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Abstract

From birth, mammals have to find food and maximize caloric intake to ensure growth and 

survival. Suckling must be initiated quickly after birth and then maintained and controlled until 

weaning. It is a complex process involving interactions between sensory and motor neuronal 

pathways. Meanwhile, the control of food intake and energy homeostasis is progressively 

established via the development of hypothalamic circuits. The development of these circuits is 

influenced by hormonal and nutritional signals and can be disturbed in a variety of developmental 

disorders leading to long-term metabolic, behavioral and cognitive dysfunctions. This review 

summarizes our current knowledge of the neuronal circuits involved in early postnatal feeding 

processes.

Introduction

During adulthood, feeding behavior is controlled by a complex and distributed neuronal 

network involving the hypothalamus, brainstem and limbic system [1••]. In addition, this 

feeding circuitry integrates stimuli from different neural networks [1••], allowing a central 

control to maintain energy homeostasis [2]. In a newborn, feeding involves active sensory 

and motor functions controlled by different brain structures to trigger and maintain suckling 

[3]. Then, the brains of neonates have to establish a circuitry to maintain energy homeostasis 

by monitoring energy expenditure, nutritional status and induce corresponding changes in 

metabolism, behavior and food intake [4••]. Despite the recent development of advanced 

tools in neuroscience, it is still very challenging to deconstruct the structure and function of 

neural circuits involved in early feeding behavior. For example, it is not trivial to 

experimentally establish a causal link between neuronal activity and motivation for suckling, 

suckling and satiety in a newborn.
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In this review, we will discuss our current knowledge of brain circuits involved in the onset 

of feeding and of the hormonal mechanisms underlying the development of hypothalamic 

circuitry controlling food intake and energy homeostasis.

Sensory and motor functions implicated in the onset of feeding

From birth, mammals have to find food to survive. Rodents are born blind, deaf and bald 

with limited muscle strength and coordination. Nevertheless, neonates have to find their 

mother’s nipples and suckle by themselves in the first hours after birth [5]. Suckling involves 

an awakened state, a tactile and olfactory functional system to locate the mother’s nipples 

[6], a rooting reflex, a rhythmic suckling reflex and swallowing [7]. Thus, several sensory 

inputs and motor outputs involving different brain structures and muscles are required to 

trigger and maintain a suckling [3]. Studies involving mouse genetic mutations and lesion 

experiments in rodents have indicated that sensory systems, motor systems and the 

hypothalamus are involved in the initiation of suckling (Table 1).

Sensory inputs and the onset of suckling

It has been shown that the perinatal sequence of experiences associated with labor and 

delivery is required to allow a successful transition from in utero to extra utero life and, in 

particular, for the first nipple attachment of a newborn pup [5]. Toda et al. showed that birth 

regulates the initiation of sensory maps, such as the barrel formation in the somatosensory 

cortex through serotonin signaling. He also showed that suckling behavior requires 

somatosensory inputs from the infraorbital nerve and proposed that birth per se actively 

regulates the functional maturation of this sensory system [8]. Interestingly in the poly-

dactyly/arhinencephaly (disruption of the Gli3 gene) mouse model, pups die on the first day 

of life (P1) due to a lack of suckling caused by defects in the olfactory system. Mutant pups 

lost their olfactory ability to locate the nipple caused by a failure in the olfactory nerve 

projections to the central nervous system [9].

Tactile stimulation

At birth, newborns receive various type of mechanical and tactile stimulations. This perinatal 

sequence includes in utero compressions linked to female contractions during labor [10]. 

Then at birth, the dam assists each pup with intensive licking of the entire body, intensive 

rotation of the pup’ body leading to vestibular stimulation and gentle tugging [5,10]. Finally, 

after all the pups are delivered, the dam turns her attention to the newborns, which she 

gathers into a clump in the nest and settles over them, heating the nest. Noticeably, during 

this period, their body surface temperature also changes significantly (cooling after birth and 

rewarming in the nest) [10]. Interestingly, Abel et al. [11••] developed a ‘simulated birth’ 

paradigm to reproduce some of these stimuli. They showed that prenatal compression 

simulating uterine contractions is necessary for newborn pups to attach to the nipples and 

allow the first suckling, when they are exposed to a postnatal temperature regime. Should 

this compression inducing mechanical and cutaneous effects on the offspring be considered 

as a tactile or nociceptive activity? To assess the effect of the normal maternal licking (i.e., 

cutaneous stimulation) just after birth, cesaeran delivered pups were stroked with a soft 
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brush. 100% of stroked pups survived whereas only 25% of pups that were not stroked 

survived, supporting a strong role of sensory stimulation. What are the consequences of 

those stimuli on brain activation?

The exploration of tactile processing in the newborn brains of rodents has been poorly 

investigated, and most of what we know about brain activation has been inferred from 

studies of human infants. The tactile-kinesthetic stimulation of preterm infants has fairly 

specific effects on the secretion of epinephrine/norepinephrine and maturation and/or 

activity of the sympathetic nervous system [12]. Using electroencephalogram recordings, 

Fabrizi et al. [13] mapped the maturation of tactile and nociceptive activity in the developing 

brain and suggested that the neural circuits necessary for discrimination between touch and 

nociception emerge following 35–37 weeks gestation in the human brain. At this 

developmental stage, touch and noxious evoke characteristic somatosensory potentials. 

fMRI studies confirmed that a mechanical skin stimulation (brush stimulation on the sole of 

the foot) activates distinct brain regions in the newborn, including the somatosensory cortex, 

occipital and frontal cortex, thalamus and the contralateral insula [14]. This is similar, but 

not the same, as the pattern of brush activation in adults where the somatosensory cortex, the 

contralateral mid-insula and posterior insula, the temporoparietal junction and the ipsilateral 

cerebellum are activated. These studies show that tactile and noxious stimulations activate 

distinct brain regions, notably the somatosensory cortex, in the human neonates at term and 

even before birth. These data show that a functional maturation stage of cortical circuits 

occurs around birth in human allowing discrimination between sensory and noxious 

stimulations.

Olfactory stimuli allow the newborn to locate and grasp the nipples

Mammalian females emit odor cues and signals (pheromones) located on their nipples and 

ventrum that direct their inexperienced newborns to the nipple and optimize their first 

suckling [9,15••]. When these odor/pheromones cues are removed by washing the nipples, 

suckling is eliminated but can be reinstated by brushing nipples with amniotic fluid or 

maternal saliva [16,17]. The effect produced by amniotic fluid raises the hypothesis that 

olfactory control of suckling could be determined by the experience of the perinatal pup. 

Further experiments showed that odors learned prenatally and reinforced both with birth 

stimuli and postnatally become conditioned stimuli for nipple attachment [5,18]. Neural and 

behavioral responses to the natural maternal odor and neonatal learned odors are similar, 

suggesting that both types of odors use similar neural networks to control pups’ behavior. 

These neural systems involve the olfactory bulb for neural plasticity and the 

hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with 

norepinephrine [19].This circuit is different from the mechanism of odor learning developed 

at adulthood. Importantly, odors can stimulate the sensory system using different pathways. 

For instance, the olfactory and trigeminal systems interact, and odorants stimulate the 

olfactory bulb, but the trigeminal nerve also controls the strength of masseters in suckling 

[20].
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Motor outputs

Effective suckling requires the coordination of muscles and hindbrain cranial nerve systems 

such as the trigeminal (V), the glossopharyngea (IX) and the vagus (X) nuclei and in 

particular the hypoglossal (XII) nerve that controls the tongue [21] and the facial (VII) nerve 

innervating the buccolabial musculature [22,23]. In newborn rats, resection of the XII nerve 

results in the death due to a failure to suckle milk [24]. How are these motor nuclei 

controlled at birth?

Central pattern generators (CPGs) are underlying the rythmic movements of suckling and 

swallowing. They are composed of networks of local interneurons that activate groups of 

motoneurons (see for review [25••]). CPGs control the motoneuron bursts in response to 

central nervous system (CNS) (sensorymotor cortex) and peripheral sensory inputs [26]. 

Importantly, separate CPGs control the V, VII and XII motor activity; those CPGs are 

coupled together with an unknown mechanism to coordinate suckling [27]. However, those 

CPGs are capable of generating a basic swallow pattern in the absence of peripheral or 

descending cortical inputs [28] and swallowing is already observable in the developing fetus 

to regulate the amniotic fluid volume and composition [29]. The transition from suckling to 

chewing occurs gradually over a period that varies between species (e.g., around P12 in rats) 

[7], and it is unclear if the suckling CPG evolves to control mastication or if the mastication 

CPG emerges separately.

Endocannabinoid, oxytocin and vasopressin stimulate the motoneurons and suckling 
activity in newborns

Pharmaocological (CB1 receptor antagonist) and genetic (CB1R-KO) approaches have 

shown that the enocanna-binoid-CB1 receptor system plays an important role in the 

initiation and maintenance of suckling behavior in the first day of life in rats and mice 

during their first encounter with the nipple and milk [30,31]. Several data suggest that CB1 

receptor blockade interferes with the modulation of glycinergic synaptic currents in 

hypoglossal motoneurons [32], and the hypoglosal nerve may fail to adequately activate 

tongue movement.

Oxytocin (OT) and vasopressin (AVP) are two similar amino acids (only 2 aa are different) 

neuropeptides produced by OT or AVP neurons located in the paraventricular (PVH) and 

supraoptic (SON) hypothalamic nuclei. In a mouse model of reduced OT release at birth 

(Magel2-KO mouse) or in wild-type mouse neonates that received administration of an OT-

antagonist before the first suckling, there is a marked alteration in the initiation of suckling 

that can be reversed after an OT administration in Magel2-KO pups [33••]. Noticeably, 

Wrobel and colleagues [34] showed that in 5-day-old rats, OT and AVP receptors may 

function as neuromodulators of the hypoglossal (XII) nucleus responsible for tongue 

movements. AVPRs might directly or indirectly activate the motoneurons and OTR might 

indirectly inhibit the motoneurons. Interestingly, in rabbit pups, genital stroking induces an 

activation of the OT neurons [35]. Altogether, it is tempting to speculate that tactile 

stimulation might activate the OT-neurons that in turn stimulate the hindbrain motoneurons 

to trigger suckling.
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Development of homeostatic circuits that regulate feeding

Energy homeostasis is achieved by the integration of peripheral metabolic signals by neural 

circuits. The organization and function of neural circuits regulating energy homeostasis has 

been a subject of intense investigation and led to definition of a core circuitry in the 

hypothalamus that interacts with other brain regions, such as the brain stem, that appear to 

mediate many of the effects of the metabolic hormones, such as leptin and ghrelin, on 

feeding and energy balance (Figure 1) [1••].

Classic neuroanatomical studies have defined the developmental periods during which 

patterns of hypothalamic connectivity are established. A systematic study utilizing axonal 

labeling showed that neural projections from the arcuate nucleus of the hypothalamus 

(ARH) are not formed at birth and remain structurally and functionally immature until three 

weeks of postnatal life [36]. Arcuate neurons first send axonal projections to the dorsome-

dial hypothalamic nucleus (DMH) at postnatal day 6 (P6), followed by inputs to the PVH 

between P8 and P10 and to the lateral hypothalamic area (LHA) at P12 [36]. The pattern of 

ARH axonal projections achieve a distribution resembling that seen in the adult at weaning. 

In contrast to the development of arcuate circuits, efferent projections from the DMH to the 

PVH and LHA are fully established by P6 [36]. Similarly, projections from the ventromedial 

hypothalamic nucleus (VMH) develop prior to those from the ARH. By P10, VMH fibers 

supply strong inputs to the LHA, whereas at this age, the LHA is almost devoid of fibers 

from the ARH [36]. In addition, neurohypophyseal projections from the PVH to the median 

eminence appear to be mostly developed at birth [37].

Metabolic hormones do not acutely regulate energy homeostasis during 

neonatal life

There are marked physiological differences in the regulation of energy homeostasis between 

adults and neonates. Indeed, the neonatal period is a critical stage of development, during 

which animals need to maximize caloric intake and maintain appropriate metabolic 

responses to ensure growth and survival. In light of this need for homeostatic regulation, the 

immaturity of hypothalamic circuits during neonatal life seems to contraindicate a role for 

the hypothalamus in relaying leptin’s action on feeding and energy balance in neonates. 

Consistent with this idea, in sharp contrast to the effects of leptin in adults, several groups 

reported that acute leptin administration does not significantly inhibit growth, food intake, or 

energy expenditure during the first 2–3 postnatal weeks [38–41]. More specifically, Mistry 

and colleagues showed that exogenous leptin does not alter oxygen consumption or food 

intake in normal lean or obese leptin deficient (ob/ob) mice until P17 [40]. Similarly, 

ghrelin, which normally triggers a potent orexigenic response in adult animals, does not 

significantly promote milk intake or body weight in the first 2–3 postnatal weeks in rats and 

mice [42,43••]. A possible explanation for this lack of response is that the neonatal brain is 

relatively insensitive to leptin and ghrelin and may present hormonal resistance. However, 

both leptin and ghrelin receptors are found in the nuclei known to regulate feeding, 

including in the ARH, and acute peripheral leptin or ghrelin treatment activates 

hypothalamic neurons during early postnatal life [44,45].
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Hormonal regulation in the development of hypothalamic circuits

Although leptin does not appear to inhibit food intake and body weight during neonatal life, 

rodents display a sharp surge in circulating leptin levels during the first 2 weeks of postnatal 

life [46•]. Ahima and colleagues hypothesized that in lieu of regulating feeding, leptin may 

function as a developmental factor for brain development [46•]. This hypothesis was further 

demonstrated experimentally by analyzing hypothalamic neural connectivity in ob/ob mouse 

neonates (Figure 1) [47••]. The density of projections from ARH neurons to other 

hypothalamic sites involved in the control of food intake were severely disrupted in postnatal 

ob/ob mice and remained diminished throughout life [47••]. Similar abnormalities in 

hypothalamic development were also found in leptin-receptor deficient Zucker rats [48]. 

However, not all components of feeding pathways seem to be altered in the absence of 

leptin. For example, neural circuits developing prior to the leptin surge, such as those from 

the DMH to the PVH [36], were similar in wild-type and ob/ob mice [47••]. As with many 

developmental factors, leptin exerts its neurotrophic effects during a restricted postnatal 

critical period: treatment of adult ob/ob mice with leptin did not restore ARH projections, 

but daily injections of leptin between P4 and P12 rescued them [47••]. The physiological 

relevance of postnatal leptin has been supported by several observations. Neonatal leptin 

treatment in ob/ob mice caused a long-term amelioration of body weight, food intake, and 

sympathetic stimuli [49]. In contrast, blunting the leptin surge in rats resulted in increased 

susceptibility to the development of diet- induced obesity during adulthood [50]. Not only 

the correct amplitude but also the correct timing of the postnatal leptin surge appears to be 

required for normal regulation of energy homeostasis in adult animals. For example, 

experimentally advancing the leptin surge caused various metabolic deficits, including 

higher predisposition to obesity during adult life [51].

In fact, a variety of metabolic hormones appear to be critical regulators of hypothalamic 

development (Figure 1). For example, intra-hypothalamic injection of insulin on postnatal 

day 8 is associated with morphological alterations of hypothalamic nuclei (including the 

ARH and VMH) and life-long metabolic disturbances [52,53]. Similarly, maternal 

hypoinsulinemia induced by strepto- zotocin injections is associated with a reduced density 

of arcuate projections in the offspring [43••]. In addition, genetic deletion of insulin 

receptors in POMC neurons improves ARH projections and glucose metabolism in mouse 

pups born to obese dams [54]. During neonatal life, ghrelin also appears to act as a 

developmental signal influencing ARH circuits. Mouse neonates injected with an anti-

ghrelin compound between P4 and P22 display increased densities of ARH-containing 

axonal projections and these structural alterations are accompanied with long-term 

metabolic defects, including elevated body weight and fat mass [45]. Intriguingly, the 

density of ARH axonal projections is also elevated in ghrelin-KO mouse pups, but it is 

rescued in adult animals, indicating that arcuate circuits continue to be plastic not just early 

in development but even during the postweaning period in response to genetically 

programmed events [45].
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Future perspectives

Postnatal feeding difficulties, such as dysphagia, are present in 80% of infants with 

neurodevelopmental disorders [55••]. They may reflect a disruption in the development of 

neural circuits critical for feeding. However, how these circuits develop and particularly the 

relationships of the sensory inputs and motor outputs to the cortex, the hypothalamus and the 

hindbrain, remain poorly understood. Here, we summarized the current knowledge resulting 

from scattered and descriptive data. A better understanding of this circuitry and its 

regulation is important because it is a vital process and it would also help to identify novel 

therapeutic interventions to improve the quality of life of affected children.
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Figure 1. 
Highly simplified flat map showing brain regions involved in the perinatal regulation 

feeding. The regulation of feeding during early postnatal life involves a complex, distributed, 

and interconnected neuronal network involving neurons in the forebrain and hindbrain. 

Neurons in the olfactory bulb (OB), locus coeruleus (LC), thalamus (Thal), somatosensory 

(SmCx) and anterior insulate (InsCx) cortex as well as in the trigeminal (V), facial (VII), 

and hypoglossal (XII) nuclei play a critical role in the initiation and maintenance of 

suckling. Circuits emanating from these neuronal structures begin to develop before birth 
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and continue to be remodeled after birth upon olfactory, mechanical, and nociceptive 

stimulations. Neurons located in the arcuate (ARH), ventromedial (VMH), dorsomedial 

(DMH), paraventricular (PVH) nuclei of the hypothalamus, in the lateral hypothalamic area 

(LHA) and in the dorsal vagal complex (DVC) are involved in the homeostatic regulation of 

feeding. These neuronal systems are largely immature at birth and develop during the first 

three weeks of postnatal life in rodents under the influence of hormonal and nutritional 

signals.
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