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A B S T R A C T

Mobile and wearable technologies and novel methods of data collection are innovating health-related research.
These technologies and methods allow for multi-system level capture of data across environmental, physiolo-
gical, behavioral, and psychological domains. In the Adolescent Brain Cognitive Development (ABCD) Study,
there is great potential for harnessing the acceptability, accessibility, and functionality of mobile and social
technologies for in-vivo data capture to precisely measure factors, and interactions between factors, that con-
tribute to childhood and adolescent neurodevelopment and psychosocial and health outcomes. Here we discuss
advances in mobile and wearable technologies and methods of analysis of geospatial, ecologic, social network
and behavioral data. Incorporating these technologies into the ABCD study will allow for interdisciplinary re-
search on the effects of place, social interactions, environment, and substance use on health and developmental
outcomes in children and adolescents.

1. Introduction

Mobile and wearable technologies, and new methods of data cap-
ture that leverage social media, are transforming the way we conduct
health-related research. They support the capture of within-person in-
tensive longitudinal high temporal resolution data on environmental,
physiologic, behavioral, and psychological factors important to health.
They allow deeper understanding of how individuals interact with one
another and influence each other’s wellbeing. Importantly, this can be
accomplished on a multi-scale and multi-system level, including in-
dividual, interpersonal, family, school, and community-based influ-
ences on health. The complexities of these may be missed via in-lab
assessments due to poor recall, diminished salience beyond the time of
occurrence, or inability to measure secondary to subjective unaware-
ness (e.g., sleep, air quality). New forms of data captured by mobile
devices may lead to new insights into brain development and child

health by assessing the multitude of real-time factors that contribute to
developmental outcomes.

Mobile phone use is ubiquitous among adolescents. Nearly 75% of
adolescents own or have regular access to smartphones, and over 90%
of these adolescents access the Internet via smartphones. Seventy-six
percent of adolescents use social media, with 71% of these adolescents
using more than one social network site (Bagot et al., 2015). Further,
minority adolescents are more likely to own smartphones and use apps
(Bagot et al., 2015), providing the opportunity to understand factors,
including family and culture, which contribute to development in po-
pulations that are underrepresented in research and health services.
While there are fewer data on commercial wearable device use among
children and adolescents, the extant literature suggests that pre-ado-
lescent children find wearing wrist-worn devices such as activity
trackers acceptable and are relatively compliant with use (Schaefer
et al., 2014). Combined, these technologies and social media represent
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an enormous opportunity to improve how we understand the lives of
children and adolescents.

This paper outlines mobile and social technologies and methods that
are currently being used with children and families enrolled in the
Adolescent Brain Cognitive Development (ABCD) study, and those that
will be implemented during participants’ early adolescence to augment
data collection from other sources such as neuropsychological assess-
ments, biospecimens, and structural and functional neuroimaging data.
Linking mobile data with multi-level data that measures contextual
place-based variables may provide synergy between traditionally more
static, or less temporally dynamic data, and dynamic mobile data.
Overall, the plans to capture data as described below will allow for: (a)
more precise identification and monitoring of social, emotional, psy-
chological, and behavioral trajectories, (b) in-vivo capture of con-
tributors to substance use and mental health issues and outcomes, and
(c) greater understanding of the impact of physical activity, sleep, and
environmental exposures on development. Some of the methods out-
lined here are more established than others, and some may have been
used infrequently (if at all) in child and adolescent populations. In
addition, the underlying technologies are changing rapidly, and pre-
ferences for types of social media–in particular among adolescents–are
difficult to predict. Thus, research in this area will require flexibility
and adaptability, as there are many challenges in research keeping pace
with the rate of change of mobile technologies (Patrick et al., 2016). If
successful, we will contribute to the larger body of literature regarding
use of these technologies to advance our understanding of contributors
of healthy development, and psychosocial, behavioral, and health
outcomes in childhood and adolescence.

1.1. Technology currently being used in ABCD

1.1.1. iPads
iPads are currently employed across sites in ABCD to capture clin-

ical, neuropsychological, and self-report data. Parents use the iPads
independently to provide historical information about their child,
themselves, and their families, while youth use the iPads with the aid of
research assistants (RAs). Baseline study sessions begin with RAs ad-
ministering questions to the youth from the iPads. Surveys of the re-
search assistants on youth and parent feedback, and observations of use
by youth and parents suggest that youth are relatively technology-savvy
and are able and eager to respond to questionnaires autonomously.
Preliminary analyses of feedback data from 3621 youth across sites
shows that 88.5% find iPads were easy to use and 82.4% find the iPad
games fun. Similarly, parents have provided verbal feedback that the
iPads are easy to use, iPad features and accessories such as the ability to
zoom in, increase font size, and use an attached external keyboard and/
or stylus to help input text are appreciated and increase usability.
Overall, entering data into iPads, as opposed to traditional paper and
pencil measures, allows for a streamlined data collection process and
portability of data collection. Further, direct-data entry minimizes the
likelihood of data entry errors, reduces the likelihood of missing data,
and expedites the process by which the data are available for public
release. These findings are consistent with previous literature that has
demonstrated that electronic data capture via tablet is as accurate as
traditional paper and pen questionnaires, and allows for immediate
review and analysis of data (Walther et al., 2011). Further, there is an
increased likelihood of participants reporting sensitive information,
with automatic triggers for clinicians when concerning sensitive in-
formation is reported (Basch and Goldfarb, 2009).

1.2. Technology currently being piloted in ABCD

1.2.1. Accelerometers
Insufficient or poor quality sleep is associated with alcohol, mar-

ijuana, tobacco, and other substance use in adolescents (Roane and
Taylor, 2008; Fakier and Wild, 2011). Adolescents with large weekend-

weekday differences in sleep duration are also at greater risk for heavy
drinking and frequent intoxication (Sivertsen et al., 2015), higher al-
cohol and marijuana risk taking (O'Brien and Mindell, 2005), and in-
creased marijuana and alcohol use (Pasch et al., 2010). Insomnia and
short sleep duration have also been shown to predict depression, and
suicidal ideation in adolescents with a>8-fold increase in odds of
depression for those with both insomnia and short sleep duration
(Roane and Taylor, 2008; Sivertsen et al., 2015; Roberts et al., 2009).
Depressive symptoms also predict insomnia in adolescents (Roberts and
Duong, 2013). There is a similar reciprocal relationship between sub-
stance use and depression (Leve et al., 2012). However, the reciprocal
interaction between sleep problems, substance use, and depression has
not been prospectively evaluated in children and adolescents. Further,
low levels of physical activity are independently associated with in-
creased risk of mortality, obesity, type 2 diabetes, cardiovascular dis-
ease, and some cancers, and there is evidence that the global burden of
non-communicable disease attributable to physical inactivity is similar
to that of smoking (Lee et al., 2012).

The diversity of biological mechanisms contributing to physical
activity and sleep, coupled with difficulties in precise measurement of
these complex habitual behaviors, contribute to current challenges in
assessing temporal trends and establishing dose-response relationships
with physical and mental health. As such, valid measures of physical
activity and sleep in-vivo are necessary to determine health outcomes.

Among the most valid and simple to use tools to measure physical
activity and sleep are accelerometers (Corder et al., 2007; de Zambotti
et al., 2015). These are most often worn on the waist or wrist and are
capable of continuously measuring triaxial acceleration at varying fre-
quencies. With the use of algorithms, accelerometers are able to mea-
sure the amount of time spent at various levels of activity intensity.
Heart rate monitors are typically worn on the chest or wrist and mea-
sure direct physiological response of the heart to physical activity via a
digitized electrocardiogram signal (chest) or an optical sensor that
measures changes in blood volume (wrist). Limitations of accel-
erometers and heart rate monitors are overcome by combined sensing;
heart rate monitors can accurately assess the high intensity physical
activity that is the result of upper body movements (e.g., weight lifting)
or cycling that accelerometers measure poorly, and accelerometers can
accurately assess the low intensity physical activity (e.g. walking) that
heart rate monitors measure poorly (Plasqui and Westerterp, 2007;
Warren et al., 2010).

Recent advances in microtechnology, data processing, wireless
communication, and battery capacity have resulted in the proliferation
of low-cost, non-invasive, wrist-worn devices, such as the Fitbit Charge
HR 2, Fitbit Surge, Microsoft Band, Apple Watch, etc. These devices
include both accelerometers and heart rate monitors, and they are
capable of continuously measuring and storing data at a 1 s sampling
rate for up to 5 days before needing to be recharged. Wrist-worn devices
that measure both acceleration and heart rate have recently been va-
lidated against direct observation and indirect calorimetry to provide
an objective measure of physical activity (Diaz et al., 2015), and against
polysomnography to provide an objective measure of wakefulness and
sleep time (de Zambotti et al., 2015; Toon et al., 2016; Mantua et al.,
2016; de Zambotti et al., 2016). Such devices infer wakefulness and
sleep from the presence or absence of limb movement and an elevated
heart rate, and they provide naturalistic measurements of sleep patterns
in the home environment at a lower cost than polysomnography.

Because limited data are available about how well consumer-grade
devices measure behavioral and physiological parameters in adoles-
cents, a study validating the Fitbit Charge HR for use in children was
conducted at University of California San Diego (UCSD) in anticipation
of incorporation into ABCD. The validity of physical activity, heart rate
and sleep from a consumer-level, multi-sensor, wrist-worn activity
tracker in healthy children was assessed. Sixty boys and girls aged 9–10
years were recruited. Participants simultaneously wore a Fitbit Charge
HR (contains a triaxial accelerometer, an optical heart rate monitor, an
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altimeter, and a vibration motor) and research-grade, wrist-worn
triaxial accelerometer (ActiGraph Link, ActiGraph Inc.), portable three-
lead electrocardiogram with built-in triaxial accelerometer
(BioNomadix, BIOPAC Systems Inc.) and indirect calorimeter (K4b2,
Cosmed Inc.) to measure steps, energy expenditure and intensity of
physical activity, and heart rate while completing a series of sedentary/
low intensity to high intensity activities. These activities included sit-
ting while playing a game on a tablet, riding a stationary bike, walking
and/or jogging on a treadmill, walking up and down stairs, walking
outside on level and hilly ground, and completing a speed and agility
course. Heart rate and the physical activity-related measurements from
the gold standard measures were compared to Fitbit measurements. In
addition, one night of sleep data was collected via polysomnography
and the Fitbit Charge HR and these data were also compared. Fitbit
measurements were comparable to those from research-grade, gold
standard devices in this population (Wing et al., 2017).

In addition to validity of these devices, it is important to understand
how feasible and acceptable it is for children and their parents to use
them in research studies. Thus, a pilot study was performed to evaluate
physical activity, sleep, and heart rate continuously over 21 days in 150
children 9–10 years of age using Fitbit Charge HR 2 at three sites
(UCSD, SRI International and Virginia Commonwealth University).
Participants wore the Fitbit continuously for three weeks, except when
bathing or participating in water activities, and completed pre- and
post-questionnaires querying self- and parent-perceived levels of phy-
sical activity, sleep, and eating behaviors and Fitbit likability, as well as
use and ease of use. When a Fitbit was assigned to a child, the pre-
questionnaire was completed on an iPad and the Fitbit app was
downloaded to either the parent or child’s cell phone. This allowed the
data collected by the Fitbit to automatically sync and upload whenever
the Fitbit was in close proximity to the associated phone. ABCD RAs
monitored data syncing closely and families were contacted if a child’s
Fitbit data had not been uploaded for four days, as after 6 days there is
loss of granularity of data. Data were passively and securely streamed
via wireless technology to the Fitbit website. It was then retrieved using
software developed by Fitabase Inc (https://www.fitabase.com) and
stored securely on their servers. After the designated three-week time
period was complete, an RA contacted the family by phone to admin-
ister the post-questionnaire and remind the family to return the device
by mail.

Across all three sites, only two Fitbit devices were lost (mail,
swimming) and four damaged (one bicycle accident, three unknown).
Preliminary data from approximately one-third of the projected sample
show few differences in pre-post self-report of activity, sleep, and Fitbit
ease of use. Data from the post-wear questionnaire demonstrate that
83% percent of children somewhat or strongly disagreed that the Fitbit
was complicated to use, 92% somewhat or strongly agreed that they felt
very confident using the Fitbit, and 92% enjoyed using the Fitbit a lot.
The data also suggest that the parents enjoyed having their child use the
Fitbit with 92% reporting that they would be willing to have their child
continue to wear the Fitbit for longer if asked. Side effects reported
have been minimal; the most common has been skin irritation on the
wrist where the device is worn. Overall, use of the Fitbit has been well
received. The plan is that the Fitbit will be available to be rolled out for
use across all ABCD sites by the Year 2 follow-up, which would begin in
September 2018. Incorporating wrist-worn devices such as Fitbit into
ABCD will allow us to examine patterns of physical activity and sleep in
free-living child populations and stability of these patterns over time.
Additionally, this data, coupled with neuropsychological and biobeha-
vioral assessments and imaging will enhance our understanding of the
relationships between physical activity and sleep, and health in chil-
dren and adolescents.

Finally, the mobile technology field changes rapidly, and research
has yet to keep pace with advances in the field. We have experienced
this in our attempt to integrate wearable devices into ABCD. By vali-
dation completion, and pilot study implementation, the Fitbit Charge

HR 2 was released; an updated version of the Fitbit Charge HR device
was validated for ABCD. The newer model does not differ in the manner
in which it measures physical activity, including heart rate, and sleep,
and it provides new features such as measurement of VO2 max.
Additionally, we anticipate that updated versions of all technologies
used in ABCD will be released during the lifespan of this longitudinal
study. As such, learning how to monitor and adapt to shifts in the field
is a component of the feasibility aspect of the pilot study. Other prac-
tical issues will be studied regarding use of wearable devices in children
and adolescents as there is limited literature to date on issues such as
rate of lost or damaged devices, completeness of data acquisition over
time, and compliance with device charging and syncing.

1.3. Technology under consideration for implementation into the ABCD
study at future follow-ups

The ABCD Mobile Technology Workgroup is currently reviewing
several technologies for acceptability, reliability, and feasibility to po-
tentially implement them into the ABCD study during future follow-up
visits (Year 3, starting September 2019 and beyond).

1.3.1. Smartphones
1.3.1.1. Ecological momentary assessment, short message service (SMS)
texting, and continuous passive data collection. Smartphones have been
successfully used for assessment and intervention for substance use,
mental health and other health behaviors in youth through ecological
momentary assessment (EMA), Short Message Service (SMS) text, and
continuous passive mobile sensing. (Ben-Zeev et al., 2015; Benarous
et al., 2016; Wen et al., 2017; Mason et al., 2015; Jones et al., 2014;
Belzer et al., 2014; Markowitz et al., 2014) EMA allows for study of
dynamic interactions between individuals and their environments, and
individuals’ experiences of their environments through participant self-
report during, or close in time to, an experience of interest. Youth 8–18
years of age in clinical (medical and psychiatric) and nonclinical
populations have been shown to have compliance rates of
approximately 78% regardless of duration of EMA period, study
design (time vs. event based prompts) and technology (mobile alone
vs. mobile+wearable device). Among clinical samples, compliance has
shown to increase with increased number of prompts (6+), whereas
nonclinical samples demonstrate better compliance with fewer prompts
(2–3) (Wen et al., 2017). Interactive text-based programs have been
designed alone, and with adjunctive internet-based programming,
video messaging, and traditional clinician-guided treatment (Mason
et al., 2015). Interventions for substance use in youth that use these
approaches have been found to provide valid and reliable measures of
risky behaviors. Further, there appears to be a positive relationship
between number of texts and effect size (Mason et al., 2015). This is
consistent with the literature that shows that adolescents age 13–17
send and receive a mean of 67 (standard deviation=30) text messages
per day (Bagot et al., 2015).

Text messaging and EMA require additional privacy protections for
users. Three safeguards are recommended to secure personal informa-
tion: administrative, physical, and technological. To support these
goals, studies should require participants to configure their phones to
use built-in password and/or biometrics protection, disable pop-up and
home screen previews of received messages, maintain physical control
of their phones at all times, and install and use a free, cross-platform
secure texting app. The secure texting app uses a cloud-based approach
that prevents text messages from being saved, copied, or forwarded by
the recipient and enables automatic message deletion from phones
upon expiration, allowing an additional layer of privacy protection.
Further code words can be used to represent sensitive health informa-
tion when addressing issues like substance use, risky behaviors, and/or
mental health conditions.

Advances in engineering, computer and data science, and commu-
nication technologies have led to rapid growth in mobile sensing
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capabilities as well (Bietz et al., 2016), and can be leveraged to pas-
sively collect health-relevant data. Data can be collected via sensors and
integrated devices on smartphones including accelerometers, gyro-
scopes, compass, light and proximity sensors, microphone, global po-
sitioning system (GPS), and touch-based interactions (Lane et al.,
2010). Data can also be extracted continuously from user interactions
with phones including text messaging, phone calls, mobile web access,
and apps (including apps used and duration of use). Wi-Fi and Blue-
tooth data can also be used to assist with location or communication
patterns. Passive sensing can be supported by apps that are specifically
designed for research such as Apple Research Kit (apple.com/re-
searchkit) and Android Research Stack (researchstack.org). While this is
a promising area of research, commercial capability has outpaced re-
search in this domain. There are few studies to date using these tech-
nologies, and only in adult populations (Place et al., 2017). As such,
validation of these models and platforms in large studies are needed.
However, results are promising in regards to feasibility, acceptability
and prediction of psychiatric symptoms via passively collected in-
dicators of behavioral change (Place et al., 2017).

EMA, SMS, and continuous passive data collection allows for in-
creased understanding of baseline psychosocial and behavioral status
and real-time capture of perturbations to this when selected events of
interest occur. In regards to EMA and text messaging, there remain is-
sues with privacy and self-report; however compliance, reliability, and
validity have all been demonstrated. For passive data collection, data
from sensors in controlled, lab settings can be used to develop activity
recognition algorithms (Bao, 2004; Wu et al., 2012) that can then be
embedded within activity recognition apps to track physiological and
behavioral states over time. Further, machine learning approaches
allow for in-vivo data to be annotated by free-living individuals to
provide “ground truth” of what is occurring (Scholkopf and Smola,
2001) decreasing the need for self-report and reducing concerns related
to adherence. Increasingly accurate and highly individualized models
are being created to support ongoing surveillance of health indicators of
interest and provide real-time prompts via the phone or connected
device to address such things as health behaviors “in the moment.” In
ABCD, we will be able to identify and passively track behavioral,
physiologic, and psychosocial trajectories, and determine changes in
patterns relevant to developmental outcomes in youth.

1.3.1.2. Residence histories & geolocation. There is increasing
acknowledgement of the effects of place (i.e. neighborhood) on
health, development and neurobiology (Glass and McAtee, 2006;
Kawachi and Berkman, 2003; Fitzpatrick and LaGory, 2000). The
most fundamental piece of information needed to put people in to
place is the home or residential address, which is already being collected
within the ABCD study. An address can be used to link data on
individuals, families, or groups to a wide variety of ecological or
place-based measures derived from social, policy, built and physical
environmental data including: neighborhood deprivation, crime rates,
alcohol outlet density, healthy food infrastructure, green spaces, clinics,
schools, traffic density, marijuana use policies, education-related
policy, air quality, temperature, precipitation, and elevation. By
collecting residential history data (over years on a macro level) on
the timing, sequence, and duration of residence, researchers can build
more complex measures of place-based exposures across development
and major life transitions (Wild, 2005).

We can also examine micro-level exposure over shorter time inter-
vals via GPS data collection. Activity space research, an index of routine
locations and all the accompanying psychological, social, and health-
related experiences of these places, are important for addressing the
spatial dimensions of children’s lives (Matthews and Yang, 2013) and
can be captured via GPS location data on smartphones. Youth, espe-
cially urban adolescents, spend their time in a variety of geographically
dispersed activity spaces that are not delineated by conventional geo-
graphic boundaries, such as census tracts, ZIP codes, political wards, or

even home neighborhood (Basta et al., 2010; Browning and Soller,
2014). Neighborhood characteristics are known to influence adoles-
cents’ perceptions of safety, risk, and exposure to violence and are as-
sociated with substance use and mental health outcomes (Graif and
Matthews, 2017; Mason and Korpela, 2009), underscoring the im-
portance of this construct for understanding urban youth. Research on
activity spaces has also suggested that the places a person frequents
outside the home, including schools, places of worship, grocery and
non-food shopping and leisure activities, may expose him or her to a
variety of psychological, social, and geographic factors that likely in-
fluence substance use, but that may not be observed within the home
(Wong and Shaw, 2011).

Due to the ubiquity of GPS enabled devices such as smartphones and
activity trackers, we anticipate incorporating into ABCD cross-sectional
and dynamic (via residential histories and GPS ‘movement’ data on
daily spatial behavior) measures of place, as well as social and en-
vironmental characteristics of neighborhoods and residential environ-
ments in which children and adolescents live. We will thus be able to
capture a complete perspective on contextual exposure, examining ex-
posure to multiple places across specified temporal (e.g. monthly, an-
nually) and spatial (e.g., ZIP code, census tract) domains, and the im-
pact on developmental outcomes over time.

1.3.1.3. Environmental measures. Emerging research also demonstrates
a relationship between environmental exposures and the human brain,
cognition, and mental health. The impact of environmental exposures
on neurodevelopmental outcomes appears especially important during
critical periods of development, including both in utero and across
childhood and adolescence, affecting intelligence (Edwards et al., 2010;
Perera et al., 2012), mood, anxiety and behavioral dysregulation
disorders (Perera et al., 2014; Liu et al., 2013; Margolis et al., 2016),
cognition (Chiu et al., 2013; Sunyer et al., 2015), and brain structure
measured by MRI (Peterson et al., 2015). In particular, childhood
exposure to heavy metals, including lead, has been associated with
negative cognitive outcomes (Liu and Lewis, 2014). Moreover, growing
data suggests that there is an increased risk for abnormal cognitive
development at lower blood lead concentrations than the CDC’s more
recent standard for high blood lead levels in children (< 10 μg/dL).
Recent data also shows that exposure to other air pollutants may result
in cognitive impairments (Clifford et al., 2016). The ambient
concentration of air pollutant in any given place depends on a
number of factors such as the emission source (e.g. busy road,
refineries), weather (i.e. temperature, wind speed/direction,
precipitation) and land patterns (e.g. mountains, forestation) (Bell
and Samet, 2016). Thus, beyond known regional differences in air
pollution across ABCD sites (e.g. Los Angeles, CA versus Portland, OR),
air quality also differs within a given city (Fruin et al., 2014), with
lower socioeconomic status and minority communities exposed to
higher levels of certain types of pollutants, such as particulate matter
(Pratt et al., 2015).

With spatio-temporal land-use regression models, exposure to en-
vironmental exposures, including air pollution and metals, can be es-
timated from retrospective and prospective residential addresses,
school locations, or both, while also taking into consideration addi-
tional patterns (Fruin et al., 2014; Urman et al., 2014). Further, recent
developments in affordable, portable sensors that incorporate wireless
sensor technology allow for high-resolution spatio-temporal data (Yi
et al., 2015). For example, CitiSense provides micro-level detail on
regional pollution via personal sensing in adults (Nikzad et al., 2010).
Practical problems with traditional stationary monitoring devices relate
to their large size and expense. Also, they are not individualized and
only provide information about a region with little insight about any
specific individual’s journey through different areas. Mobile and por-
table sensors can address this problem because they can be low cost,
and have been shown to be reliable and valid measures of air pollutants
such as carbon monoxide, nitrogen dioxide, ozone and sulfur dioxide,
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and produce information in real-time (Yi et al., 2015). However, to date
much of the research on mobile sensors for environmental exposures is
early stage and thus may not be deployed in the ABCD study until the
cohort matures in later years. Nonetheless, linking assessments of en-
vironmental exposures to other mobile and sensor data from smart-
phones allow for potential models of time allocation at any given lo-
cation as well as dynamic travel patterns to increase the accuracy of
toxic metal and air pollution exposure estimates (Liu et al., 2013;
Dewulf et al., 2016). This will allow for evaluation of the impact of
environmental exposures on developmental outcomes in adolescents, as
well as the degree to which these exposures alter child health trajec-
tories.

1.3.2. Biosensors
Video capture via smartphone allows for remote tracking of a

variety of objective markers of substance use (i.e., exhaled carbon
monoxide for cigarette smoking, alcohol breathalyzer for alcohol use,
and buccal swabs for smoked marijuana use) (Alessi and Petry, 2013;
Garrison et al., 2015; Alessi et al., 2017). There is current investigation
into wearable biosensors for detection of opioid and cocaine use via
measures of sympathetic nervous system (SNS) activity (Carreiro et al.,
2015a; Carreiro et al., 2015b), and smoking via chest expansion and
arm movements (Saleheen et al., 2015). Detection of alcohol metabo-
lites in perspiration, reflecting recent alcohol consumption, has also
been achieved in a wearable device (Selvam et al., 2016). A variety of
additional wearable or portable technologies are being developed to
more broadly assess markers of mood, stress, and anxiety states, as well
as a variety of behavioral markers (Ben-Zeev et al., 2015), highlighting
the opportunity to combine assessment of mental health and substance
use. The state of the science is moving towards discreet, non-invasive,
wearable devices that can measure and record concentrations of sub-
stances used and wirelessly transmit the data to a smartphone in real-
time allowing for monitoring of progression of substance use long-
itudinally. To date, published studies report data collection in adults.
However, researchers are increasingly using biosensors for measure-
ment of substance use in adolescents, including alcohol use in adoles-
cent females (Croff, 2017). Practical problems that researchers may
encounter in incorporating biosensors into adolescent studies include:
(a) expense of the devices, (b) reluctance to carry/wear these devices
(e.g. wrist sensors for alcohol, cocaine [via SNS activity], and (c)
burden of video capture (e.g. exhaled CO [nicotine], breathalyzer [al-
cohol], buccal swabs [cannabis]). Some of the these issues will even-
tually be mitigated as biosensors are incorporated into wearables that
adolescents either already wear or would wear as a status symbol (e.g.
Apple Watch; BACtrack) or discrete wearables that resemble something
non-drug related (e.g., tattoos). As children enrolled in ABCD enter
adolescence, we have the unique opportunity to capitalize on the in-
creasing availability of biosensors to capture longitudinal progression
through the substance use trajectory from initiation and experimenta-
tion through disordered use in an understudied population. Ultimately
these approaches have has the potential to improve the accuracy and
sensitivity of ongoing substance use detection, decrease participant and
researcher burden through remote detection (as opposed to in-office
toxicology screens) and potentially provide triggers for intervention in
real-time.

1.4. Social media

Adolescents use social networking sites to list and connect to
friends, socialize, express themselves, and share information and media.
Social networks and online activities associated with them both reflect
real life social networks and create new or unique social interactions
that would not exist without the online social networking medium.
Further, recent work suggests that important health behaviors and
outcomes tend to spread through social networks (Christakis and
Fowler, 2007; Shakya et al., 2012), and online social interactions affect

mental health and well-being (Moreno et al., 2011; Burke et al., 2010)
among youth 13–24 years of age (Best and Taylor, 2014). This work
yields useful clinical data regarding the impact of social media on social
and risky behaviors, communication, and mental health (e.g. depres-
sion, anxiety) (Best and Taylor, 2014; O’Keeffe and Clarke-Pearson,
2011). Because of the Children’s Online Privacy Protection Act
(COPPA), social media sites only allow participation by those aged 13
years and older, so younger children cannot be observed. For the ABCD
Study, youth will be age 13 by the 3–4 year follow-up visit. Concerns of
hacking or other threats to privacy need to be considered as well.
However, use of social media sites that involve public posting in an
open forum assumes loss of privacy as users typically agree to this in the
terms and conditions of use for each social media platform. These terms
also include clauses on whether and how data may be accessed and
used by third parties including researchers (Lee, 2017; Moreno et al.,
2013). This of course is not equal to informed consent in research,
specifically as it relates to right to withdraw (which may be equated to
deleting posts). In online social network studies, information about
peers within a consented individuals’ peer network is considered data
about the social context of the consented individual (Moreno et al.,
2013; Farina-Henry et al., 2015). There is precedent for this in tradi-
tional studies where researchers ask and record information (e.g., age,
gender) about a consented minor’s friends. Other than additional con-
cerns related to all research with minors (i.e., parental consent, risk of
harm and duty to report), analyzing these behaviors in adolescents and
obtaining IRB approval are done in the same manner as for adult stu-
dies.

Increasingly robust community structure algorithms have been de-
veloped to measure the degree of connectedness and density of social
networks (Mucha et al., 2010; Leicht and Newman, 2008) (and poten-
tially the connectedness and density of social support), measure and
model social dynamics and influence (Castellano et al., 2009; Pan et al.,
2016). Online social networking sites enable greater depth of study of
social behaviors in adolescents as online sites: (a) record and store
nearly all information (including detailed time and behavior frequency
information) that passes through the website, (b) possess complete in-
formation about the functionality of online social networks, and (c)
enable observation of nearly complete and integrated social networks
allowing for study of effect sizes out to several degrees of separation
with fewer concerns about missing social network edges.

Examination of centrality, density, and communities enables in-
vestigation of connectedness or relationships between individuals.
Centrality measures the interactions, or connections, of an individual in
the network to others within the network. There are a number of
methods to calculate centrality, and each has been shown to perform
well in identifying important individuals in social and epidemiological
networks (Freeman et al., 1991; Rothenberg et al., 1995). The first is
the total number of friendship ties a person has; the degree to which that
person is supported by others. Further refinement of this measure might
generate scores based only on friendship nominations received (in-de-
gree centrality) or sent (out-degree centrality). Closeness and betweeness
centrality look beyond direct ties. Closeness centrality (Sabidussi, 1966)
measures the social distance between any pair of individuals in the
network by defining one’s friends to be at distance 1, the friends of
one’s friends at distance 2, and so on. Betweenness centrality (Freeman,
1977) identifies the extent to which an individual in the network is
critical for passing support from one individual to another.

Density, the observed connections a person has in a social network
over all possible connections he/she could have, or relatedly, the
transitivity of friendships within each person’s network can also be
measured. Previous work suggests that low density and high density are
both negatively related to social engagement (Fowler, 2005).

Finally, communities and community structure (groups based on
shared location, interests, schools etc.) in social networks can be de-
tected via modularity (Fortunato, 2010). This method maximizes the
total differences between in-group and out-group vertices, by
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examining the difference between the number of connections within a
community and the expected number of connections within a commu-
nity across all possible outcomes. By examining communities, we can
study the spread of rumors or epidemics, and the effect of contagion
among adolescents.

ABCD affords us the opportunity to extend existing research on
social interactions by passively collecting social network data on
Facebook, Twitter, and other social media sites (Ritter and Cameron,
2006), to study the impact of complete social networks on important
areas of health (e.g. well-being, quality of life, mental health) affected
by social connection and interaction.

2. Discussion

Mobile technologies allow for more complete data capture across
domains of interest, greater fidelity of data captured, and measurement
that is more precise. Further, they allow for dynamic measurement of
the range and variability of diverse human states in real-time as well as
environmental factors that may affect fluctuations in mood, behaviors,
thoughts, and feelings. This provides new opportunities and greater
precision in testing causal models and hypotheses regarding substance
use and physical and mental health problems. In addition to enhancing
research methodology, mobile technologies may also reduce participant
response and engagement burden via passive data collection, and fewer
in-person lab visits. Additionally, participants can be active in their
assessment and treatment, and gain insight into their behaviors and
physiological and psychological states. Finally, research shows that use
of mobile technologies for assessment of health-related behaviors in
adolescents is feasible, acceptable, and liked by users (Garcia et al.,
2014), especially in early adolescence (Kauer et al., 2009).

Currently, ABCD is using iPads for assessment of clinical, neu-
ropsychological and self-report data for parents and children, and is
planning on incorporating wearable activity trackers into the overall
study at the Year 2 follow-up starting September 2018. This will pro-
vide insight about fine-level fluctuations and patterns of activity and
sleep that can be compared to self-report data and other physiologic
data collected. Additionally, this may contribute to the literature re-
garding validity and reliability of data obtained from these devices and
the feasibility of conducting studies of wearable devices in children.

In the future, ABCD investigators plan to incorporate use of direct,
real-time measurement of alcohol, marijuana and other substances as
nanoengineered biosensors become more refined and available.
Biosensors allow for non-invasive, objective assessment and monitoring
of substance use, and enable increased accuracy of measurement of
substance use, and intensity of exposure, as it relates to adolescent
brain development. Further, activity space data will increase our un-
derstanding of the influence of context and environment on substance
use in youth.

While biological specimens and toxicology will be an important
component for study of toxic environmental exposures, ABCD provides
an exciting opportunity for novel examination of the effect of air pol-
lution on neurodevelopment through collection of prenatal and post-
natal residential and place-based histories and passive mobile and
sensor data. We will be able to explore (a) relationships between air
pollution and cognitive, mental, and brain function and structure, (b)
the impact of changes in exposure on individual trajectories of cogni-
tive, mental health, and neurodevelopment longitudinally, and (c) how
air pollution exposure, directly or indirectly, interacts with other social
and environmental factors to predict health behaviors and outcomes.

Longitudinal studies of exposure are particularly important as
children move through different places as they age (e.g. new schools
leading to new journeys through new or changing neighborhoods with
use of different modes of transportation). GPS facilitates data collection
on habitual journeys through communities and the linkage of these data
to other sets of institutional and place-based characteristics; char-
acteristics which may be different qualitatively and quantitatively from

the same characteristics measured in their home neighborhood, al-
lowing for a more dynamic conceptualization and measurement of
mobility. These intensive, within-person longitudinal geospatial data
can also be coupled with physical activity data (collected via activity
trackers and accelerometers), and ecologic momentary assessment data
on attitudes and behaviors (collected via smartphones) to link psy-
chological health and well-being to physical activity at specific loca-
tions or contexts.

Research spanning social network analysis, computation and mas-
sive data analysis, health, human-computer interactions research, and
psychology will allow us to study the relationship between online social
behaviors and health outcomes, and the extent to which health out-
comes alter the structure and function of online social networks. These
data will inform the way we think about communication between
adolescents and within groups of adolescents, and the impact on psy-
chosocial development. It will also allow for study of mechanisms of
groupthink and social contagion.

2.1. Practical issues in implementation

There are many practical issues involved in implementing these new
research methods into a longitudinal study of children and adolescents.
The first relates to both the age-appropriateness of any given tech-
nology and the age at which the exposure of interest occurs (e.g. in-
itiation of substance or social media use). For example, the literature
shows that 40% of those who have a lifetime history of substance use
disorder and require treatment initiated substances prior to the age of
14 (10%–11 or younger, 30%–12–14 years of age) (SAMSHA Treatment
Episode Data Sets, 2011). Thus, initiating monitoring of substance use
by age 12 is important. Social media sites require users to be at least 13
years of age. Further, research demonstrates that by age 13–14 years,
57% of adolescents are on Facebook, 44% use Instagram, 31% use
Snapchat and 23% use Twitter (Bagot et al., 2015). This suggests that
beginning to monitor children as they enter early adolescence will be
essential if we are to capture both the initiation of use behaviors, and
trajectory of substance use. Also, because of COPPA, companies like
Fitbit require users to enter a birthday with an age of 13 or older. As
described above, we have been able to address this via participant as-
sent and parent consent in our own study of 9 and 10 year olds (Wing
et al., 2017). Research also demonstrates that the age in which youth
typically have their first smartphone is age 12 (Bagot, 2017), yet there
is little published evidence to date on how to fully leverage this device
as a platform for data collection in studies like ABCD.

Finally, with respect to issues of cost and burden, while some of
these devices are financially costly, they decrease the cost of research
personnel and space and potentially the cost for families to participate
in research (e.g. time off from work, transportation costs). Further, they
may reduce participant burden such as time spent answering research
questions at home or in the lab vs. simple passive data collection in the
background with subsequent wireless transmission of data to research
databases. However, these approaches do require more front-end effort
on the part of research staff to set up systems for data collection and
their associated algorithms and databases. Additionally, some institu-
tional review groups may have concerns related to the need to monitor
these data for events of concern such as harm to self or others.

2.2. Privacy and ethical issues related to mHealth

Data derived from, and activities inferred by, mhealth and related
technologies raise several important ethical issues for researchers. For
example, GPS data that indicate locations frequented, patterns or rou-
tines of travel and precise location at any given time, may be difficult to
anonymize. However, while GPS data points do reveal where a person
has been, in and of themselves, they do not identify any specific person
(except when they ‘stay at” or “return’ to their home generating data
clusters around one ‘home’ location). By contrast a ‘home’ address –
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from another survey instrument – explicitly identifies a person (or
group of people/co-residents). A day’s worth of GPS point collected a
minute apart (or more frequently) can be used to generate a spatial
‘footprint’ that captures the mobility of a person across 24 h. In turn, the
derived activity space boundary can be used to generate contextual
attributes of the social, built and physical environment (e.g., crime
rates, fast food restaurant density, land-use mix, elevation variation)
devoid of locational or individually identifiable information. Similarly,
GPS data can be analyzed to derive more nuanced metrics related to the
temporal dimensions of exposure to specific places (e.g., the timing,
sequence and duration of visits to specific places), also resulting in de-
identified data.

Data recorded and collected on a smartphone, and wirelessly
transmitted, may lead to incidental, accidental or legal discovery by
third parties and/or may capture illegal activities that are reportable or
could be subpoenaed. This risk may be reduced by limiting locations in
which data are uploaded to secure locations such as a private Wi-fi
network, or selectively uploading data via physical means such as
linking to hard drive via a physical cord. Additionally, monitoring data
secured through a third party app (e.g. social media apps) has risks.
Participants may not understand the meaning and impact of terms and
policies in service contracts even if they voluntarily set up an account
and are signed up for the service. Importantly, app-specific contracts
may conflict with federal guidelines for human research participants, in
particular for those under the age of 14 years. Also, the presence of a
non-commercial research and/or health app on a smartphone may belie
one’s enrollment in a study or disease condition.

If in reviewing data, researchers identify concerning patterns of
behaviors or activities that may imply current or impending medical
and psychological harm to the participant or others, there are no clear
guidelines on reporting this potentially clinical meaningful data to
minors and/or parents. In non-intervention research, individualized
clinical feedback may alter study course, and may be inappropriate
given non-clinically trained staff reviewing data.

Another issue is that depending on the type of data collected, the
medium on which it is collected and where it is collected, bystander
rights may also be an issue. Those who may interact with a consented
individual while data are being collected may have their (bystander)
data or personally identifiable information collected via audio, photo-
graphs or video, as well as interactions via social media, text message or
phone. There are no standard guidelines in place for addressing these
issue, however it has been suggested that consented individuals should
disclose their participation in research and the potential for bystander
data to be collected.

As these technologies yield large amounts of potentially personally
identifiable data, secure data management strategies and guidelines are
critical but remain unstandardized. Consent and assent must be ob-
tained from parents and minors respectively prior to data collection and
all the aforementioned privacy and ethical issues must be discussed.
The inherently identifiable nature of individual level mobile tech-
nology-derived data present privacy and confidentiality concerns, as
well as ethical concerns. Study participants and their families may not
understand what types of data will be collected, or the potential
meaning of that data, and how it will be stored and analyzed. Every
effort must be taken to explain the potential benefits and risks of these
types of data, and what may be inferred. Further, discussion of the steps
researchers are taking to safeguard participants’ data must be occur
during consent and assent. This may include storage of data on secure
servers, encrypting data, including audio and visual data, or de-iden-
tifying data prior to storage. For example, home address and the mas-
sive volume of ‘digital footsteps’ generated by GPS would require that
all data and processing be handled in a HIPAA secure geodatabase
environment. Data are considered de-identified in accordance with the
HIPAA Privacy Rule if the data do not ‘identify an individual and if the
covered entity has no reasonable basis to believe it can be used to
identify an individual (HIPAA, 2012).’A recent review suggests two

main approaches for de-identifying geographic information using
HIPAA Privacy Rule guidelines: (1) remove or aggregate geographic
identifiers to large population area-based units, and (2) apply statistical
or scientific principles to render information not individually identifi-
able (“geomasking”); (Haley et al., 2016) a series of analytical ap-
proaches to mask geographic identifiers have been suggested
(Armstrong et al., 1999; Allshouse et al., 2010; Hampton et al., 2010;
Wieland et al., 2008). A recent study of GPS data also explores the
balance between privacy and spatial pattern resulting from two
methods of obfuscation, grid masking and random perturbation (Seidl
et al., 2016).

To address the many and rapidly changing ethical and legal issues
involved mHealth research initiatives are emerging that aim to help
mHealth researchers learn about, understand and share best practices.
One important current example of this is an initiative supported by the
Robert Wood Johnson Foundation called the Connected and Open
Research Ethics project (thecore.ucsd.edu). As of the date of this paper
over 500 researchers and related organizations have joined this net-
work.

3. Conclusion

Advances in mobile and wearable technologies coupled with im-
proved methods of analysis of geospatial, ecologic, social network, and
behavioral data allow for unprecedented opportunities for inter-
disciplinary research on the effects of place, social interactions, en-
vironment, and substance use on child health and developmental out-
comes. In ABCD, we will capitalize on these novel methods and
technologies to examine the myriad of social, environmental, and be-
havioral factors and the interactions that take place between these
elements. We thus have the opportunity to greatly enhance our un-
derstanding of adolescent neurodevelopmental and mental and physical
health outcomes in youth.
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