-coding

regions. Then using the SASR method, we get the visualization of the TP properties of the base

sequence (Fig 3) in the complex plane.

In Fig 3(a), in the vicinity of the zero point and the end of the walk (the position of the arti-

ficial DNA sequence), the TP walk moves randomly with indefinite direction of movement,

however, in the middle part (the position of inserted Sphingomonas gene), the TP walk gradu-

ally moves to the right. Meanwhile, in Fig 3(b), it is obvious that roughly from 2000 to 7000,

with the growth of the t value, the real part is gradually increasing, while the artificial DNA

sequence part has a smaller change in the real part value. Similar observations have been

obtained after applying the SASR method to other known coding regions and non-coding

regions. The reliability and validity of the SASR method have been verified through the above

experiments. It can be seen that there is a large difference between the coding and non-coding

regions in the graphic output of TP Walk. Therefore, after applying the SASR method to the

base sequence being measured, by observing the change of the TP Walk’s real part and refer-

ring to the trend of TP walking in the complex plane, the coding and non-coding areas can be

distinguished without any training process.

Predicting the protein-coding regions of the Sphingomonas sp. WG’s whole

genome data

The SASR method is applied to the 31 scaffolds of the Sphingomonas sp. WG’s whole-genome

data respectively to predict probable coding regions. Here, taking the processing of No. 21

scaffold as an example to illustrate the prediction processing of the possible coding regions.

First, the SASR method is applied to No. 21 scaffold (the sequence length is 43986), and the

visualization of the TP properties is obtained (Fig 4).

According to the difference in the graphic output between the coding and non-coding

regions, the fragment of the base sequence that corresponds to the characteristics of the coding

region is identified, which is called a suspected gene fragment, and the specific position of the

fragment is identified. Since one base sequence may contain multiple segments of coding

regions, a plurality of base segments that conform to the characteristics of the coding region

can be found in Fig 4, such as 2000-7000, 16000-20000 and so on. Because the number of bases

is large, the trend of the real part of the partial TP walk may not be obvious. So, it is possible to

cut out the invisible part of the fragment and use the SASR method again to obtain the position

of the base fragment that corresponds to the coding region. Based on the position of the sus-

pected gene fragment in No. 21 scaffold, the base sequence is divided using Matlab software to

obtain multiple suspected gene fragments. Finally, the obtained suspected gene fragments are

compared with the known gene in the NCBI nr database with blastx.

Prediction of coding regions with the SASR method
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Fig 2. The TP walk of the randomly generated base sequence. (a) Plot the walk trace in the complex plane. (b) Plot

the real part (red) and imaginary part (green).

https://doi.org/10.1371/journal.pone.0214442.g002
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Results

The graphic output of the base sequence fragment, whose position starting from 21000 to

24250 (Simply expressed as 21-21000-24250, and other suspected gene fragments are expressed

Fig 3. The TP walk of the new base sequence that includes both a coding region and non-coding regions. (a) Plot the walk trace in the complex

plane. (b) Plot the real part (red) and imaginary part (green).

https://doi.org/10.1371/journal.pone.0214442.g003
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Fig 4. The TP walk of scaffold 21. (a) Plot the walk trace in the complex plane. (b) Plot the real part (red) and imaginary part (green).

https://doi.org/10.1371/journal.pone.0214442.g004
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in the same way) in No. 21 scaffold, meets the characteristics of the coding region (Fig 5). The

suspected gene fragment is compared with the known gene in the NCBI nr database using

Blast software. The basic information of this sequence alignment please refer to the Table 1,

such as the type of molecule, the length of the sequence, the name of the database to be com-

pared, and the program used, etc. And the results of sequence alignment are shown in Fig 6

and Table 2.

Fig 5. The TP walk of the suspected gene fragment 21-21000-24250. (a) Plot the walk trace in the complex plane. (b) Plot the real part (red) and

imaginary part (green).

https://doi.org/10.1371/journal.pone.0214442.g005
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In Fig 6, the color keys of different colors represent the magnitude of similarity. The more

red regions, the higher the similarity of the fragments that are matched in the database. Simul-

taneously, the matched gene sequences are ranked by the matching scores from large to small,

so the suspected gene fragment has the highest degree of similarity and the best matching

Table 1. The basic information of the comparison result of the suspected gene fragment 21-21000-24250.

Item Content

RID SETZNMME01R

Query ID lcl—Query_217685

Description None

Database

Name

nr

Description All non-redundant GenBank CDS translations+ PDB+ SwissProt+ PIR+ PRF excluding

environmental samples from WGS projects

Program BLASTX 2.8.0+

Molecule type nucleic acid

Query Length 3251

https://doi.org/10.1371/journal.pone.0214442.t001

Fig 6. Graphic summary of the sequence alignment result of the suspected gene fragment 21-21000-24250. (a) Similarity color diagram, in which

the similarity is arranged from high to low: red, purple, green, blue, black. (b) The suspected gene fragment has the highest degree of similarity and the

best matching degree to the first gene sequence.

https://doi.org/10.1371/journal.pone.0214442.g006

Table 2. The first 8 detailed alignment results of the suspected gene fragment 21-21000-24250 and different sequences in the database. Five metrics are used to evalu-

ate the match results of the query sequence: Max score, Total score, Query coverage, E value, and Ident.

Description Max score Total score Query cover E value Ident

MULTISPECIES: hybrid sensor histidine kinase/response regulator [Sphingomonas] 1927 1927 96% 0.0 100%

PAS domain S-box protein [Sphingomonas pituitosa] 1570 1570 96% 0.0 81%

PAS domain S-box protein [Sphingomonas spermidinifaciens] 1523 1523 96% 0.0 79%

PAS domain S-box-containing protein [Sphingomonas jatrophae] 1269 1269 96% 0.0 66%

PAS domain-containing sensor histidine kinase [Sphingomonas jatrophae] 1052 1259 83% 0.0 66%

PAS domain S-box protein [Phenylobacterium deserti] 812 1118 90% 0.0 69%

PAS domain S-box protein [Asticcacaulis sp. CF398] 744 1028 84% 0.0 51%

PAS domain S-box protein [Methylobacterium platani] 699 941 94% 0.0 55%

https://doi.org/10.1371/journal.pone.0214442.t002
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degree to the first gene sequence. In Table 2, two of the most noteworthy values are the ident

value and the E value. The ident value indicates the degree of similarity between the aligned

sequence and the target sequence, that is, the number of bases on the match as a percentage of

the total sequence length. The E value indicates the possibility of random matching. The

greater the E value, the greater the likelihood of random matching. When the E value is close

to zero or zero, it can be considered as an exact match. Table 2 shows, the sequence alignment

results of the suspected gene fragment 21-21000-24250 and the alignment of hybrid sensor his-

tidine kinase/response regulator [Sphingomonas] is the best one, whose ident value is 100%

and the E value is 0, which can be considered as an exact match.

To further verify the reliability of the sequence alignment results, the PSI-BLAST program

was used to search for similar sequences of the suspected gene fragments 21-21000-24250 by

multiple iterations in the database (the threshold is 0.001). There are several highly similar pro-

tein sequences in the summary table (hits reported in the 1^st iteration with E value is 0.0 and

sequence identity > 30%; see Table 3 for details). The newly added sequences that were below

the threshold in the previous search are indicated as “new” and “old” indicates that the

sequence has been searched before this iteration. Table 3 contains the sequence alignment

information of the first 5 sequences in the search results of the previous eight iterations. It can

be seen that from the third iteration, although the order of the sequences in the search results

is not exactly the same, the sequences with high similarity are still in front. After several itera-

tions, the searched new sequence is gradually reduced, and when no new sequences are

detected below the defined threshold, the iterative process is terminated. Therefore, through

multiple iterative searches of PSI-BLAST, we can find that the suspected gene fragment 21-

21000-24250 has distant sequence similarity with the sequence, whose entry name is

A0A1A3QEF8_MYCSZ in UniProtKB, and can speculate on the possible structure and func-

tion of the protein compiled by the suspected gene fragment.

The above can prove that by processing the No. 21 scaffold base sequence using the SASR

method, the coding region of No. 21 scaffold is found, and the coding region has been labeled

as genes in the NCBI database.

After the SASR method is applied to predict the coding regions of the 31 scaffolds of the

Sphingomonas sp. WG’s whole genome data, 1115 suspected gene fragments are obtained in

total by slicing the base sequences. These results can, to a certain extent, prove that these sus-

pected gene segments have been labeled as genes or there are gene sequences with high similar-

ity to suspected gene fragments in NCBI database. So it can be considered that they are base

sequences with the function of protein coding, further illustrating the reliability and validity of

the SASR method.

There are 353 suspected gene fragments not matched against any known gene sequences

in the NCBI database. On the basis of that the reliability and validity of the SASR method

have been verified, we can consider that the 353 suspected gene fragments are newly discov-

ered suspected gene fragments with the function of protein coding that have not been

included in the NCBI database in high probability. But, whether or not the 353 suspected

gene fragments are truly gene sequences with the function of protein coding, and what their

corresponding biological functions are, it is necessary to do corresponding biological experi-

ments to further verify. However, due to differences in specialized fields, the lack of relevant

biological theory knowledge, biological experimental procedures, and professional equip-

ment, and the too high cost of manpower and material resources to complete biometric veri-

fication experiments, we can not independently carry out follow-up verification against the

suspected gene fragments, and it is necessary to cooperate with other specialized biological

laboratories.
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Discussion

Without any preceding training process, the SASR method based on the TP property of the

coding region provides a visualized presentation of unannotated protein-coding regions in

DNA sequences, which implements the prediction of the coding regions in the DNA sequence.

According to the visualization of the DNA sequence, the starting and ending positions of the

Table 3. The PSI-BLAST search results of the suspected gene sequence 21-21000-24250. It contains the sequence alignment information of the first 5 sequences in the

search results of the previous eight iterations. The similar sequences in search results sort descending based on score values.

iteration Alignment DB:ID Length Score(Bits) Identities Positives E()

1^st 1 new TR:W4ZEQ5_STRPU 7246 1156.0 32.0 32.0 0.0

2 new TR:W4YYP3_STRPU 11309 1053.0 28.0 33.0 0.0

3 new TR:B2HHB3_MYCMM 3634 962.0 33.0 35.0 0.0

4 new TR:A0A2N2JNV2_9DELT 11114 946.0 27.0 30.0 0.0

5 new TR:A0A0D2WHT8_CAPO3 7350 914.0 24.0 30.0 0.0

2^st 1 old TR:B2HHB3_MYCMM 3634 2873.0 30.0 32.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 2804.0 27.0 28.0 0.0

3 old TR:A0A1A3KX53_MYCGO 3739 2791.0 27.0 29.0 0.0

4 old TR:A0A1A3QEF8_MYCSZ 4843 2784.0 27.0 29.0 0.0

5 old TR:A0A1X1SZH0_9MYCO 3642 2759.0 27.0 29.0 0.0

3^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 3685.0 25.0 27.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 3684.0 26.0 27.0 0.0

3 old TR:A0A1A3KX53_MYCGO 3739 3653.0 26.0 27.0 0.0

4 old TR:A0A1A3NH48_MYCAS 5961 3648.0 25.0 27.0 0.0

5 old TR:A0A1X1WR67_MYCGO 5961 3636.0 25.0 26.0 0.0

4^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 4076.0 25.0 27.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 4052.0 24.0 26.0 0.0

3 old TR:A0A1A3NH48_MYCAS 5961 4028.0 23.0 25.0 0.0

4 old TR:A0A1X1WR67_MYCGO 5961 4018.0 24.0 26.0 0.0

5 old TR:A0A1A3KPQ5_MYCAS 4945 4010.0 24.0 26.0 0.0

5^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 4188.0 24.0 25.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 4184.0 24.0 25.0 0.0

3 old TR:A0A1A3NH48_MYCAS 5961 4183.0 23.0 25.0 0.0

4 old TR:A0A1X1WR67_MYCGO 5961 4163.0 24.0 26.0 0.0

5 old TR:A0A0Q2QJK1_MYCGO 6569 4142.0 24.0 26.0 0.0

6^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 4205.0 22.0 23.0 0.0

2 old TR:A0A1A3NH48_MYCAS 5961 4197.0 23.0 25.0 0.0

3 old TR:A0A1X1WR67_MYCGO 5961 4234.0 23.0 25.0 0.0

4 old TR:A0A1A3NH48_MYCAS 5961 4226.0 24.0 25.0 0.0

5 old TR:A0A0Q2QJK1_MYCGO 6569 4213.0 23.0 24.0 0.0

7^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 4270.0 22.0 23.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 4240.0 23.0 24.0 0.0

3 old TR:A0A1X1WR67_MYCGO 5961 4181.0 23.0 25.0 0.0

4 old TR:A0A1X1REZ8_9MYCO 4053 4177.0 23.0 25.0 0.0

5 old TR:A0A0Q2QJK1_MYCGO 6569 4164.0 23.0 24.0 0.0

8^st 1 old TR:A0A1A3QEF8_MYCSZ 4843 4293.0 22.0 24.0 0.0

2 old TR:A0A1X1REZ8_9MYCO 4053 4271.0 23.0 24.0 0.0

3 old TR:A0A1A3NH48_MYCAS 5961 4263.0 22.0 24.0 0.0

4 old TR:A0A1X1WR67_MYCGO 5961 4209.0 23.0 24.0 0.0

5 old TR:A0A0Q2QJK1_MYCGO 6569 4024.0 22.0 24.0 0.0

https://doi.org/10.1371/journal.pone.0214442.t003
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suspected gene fragment are manually determined with certain errors. The error range can be

controlled within 100 bases. Since the DNA base sequence has a large number of bases, mostly

in the order of 10,000 and 100,000 digits, the magnitude of the error can reach 10−3 or even

smaller, which can be accepted. The results of our work provide great reference value for

biological experimental workers to identify protein coding regions in the whole-genome

sequences data of Sphingomonas sp. WG, and it will greatly reduce their workload and

improve their efficiency. In the follow-up work, we hope to cooperate with biological experi-

mental workers to find real genes with protein-coding functions in unlabeled suspected gene

fragments through biological experiments and to make gene function annotations, and further

develop an efficient new algorithm that can extract the numerical results of the coding region

prediction from the SASR’s graphical output, instead of manual segmentation, thereby

improving the accuracy of the location of suspected gene segments.

Supporting information

S1 Dataset. DNA sequence dataset to replicate the analyses. The dataset includes: J8VWM6

(a segment of DNA is downloaded from the UniProt database and the length of it is 5244 bps);

5000test(an artificial DNA sequence generated randomly); 5000test-2000-7243 (the DNA

sequence J8VWM6 is inserted into a randomly generated artificial DNA sequence, with the

insertion position starting from 2000 to 7243); Scaffold21 (a segment of DNA of the Sphingo-

monas sp. WG’s whole-genome data); 21-21000-24250 (the base sequence fragment whose

position starting from 21000 to 24250 in No. 21 scaffold).
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