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Abstract

Background—Sleep spindles are involved in memory consolidation and other cognitive 

functions. Numerous automated methods for detection of spindles have been proposed; most of 

these rely on spectral analysis in some form. However, none of these approaches are ideal, and 

novel approaches to the problem could provide additional insights.
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New Method—Here, we apply delay differential analysis (DDA), a time-domain technique based 

on nonlinear dynamics to detect sleep spindles in human intracranial sleep data, including laminar 

electrode, stereoelectroencephalogram (sEEG), and electrocorticogram (ECoG) recordings.

Results—We show that this approach is computationally fast, generalizable, requires minimal 

preprocessing, and provides excellent agreement with human scoring.

Comparison with Existing Methods—We compared the method with established methods on 

a set of intracranial recordings and this method provided the highest agreement with human expert 

scoring when evaluated with F1 score while being the second-fastest to run. We also compared the 

results on the DREAMS surface EEG data, where the method produced a higher average F1 score 

than all other tested methods except the automated detections published with the DREAMS data. 

Further, in addition to being a fast and reliable method for spindle detection, DDA also provides a 

novel characterization of spindle activity based on nonlinear dynamical content of the data.

Conclusions—This additional, non-frequency-based perspective could prove particularly useful 

for certain atypical spindles, or identifying spindles of different types.

1. Introduction

1.1. Sleep Spindles

Sleep spindles are discrete events consisting of 11 to 16 Hz oscillations (the precise 

frequency range varies across subjects) recorded primarily in stage 2 non-REM sleep, and to 

a lesser extent in stage 3 non-REM sleep (Berry et al., 2012). Spindles display a 

characteristic waxing and waning pattern in amplitude, and generally last between 0.3 and 3 

seconds, recurring every 5 to 15 seconds (Bonjean et al., 2012;Leresche et al., 1991). Sleep 

spindles arise from the activity of thalamocortical circuitry. They have become a subject of 

study for their potential roles in memory consolidation and other cognitive functions 

(Sejnowski and Destexhe, 2000; Schabus et al., 2004; Fogel et al., 2007), as well as in 

psychiatric and neurological disorders (Ferrarelli et al., 2007; Petit et al., 2004; Ktonas et al., 

2007).

Numerous methods for automated spindle detection have been proposed, most of which rely 

on spectral analysis in some form (Warby et al., 2014; O’Reilly and Nielsen, 2015). Here, 

we propose an alternative approach using a nonlinear time-domain algorithm which is 

computationally fast and therefore capable of detecting spindles in real time.

1.2. Delay Differential Analysis

Delay differential analysis (DDA) is a time-domain classification framework based on 

embedding theory in nonlinear dynamics (Kremliovsky and Kadtke, 1997; Lainscsek et al., 

2013). An embedding reveals the nonlinear invariant properties of an unknown dynamical 

system (here the brain) from a single time series (here intracranial recordings). The 

embedding in DDA serves then as a sparse nonlinear functional basis onto which the data 

are mapped. Since the basis is built on the dynamical structure of the data, preprocessing 

(such as filtering) is not necessary. DDA yields a small number of features (around 4), far 

fewer than traditional spectral techniques, which provide a power at each frequency (often 

100-200 frequencies). In either case, the size of the feature set might vary depending on the 
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parameters used. Also, either set of features can be combined or collapsed to yield a measure 

that can be thresholded. However, working with a constrained feature space is often 

desirable. This approach greatly reduces the risk of overfitting, and therefore helps to ensure 

that a model that was selected using a single EEG channel from one subject can be applied 

to a wide range of data from different subjects, channels, and recording systems.

One can also view DDA models as sparse Volterra series (Volterra, 1887, 1959). A general 

nonlinear real-valued function can be expressed as a Taylor series expansion of functionals 

of increasing complexity around a fixed point. Rather than retain all low-order terms in the 

expansion, DDA imposes restricted complexity on the analysis by using a low-dimensional 

sparse delay differential equation (DDE) model. In a model of this type, linear and nonlinear 

components of the data are analyzed in an interconnected manner. This reduces the 

computational load, and further, by leaving some of the non-relevant dynamics unmodeled, 

it is possible to greatly reduce the effect of artifacts and other signals unrelated to the 

particular classification task of interest.

DDEs combine differential with delay embeddings as a functional embedding where (non-) 

linear polynomial functions of the delay terms are used (Lainscsek et al., 2017). The general 

form of the DDEs is

x.(t) = ∑
i = 1

I
ai ∏

n = 1

N
xτn

mn, i for τn, mn, i ∈ ℕ0 (1)

where I is the number of monomials in the model, N is the number of delays, mn,i is the 

order of the nth term in the ith monomial, and xτn represents x(t − τn). The time derivative of 

the data, x̄(t), is estimated with a weighted center derivative (Miletics and Molnárka, 2005):

x.(t) = 1
2M ∑

m = 1

M x(t + m) − x(t − m)
m (2)

where M is the number of points used.

For a given model, we compute a small set of features, which are the estimated coefficients 

ai in Eq. (1) as well as the least-squares error. The error is defined as:

ρ = 1
K ∑

k = 1

K
x.tk − ∑

i = 1

I
ai ∏

n = 1

N
xτn, tk

mn, i
2

(3)

where K is the number of time points, and xτn,tk represents x(tk − τn).
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2. Methods

2.1. Data

DDA was applied to laminar, stereoelectroencephalogram (sEEG), and electrocorticogram 

(ECoG) recordings from patients with intractable epilepsy.

The laminar recordings studied here come from five patients, designated L1 to L5. 

Recordings and data were obtained under Institutional Review Board (IRB) approval with 

informed consent from participants in accordance with the Declaration of Helsinki.

The additional recordings used for this study consisted of sEEG (depth electrode) recordings 

from five patients, designated S1 to S5, and ECoG recordings from two patients, designated 

E1 and E2, with long-standing pharmaco-resistant complex partial seizures. These 

recordings used a standard clinical recording system (XLTEK, Natus Medical Inc., San 

Carlos, CA) with sampling rates of 500, 512, or 1024 Hz. The reference for the sEEG 

electrodes was an electrode placed over the C2 spinous process on the posterior neck. For 

the ECoG (cortical surface electrode) recordings, the reference channel was a strip of 

electrodes located outside the dura mater and facing the skull at a region remote from other 

grid and strip electrodes. Placement of the intraparenchymal (sEEG) electrodes and subdural 

electrode arrays was chosen to confirm the hypothesized seizure focus and locate 

epileptogenic tissue in relation to essential cortical areas, thus directing surgical treatment.

The decision to implant, as well as the electrode targets and the duration of implantation 

were entirely clinically based with no input from this research study. All data were handled 

following protocols approved by the IRB of the Massachusetts General Hospital according 

to National Institutes of Health guidelines.

sEEG data used for this study consist of three channels from subject S1, four channels from 

subject S2, one channel each from subjects S3 and S5, and two channels from subject S4. 

ECoG data used here consist of three channels from subject E1 and one channel from 

subject E2. All data selected for use in this study were exclusively from stage two sleep, 

during time periods when no seizures were occurring.

2.2. Spindle Marking

Both the data used for developing the detector and those used for testing were drawn from 

human expert-scored intracranial recordings: 23-channel laminar electrodes in five subjects 

(L1-L5) and single-channel scored sEEG and ECoG recordings from subjects S1-S5 and E1-

E2. In the laminar data set, the scorer marked a single time point for each identified spindle 

based on evaluation of all 23 channels (here designated type I scoring). In the sEEG and 

ECoG data, the beginning and end of all spindles were marked on the basis a single channel 

(type II scoring). In type II scoring, therefore, the beginnings of spindles are defined as the 

point where spindle oscillations become visually apparent to the scorer, and the end is 

defined as the point where these oscillations are no longer apparent. Also, in type II scoring, 

the scorer marked all potential spindles, regardless of clarity. By including both types of 

human scoring as well as a range of spindle quality, we aim to develop a robust detector that 

can function even with non-ideal data.
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Since only a single time point was marked in type I scoring, a window of one second around 

each marker was taken as the spindle (that is, the beginning of each spindle was defined as 

0.5 seconds before the mark and the end was defined as 0.5 seconds after the mark), and a 

wider window of one to three seconds around each marker was excluded from classification 

as non-spindle data (only data at least 1.5 seconds before or after a mark were considered 

non-spindle data). Table 1 summarizes the properties of the marked spindles in both data 

sets: the recording type (laminar electrodes, sEEG, or ECoG), the scoring type (I or II), the 

sampling rate fs, the number of marked spindles, the mean spindle duration, and the mean 

peak frequency (between 11 and 17 Hz) for all spindles in each recording. Since type I 

scoring involved marking spindles on the basis of multiple channels, the peak frequencies 

are computed as the mean of the peak frequency across the five channels in which spindles 

are most visually apparent. The peak frequencies for all channels for each subject are plotted 

in Fig. 2.

2.3. Supervised Structure Selection

Structure selection of the model ultimately relied on data from one channel from one 

subject. Since DDA uses specific time delays, adjustments need to be made for sampling 

rate, and to facilitate this, the model (polynomial form and delays) was selected using data 

with the lowest sampling rate in the available data set (this allows for easy adjustment to 

higher sampling rates). Here, we used an sEEG recordings sampled at 500 Hz. Data from 

these subjects and channels were divided into half-second epochs and marked as spindle or 

non-spindle based on how each epoch had been marked by a human expert in the manner 

described above. Among these 500 Hz recordings, the one for which spindle and non-

spindle epochs proved most separable was used to select a model for use with new data.

In order to select the model from these training data, the set of models to be considered was 

first subjected to constraints based on model forms that had proven effective in previous 

applications of DDA, ensuring the sparsity of the model. The general form of the model 

shown in Eq. (1) was constrained to two delays (N ≤ 2), three terms (I = 3), and up to third-

order nonlinearities (∑n mn,i ≤ 3). This resulted in a total of 188 unique DDE model forms, 

upon which we performed an exhaustive search. The delays T1 and T2 were allowed to vary 

between approximately 1 and 80 ms at intervals of 1/fs.

We performed repeated random subsampling cross-validation (Kohavi et al., 1995) to 

evaluate the performance of each model. This method involves repeatedly dividing the data 

at random into training and testing sets. (Note that throughout we use the terms “training” 

and “testing” to refer to these repeated random splits of the data for cross-validation. New 

data, not used in the structure selection of a particular model, are referred to as “validation” 

data.) This prevents overfitting of the model and ensures generalizability. Here, the repeated 

random splits were carried out for the model selection data, assigning 70% of spindle and 

non-spindle epochs to the training set, and the remaining 30% to the testing set. Using the 

model coefficients ak,i and error ρk obtained from each epoch k of the training data, we used 

the human expert-scored labels lk (i.e. 0 for non-spindle and 1 for spindle) to obtain a vector 

of weights W for the features by finding a least-squares solution to:
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1 a1, 1 a1, 2 a1, 3 ρ1
1 a2, 1 a2, 2 a2, 3 ρ2
⋮ ⋮ ⋮ ⋮ ⋮
1 ak, 1 ak, 2 ak, 3 ρk

W =

l1
l2
⋮
lk

. (4)

The additional constant term avoids constraining the separating hyperplane to pass through 

the origin in feature space. The weights W can be applied to the features computed from the 

testing data which provides a one-dimensional distance D from an optimal hyperplane of 

separation between spindle and non-spindle feature sets. We can evaluate how well this 

distance corresponds to the human expert-scored labels of the testing data by computing the 

area under the receiver operating characteristic (ROC) curve or F1 score. The ROC is 

constructed by plotting the hit rate against the false alarm rate for various spindle detection 

thresholds for D. The area under the curve defined by the plotted points, A′, should be equal 

to 0.5 for random chance detection, and 1 for perfect separation of the groups (Hand and 

Till, 2001). A′ can be obtained by taking

A′ =
S0 − n0(n0 + 1)

2n0n1
(5)

where n0 and n1 represent the number of points in each of two classes labeled 0 and 1 (here, 

non-spindle and spindle epochs), and S0 is obtained by first ranking all points by their 

probability of being classified as 0, then summing the ranks of the true class 0 points. In 

practice, once a specific model form has been selected, it is often sufficient to use a single 

feature for classification.

While A′ is useful for structure selection of the DDA model, we evaluate final performance 

with another measure, the F1 score, which is more widely used for evaluating spindle 

detection (Dice, 1945; Sørensen, 1948). F1 scores are computed from the confusion matrix 

according to:

F1 = 2TP
FN + FP + 2TP (6)

where TP is the number of true positives, FN is the number of false negatives, and FP is the 

number of false positives. For this purpose, the human scoring is considered the “ground 

truth”. F1 scores are used in Sec. 3.1 for comparison between the outputs of several spindle 

detection methods. As additional measures, we also compute the false discovery rate 

FDR = FP
TP + FP  and false negative rate FNR = FN

FN + TP .
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The cross-validation was repeated 100 times and the maximal A′ was used to select the 

optimal model form and values of the delays. Using this procedure, for spindle detection in 

the laminar, sEEG, and ECoG data at all sampling rates, an effective DDE model is:

x. = a1xτ1
+ a2xτ2

+ a3xτ1
2 (7)

with T1 = 16 δt = 32 ms and T2 = 25 δt = 50 ms for 500 Hz data. For spindle detection, we 

find that the single feature a2 provides sufficient information for good detection 

performance. In general, the threshold for spindle detection is set to 1.2 standard deviations 

above the mean of a2. This threshold has been empirically determined to provide good 

agreement with human scoring and was fixed throughout.

Despite the fact that these data come from subjects with different types of electrodes and 

different sampling rates, it is possible to obtain spindle detection which agrees with human 

scoring across multiple recordings as well as multiple human scorers would tend to agree 

with each other (Basner et al., 2008). Because we use nonlinear models, all terms are 

connected and linear as well as nonlinear terms contain both linear and nonlinear 

information. For this reason the delays do not correspond to particular frequencies as one 

might expect (Lainscsek and Sejnowski, 2015). Adjustments need to be made for data with 

different sampling rates. In order to apply a selected DDA model to data with a higher 

sampling rate, we need to change the delays and derivatives in the following way: The 

delays can be just the approximate multiples (e.g. from 500 Hz to 1000 or 1024 Hz they 

would be doubled). For the derivatives we keep the number of total points constant but take 

for this example every second data point. For data with lower sampling rates (e.g. the 

DREAMS data in Sec. 3.1), results can only be obtained by upsampling the data to the 

minimum sampling frequency of 500 Hz before applying the model.

2.4. Application to Full-Time Data

Having selected a model form and delay pair according to the above procedures, we 

compute the corresponding a2 coefficient in sliding time windows across the full length of 

all recordings. We use windows of length around 650 ms, shifted by around 200 ms per step. 

Since the number of spindle and non-spindle epochs in the training data are not equal, the 

optimal threshold for spindle detection may vary slightly between recordings. Nevertheless, 

for the sake of testing a fully automated method, we maintained the aforementioned 1.2 

standard deviation above mean a2 threshold for all results shown here. The beginning of 

each detected spindle is therefore defined as the point at which the normalized a2 value 

increases this threshold, and the end is defined as the point at which it subsequently 

decreases below the threshold. (Note that threshold-setting does not affect A′, since this is a 

threshold-independent measure, but does determine the F1 scores, which are computed from 

the confusion matrix for a particular threshold.) As a final step, any threshold crossings less 

than 300 ms in length are excluded and marked as non-spindle. The remaining threshold-

crossings are the identified spindles. We evaluate detector performance by comparing these 

time points identified as spindle by the detector with those identified by the human expert.
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3. Results

Applying the detector to laminar, sEEG, and ECoG data, we obtain a mean area under the 

ROC curve, A′, of 0.82 and a mean F1 score of 0.50. For the laminar data, we take just one 

central channel from each electrode array for evaluating all methods. Since these data were 

scored based on all channels, but some superior and inferior channels lacked clearly visible 

spindles, one of the channels (channel 11) with apparent spindles was chosen for evaluating 

spindle detection performance. All available (individually scored) sEEG and ECoG channels 

were used. For comparison, DDA frequency-band detectors (discussed in Appendix A) for 

11-14 Hz and 11-17 Hz yield mean A′ values of 0.72 and 0.77 and mean F1 scores of 0.21 

and 0.18 respectively. Such a difference in performance indicates that in addition to the 

frequency characteristics of spindles, nonlinear information might also be relevant. Fig. 3 

shows the output the data-trained DDA spindle detector. Since the data-trained DDA 

detector shows higher agreement with human scoring than the frequency-based DDA 

detector, it is used exclusively for the remainder of the manuscript.

The A′ values, F1 scores, false discovery rates, and false negative rates for the DDA spindle 

detector on all subjects are listed in Table 2. Note that in Sec. 3.1, F1 scores are used to 

compare methods. Where cross-recording averages are reported, two recordings are 

excluded since all automated detectors perform poorly, and these were originally selected as 

recordings that were difficult to score.

3.1. Comparison with Established Methods

Warby et al. (2014) presented a comparison of several automated methods for spindle 

detection with scoring by human experts and non-experts. Here, we compare the DDA 

spindle detector to two of the automated methods considered there (Mölle et al., 2002; 

Martin et al., 2013) and a modified version (Andrillon et al., 2011) of a third (Ferrarelli et 

al., 2007), as well as an additional method designed for intracranial data (Hagler et al., 

2018). Warby et al. used two additional detectors (Bódizs et al., 2009; Wendt et al., 2012) 

which are excluded here due to their reliance on the comparison of specific channels from a 

standard EEG montage, making them unsuitable for use with intracranial recordings from 

disparate locations.

It is important to note that for all of these methods, spindle detection performance may be 

lower here than with some other data, since no preprocessing or artifact removal steps have 

been applied here prior to the core processing steps for spindle detection intrinsic to each 

method. Further, these data present a mix of recordings of different quality and spindle 

clarity, as evaluated by human expert scoring.

Mölle et al. used a 12-15 Hz bandpass finite impulse response (FIR) filter and subsequently 

computed a root mean square (RMS) signal with 50 ms time resolution and a 100 ms time 

window from the filtered data. Spindles were then detected using a thresholding procedure, 

with beginning and end threshold crossings between 0.4 and 1.3 s required for spindle 

detection. This threshold was set automatically by the algorithm for each subject as 

originally published, but was always greater than 5 μV (Mölle et al., 2002).
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The approach of Martin et al. was similar: data were first bandpass filtered from 11 to 15 Hz 

using an FIR filter applied both forward and reverse. The RMS of the signal was then 

computed using 0.25 s windows. The threshold for spindle detection was set at the 95th 

percentile and required two consecutive RMS time points (corresponding to 0.5 s) for a 

spindle (Martin et al., 2013).

We also use a slightly modified version of the detector of Andrillon et al., itself a modified 

version of the method of Ferrarelli et al. (2007). Putative spindles were identified by 

applying a zero-phase fourth-order Butterworth bandpass filter for 9 to 16 Hz. Instantaneous 

amplitude was computed using a Hilbert transform, and the threshold for detection was set at 

three standard deviations from the mean, with a threshold for the beginning and end of 

spindles set at one standard deviation. Only events with durations between 0.5 and 2 s were 

marked as spindles, and spindles separated by less than 1 s were merged.

Finally, we also apply a method developed for and previously applied to intracranial 

recordings of the type we consider here, which was developed by Hagler et al. This 

technique relies on an initial detection based on instantaneous power in the spindle band 

(11-17 Hz) using a smoothed wavelet convolution. Any initially identified spindles under 0.5 

s in duration are excluded. Further, the ratio of Fourier power in the spindle band relative to 

power in the 4 to 9 Hz range is used to remove artifacts and weak spindles. (Hagler et al., 

2016).

In order to compare these various techniques with differing methodologies, we convert the 

raw outputs of each technique to a binary index of spindle or non-spindle for each time 

point. These binary detection indices are then compared by computing the F1 score of each 

method against the human expert-marked spindles. The mean across subjects of the number 

of spindles detected (expressed as a percentage of the number of spindles marked by the 

human expert), spindle length, F1 score, and false positive and negative rates (relative to 

human expert scoring) for each of these methods are shown in Table 3. The F1 scores as well 

as CPU time for all methods and recordings are shown in Fig. 4. DDA provides the highest 

average F1 score and the second lowest average CPU time.

Notably, as shown in Fig. 2, one of the recordings (L1) had a higher mean peak spindle 

frequency than all others. That recording has a low F1 score (see Fig. 4) for all comparison 

methods. DDA, in contrast, detected those spindles relatively well since the goal was to 

detect dynamical patterns in the data.

To assess the advantage provided by using DDA features in addition to spectral features, Fig. 

5 and Table 4 show the mean F1 scores for various combinations of the different detection 

methods. Of note is the fact that combining the DDA measure of spindle activity with other 

measures generally provides a better measure than combining two or more spectral methods, 

since it provides different information. Note that the F1 scores for the DDA detector alone in 

Fig. 5 and Table 4 do not match exactly the scores in the earlier figures and tables. This is 

due to an additional step of averaging the DDA features across the overlapping windows at 

each time point. This provides a measure with time resolution equal to original data which 

can then be combined with other measures on a point-by-point basis.
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Finally, for comparison, DDA and the other detection methods were applied to the 

DREAMS dataset, collected and made available by Université de Mons, TCTS Laboratory 

(Stéphanie Devuyst, Thierry Dutoit) and Université Libre de Bruxelles, CHU de Charleroi 

Sleep Laboratory (Myriam Kerkhofs) (Devuyst et al., 2011). The DREAMS data consist of 

surface EEG with spindles marked by two human experts. Using these data allow the above 

detection methods to be compared on surface EEG data, as well as compared to automated 

spindle detections from a method implemented by the original authors and made available 

with the data. This technique is based on bandpass filtering and applying a recording-

specific threshold. While the DREAMS automated detections provide better agreement with 

the human scorers than the intracranial data-trained DDA detector or any of the other tested 

methods (Devuyst et al., 2011). We cannot compare directly with this method since only the 

data and automated detections are available, and not the code. We therefore cannot test the 

DREAMS method on our dataset. Further, as can been seen in Fig. 6, there is also a large 

discrepancy between the two human scorers, with one scorer also only having scored six of 

the eight subjects. Issues with the scoring of these data were previously noted by O’Reilly 

and Nielsen (2015). Further, it is noteworthy that DDA still provides reasonable spindle 

detection after structure selection based solely on intracranial data. Most significantly, 

however, we also show the combinations of two detectors (as shown in Fig. 5). For these 

data, combining our DDA measure with the measure produced by the method of Martin et 

al. provides the highest average agreement with the two human scorers among all tested 

methods and combinations of methods.

4. Discussion and Conclusions

DDA is a powerful novel tool for detecting sleep spindles in EEG and intracranial 

recordings. DDA requires minimal pre-processing of signals and can be rapidly applied to 

large datasets. When compared with several well-established and reliable frequency-based 

methods, DDA provides the highest level of agreement with human scoring (evaluated here 

with F1 score). Further, DDA is the second fastest of the tested methods, where the only 

faster method produces the lowest F1 scores. DDA therefore holds great promise for real-

time applications. We also tested all methods on the publicly available DREAMS data, 

consisting of surface EEG recordings scored by two expert scorers. Again, DDA provides 

the highest F1 score of the previously tested methods when taking the average across both 

scorers. The automated detections made available with the DREAMS data however, do 

provide better agreement with the human scorers. It should be noted that the DREAMS data 

is a small and heterogeneous data set, and therefore somewhat limited for evaluation 

purposes (O’Reilly and Nielsen, 2015).

An important caveat for the results from intracranial data presented here is that they are 

based on comparison with the spindle markings by a single human expert. Despite this, the 

fact that several automated methods produce similar detections indicates that the markings 

are reasonable. Further, similar results are achieved using the same approaches on an EEG 

data set scored by two experts. It is also important to note the classic bias that our 

implementation of other previously published detectors may not be as fully perfected as the 

novel method developed for this paper. Other implementations on other data and comparing 

to other human scoring might not produce the same relative performance numbers. However, 
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this is only a concern when looking at each method separately. As shown in Figs. 5 and 6, 

combining our nonlinear time-domain method with any of the tested spectral-based 

methods, the performance is increased dramatically, beyond the relatively differences 

between individual methods. This indicates that spectral and nonlinear methods account for 

different information in the original signal: DDA looks for dynamical differences while 

spectral methods look for content in a specific spindle frequency band.

Combining two spectral measures does not provide the same advantage as combining linear 

and nonlinear features. Additionally, we have demonstrated that DDA models built on the 

data show superior performance to those built to detect specific frequencies, which indicates 

that using the nonlinear signature of the spindle provides access to additional information. 

Accessing this type of information could prove especially useful in future studies focused on 

spindles of different types, or occurring in patients with neuropsychiatric disorders. Finally, 

it is worth emphasizing again the robustness of DDA measures in general to noise and 

artifacts due to the sparsity of the feature space. This is a significant advantage for many 

data sets.

A version of the DDA spindle detector for use on Linux systems using MATLAB has been 

made available at http://snl.salk.edu/∼asampson/SPINDLES/index.html.
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Appendix A Frequency-Based Spindle Detection

All spindle detection techniques DDA is compared to are based on decomposing the signal 

into oscillatory components, and therefore have very different assumptions: while DDA 

assumes nonlinearity of the (unknown) underlying dynamical system, spectral methods 

assume linear superposition of stationary sinusoids. To interpret the differences in detector 

performance we need to answer the question of what is gained by using nonlinear instead of 

linear analysis.

In Lainscsek and Sejnowski (2015) a connection between DDA and spectral analysis was 

made: a one term linear DDE can be used for frequency detection while a one term nonlinear 

DDE can detect frequency/phase couplings in the time domain. A DDE with linear and 

nonlinear terms will have vanishing nonlinear coefficients for purely harmonic signals. For 

data that contain nonlinear couplings between frequencies or other nonlinear signal 

components, linear as well as nonlinear terms contain both linear and nonlinear information. 

Superposition does not work due to nonlinearities in the model. Therefore no connection 

between frequencies and delays can be made for real-world signals that are generally 

nonlinear.

Applying the same three-term, nonlinear DDE used for the spindle data to simulated data 

(noise-diluted sinusoids) can serve as a test of what can be gained by adding nonlinear 

information, and as a bridge between this technique and traditional wavelet or other spectral 
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methods. The effectiveness of the frequency detector at detecting spindles is also informative 

as to how much of the relevant dynamical information is related to the dominant frequencies, 

which is of interest since many spindle detection techniques rely on spectral analysis (Warby 

et al., 2014).

The DDA frequency detector relies on the same structure selection framework as the data-

trained spindle detector, but the DDE model form is fixed to match the model selected using 

the real data, and only the values of the delays are selected based on the simulated data. For 

the purposes of comparison with the data-trained detector, we select for frequency bands in 

the simulated data that correspond to sleep spindles in the EEG sigma band, defined 

alternately as 11-14 Hz or 11-17 Hz. By comparing the delays which are most successful at 

detecting these frequencies with those that are selected for the task of sleep spindle 

detection, we can gain insight into the information added by nonlinear analysis.

The simulated data is generated according to:

Si = Ai cos (ωit + φi) + ϵ (8)

with ωi = 2πfi for 9991 equally-spaced frequencies fi between 0.1 and 100 Hz, equal 

amplitudes Ai = 1, random phases 0 < φi ≥ 2π, and added white noise ϵ with a signal-to-

noise ratio of 5 dB. Starting from the full set of frequencies, we divide into nearly-equal 

groups for training and testing, with training data consisting of frequencies fi from 0.1 to to 

100 Hz, and the testing data consisting of frequencies fi from 0.11 to 99.99 Hz, both sets 

with 0.02 Hz frequency intervals. This ensures that we validate on slightly different 

frequencies from the training data, still in the desired range. For our simulated training data, 

we select data with frequencies fi in the sigma band. As was the case for the data-driven 

detector, we train separately for each sampling rate, generating simulated data to match each 

of the sampling rates in the laminar, sEEG, and ECoG data. We then choose delays for each 

sampling rate fs

Selecting a model to provide sensitivity to specific frequency bands requires an additional 

step, in that we first select “high-pass delays” which are sensitive to frequencies above the 

lower bound we wish to set (here, 11 Hz), and then additional “low-pass delays” which are 

sensitive to frequencies below the upper bound (here, 14 or 17 Hz).

The delays chosen for each sampling rate for each definition of the sigma band (11-14 Hz or 

11-17 Hz) are shown in Table 5. Note that in some cases, the same delays can be used in 

both the “high-pass DDE” and “low-pass DDE”, since different weights can be applied to 

the features to select for different frequency ranges.

As with the data-driven detector, we apply a vector of weights to the features for both the 

lower and upper bounds, in this case obtaining two values of D, which we call D1 and D2.
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Table 5:

Selected delays (τ1,τ2) for specified bands, units of δt = 1/fs

delays [δt]

fs 11-14 Hz 11-17 Hz

> 11 Hz < 14 Hz > 11 Hz < 17 Hz

2000 (8,105) (8,105) (8,69) (7,39)

1024 (1,44) (19,4) (4,37) (4,20)

512 (23,43) (8,2) (17,19) (10,2)

500 (39,18) (10,2) (2,17) (2,9)

We combine them by summing their absolute values and applying the sign of the lesser of d1 

and d2:

D =
min(D1, D2)

∣ min(D1, D2) ∣ ( ∣ D1 ∣ + ∣ D2 ∣ ) . (9)

We will therefore obtain positive values only in the region where both are positive, which 

should correspond to the “DDA pass band”.

Fig. 7 shows the frequency response of the detector on simulated data. Given its strong 

selectivity for frequencies in the desired range, it was applied to the sleep spindle data as a 

means of detecting frequency content in the spindle band which uses the same methodology 

as the data-based DDA spindle detector. This allows for direct comparison between the 

frequency-based and data-based DDA approaches.
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Delay Differential Analysis (DDA) is a powerful non-linear tool for EEG data analysis

DDA features can be used to detect sleep spindles quickly and reliably

DDA provides a novel and unique time-domain measure of spindle activity

DDA is the best and one of the fastest of the tested sleep spindle detectors
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Figure 1: 
Delay Differential Analysis (DDA). For an unknown dynamical system (such as the brain) 

from which we can record a single variable over time (such as ECoG data), embedding 

theory states that we can recover the nonlinear invariant properties of the original system. 

DDA combines delay and differential embeddings in a functional form which allows time-

domain classification of the data. For a given polynomial model form, we estimate the 

coefficients and least-squares error, which form a low-dimensional feature space. This figure 

is adapted from Lainscsek and Sejnowski (2015).
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Figure 2: 
Spindle frequencies. For each of the five laminar, five sEEG, and two ECoG subjects, the 

peak frequency (between 11 and 17 Hz) was computed for all human-marked spindles and 

the mean peak frequency across all spindles is plotted as one point for each channel. For 

laminar subjects, five of the channels are plotted–spindles were marked based on evaluation 

of all channels. For the sEEG and ECoG subjects, spindles were marked on an individual-

channel basis, and all scored channels are plotted. Color indicates the type of recording. 

Note that laminar recordings were collected from cortex identified as probably 

epileptogenic.
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Figure 3: 
Spindle detection. The lowest row in the plot shows the data with the spindles in red, as 

marked by a human expert. In the middle row, a DDA spindle detection output (trained on 

one channel from a different subject) is shown. We also show the spectrograms (in the top 

row) for reference. The gray-shaded regions indicate the width of the time windows used for 

computing both the DDA features and the spectrogram (650 ms). Since we plot the time 

points on the x-axis for the start points of the sliding windows, all points within a shaded 

region use windows that include some amount of spindle data.
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Figure 4: 
Detection methods comparison. In the left panel, F1 score is plotted for a set of automated 

spindle detection methods and DDA for the various Laminar, sEEG, and ECoG recordings. 

The means (points) and standard deviations (bars) across all recordings for each detector are 

plotted at the far right-these exclude two recordings (denoted by *) of poor quality for which 

all methods yield low performance. These recordings are also omitted from the right panel. 

At right, the F1 score for all recordings is plotted against CPU time for each detection 

method. Each detector was run on twenty intracranial recordings, the mean across all 

recordings (except the two noted exclusions) is plotted with a larger marker, standard 

deviations across all recordings are plotted as bars in both CPU time and F1 score. Note that 

not all recordings are of equal length, so some variation in the CPU time is to be expected.
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Figure 5: 
Combining features from the various methods. Spindle detection measures from the various 

tested methods were combined by taking a mean at each time point, and the agreement of 

these averaged measures with human scoring was evaluated via F1 score. Two recordings 

with poor detector performance for all methods were omitted here. Colors correspond to the 

different methods, when methods are combined, concentric circles corresponding to the 

combined measures are plotted at one point. For all methods and combinations of methods, 

the mean across all recordings is shown. Error bars represent the standard deviation across 

recordings. Mean F1 scores for these combinations of detectors are also shown in Table 4. It 

is noteworthy that there is a significant boost in detection performance only when combining 

DDA with any one of the spectral methods. No other combination of methods provides such 

a boost.
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Figure 6: 
Spindle detection on DREAMS data. F1 score is plotted for a set of automated spindle 

detection methods and DDA for the eight surface EEG excerpts included in the DREAMS 

data set. For six of the eight excerpts, two human experts scored the data. For these six 

recordings, F1 scores based on the first expert’s markings are plotted as diamonds at left, and 

the scores based on the second expert’s markings are plotted as open circles at right. The 

means (diamonds and open circles) and standard deviations (bars) across all recordings for 

each detector’s agreement with both experts are plotted at the far right with the same 

markers, and the means of each method’s agreement with both scorers are plotted as larger 

filled circles. Combinations of the other measures with DDA, as shown in Fig. 5 are shown 

with the colors for each of the methods combined. In addition to the six methods shown 

previously, we also show here the F1 scores of the automated spindle detections included 

with the DREAMS data with both human experts in red.
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Figure 7: 
Frequency band detection. Applying the DDE model with two different delay pairs, one 

sensitive to frequencies above 11 Hz and one sensitive to frequencies below 17 Hz, we can 

obtain an output which is positive only in the desired band. In the top panel, the distance 

from the hyperplane values computed from both DDEs (d1 and d2) are plotted for test 

frequencies ranging from 0.1 to 100 Hz. The frequency of the test data is color-coded 

according to the color bar at left, from 0.1 (red) to 100 Hz (blue). Points falling into the 

upper right quadrant (shaded yellow) have positive values for both d1 and d2, and we select 

delays such that only frequencies in the desired range (11-17 Hz) fall into this area. In the 

lower plot, d1 and d2 are combined according to Eq. (9) to obtain a one-dimensional index 

that is positive only for frequencies in the desired range. This procedure was also used to 

obtain delays and corresponding weights for frequency ranges 11-14 Hz and 12-15 Hz.
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Table 1:

Human-marked spindle properties for the fifteen recordings.

Subject Channel** Type Scoring
fs

[Hz]
Number

Mean
duration

[s]

Mean
peak

freq. [Hz]

L1 1-23, left frontal Laminar I 2000 144 1* 15.0580

L2 1-23, right frontal Laminar I 2000 48 1* 11.8063

L3 1-23, right frontal Laminar I 2000 137 1* 12.8836

L4 1-23, right frontal Laminar I 2000 50 1* 12.4320

L5 1-23, right temporal Laminar I 2000 72 1* 13.2750

S1 1 (RCIN3) sEEG II 500 57 0.84 12.5395

S1 2 (LCIN4) sEEG II 500 135 0.91 12.8115

S1 3 (LSF6) sEEG II 500 47 0.72 12.6363

S2 1 (LCIN3) sEEG II 500 213 1.79 12.7073

S2 2 (LSF3) sEEG II 500 218 1.42 13.1963

S2 3 (RCIN5) sEEG II 500 146 1.25 12.9723

S2 4 (LFR1) sEEG II 500 227 1.57 12.3713

S3 1 (OF7) sEEG II 500 138 0.87 12.7769

S4 1 (RPF5) sEEG II 512 152 1.15 12.7569

S4 2 (ROF4) sEEG II 512 81 0.98 13.9615

S5 1 (RAF6) sEEG II 512 124 0.96 13.0326

E1 1 (GR28) ECoG II 512 82 1.05 12.4093

E1 2 (GR53) ECoG II 512 13 1.36 11.7415

E1 3 (GR38) ECoG II 512 92 1.18 13.2799

E2 1 (AGR52) ECoG II 1024 47 0.71 12.1440

*
The mean duration cannot be determined from Type I scoring because only a single time point was marked across all channels (1-23). One second 

of data is designated as spindle data for structure selection.

**
RCIN–right cingulate, LCIN–left cingulate, LSF–left subfrontal, LFR–left frontal, OF–orbitofrontal, RPF–right posterior frontal, ROF–right 

orbitofrontal, RAF–right anterior frontal, GR–grid (subject E1 grid channels 28, 38, and 53 were all located over posterior frontal cortex with 28 
the most inferior and 53 the most superior), AGR–anterior grid (subject E2 anterior grid channel 52 was located over middle posterior frontal 
cortex)
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Table 2:

DDA spindle detection performance on all recordings

Subject Channel A′ F1
False

discovery rate
False

negative rate

L1 11 0.6023 0.2685 0.5323 0.8117

L2 11 0.6934 0.2991 0.7107 0.6903

L3 11 0.7423 0.2892 0.4701 0.8011

L4 11 0.7784 0.4948 0.5590 0.4365

L5 11 0.7529 0.3679 0.6682 0.5872

Laminar mean 0.7139 0.3439 0.5881 0.6654

S1 1 (RCIN3) 0.8785 0.5404 0.5924 0.1983

S1 2 (LCIN4) 0.9066 0.7685 0.2340 0.2290

S1 3 (LSF6) 0.8716 0.4345 0.6953 0.2428

S2 1 (LCIN3) 0.9120 0.3464 0.0380 0.7887

S2 2 (LSF3) 0.9170 0.5410 0.0265 0.6254

S2 3 (RCIN5) 0.8514 0.5601 0.1723 0.5768

S2 4 (LFR1) 0.9262 0.3970 0.0386 0.7499

S3 1 (OF7) 0.9062 0.8211 0.1718 0.1858

*S4 1 (RPF5) 0.4886 0.0749 0.8372 0.9514

S4 2 (ROF4) 0.8421 0.7201 0.1541 0.3731

S5 1 (RAF6) 0.8186 0.6290 0.3222 0.4133

sEEG mean 0.8830 0.5758 0.2445 0.4383

E1 1 (GR28) 0.8385 0.6081 0.3954 0.3884

*E1 2 (GR53) 0.6254 0.0462 0.9722 0.8636

E1 3 (GR38) 0.7726 0.5128 0.4000 0.5522

E2 1 (AGR52) 0.8112 0.3478 0.7692 0.2941

sEEG mean 0.8074 0.4896 0.5215 0.4116

*
These recordings are excluded from the means and further analysis due to poor quality.
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Table 3:

Comparison of detection methods for all data

Method

Mean
percentage of
human-scored

spindles

Mean
length [s]

Mean F1

False
discovery

rate

False
negative

rate

CPU*
time [s]

per
recording

Mölle 105.0457 0.4871 0.4871 0.2856 0.5994 30.5645

Martin 141.9600 0.4754 0.4754 0.3427 0.5441 2.5615

Andrillon 46.3362 0.4028 0.4028 0.2078 0.7022 0.3922

Hagler 116.2967 0.4591 0.4591 0.2963 0.6225 1.8177

DDA 89.8979 0.4970 0.4970 0.3861 0.4969 1.6389

*
All methods were implemented in MATLAB 9.4 (R2018a) and tested on the same 12-core (Intel Xeon X5690 @ 3.47 GHz) system. The DDA 

detector calls an executable written in C for a key step in the procedure.
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Table 4:

Combining detection measures from the various methods. The highest-performing combinations of detectors 

are marked in red.

# combined Mölle
et al.

Martin
et al.

Hagler
et al.

Andrillon
et al. DDA F1 score

1 0.4871 0.4754 0.4591 0.4028 0.5179

X X 0.4912

X X 0.4709

X X 0.4264

X X 0.5892

2 X X 0.4761

X X 0.4439

X X 0.5704

X X 0.3991

X X 0.5781

X X 0.5280

X X X 0.4813

X X X 0.4701

X X X 0.5119

X X X 0.4674

3 X X X 0.5098

X X X 0.4978

X X X 0.4571

X X X 0.5197

X X X 0.4943

X X X 0.4979

X X X X 0.4653

X X X X 0.5125

4 X X X X 0.5000

X X X X 0.4917

X X X X 0.4954

5 X X X X X 0.4927
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