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G E O P H Y S I C S

Crowdsourcing triggers rapid, reliable  
earthquake locations
Robert J. Steed1*, Amaya Fuenzalida1, Rémy Bossu1,2*, István Bondár3, Andres Heinloo4, 
Aurelien Dupont1,2, Joachim Saul4, Angelo Strollo4

In many cases, it takes several minutes after an earthquake to publish online a seismic location with confidence. 
Via monitoring for specific types of increased website, app, or Twitter usage, crowdsourced detection of seismic 
activity can be used to “seed” the search in the seismic data for an earthquake and reduce the risk of false detec-
tions, thereby accelerating the publication of locations for felt earthquakes. We demonstrate that this low-cost 
approach can work at the global scale to produce reliable and rapid results. The system was retroactively tested on 
a set of real crowdsourced detections of earthquakes made during 2016 and 2017, with 50% of successful locations 
found within 103 s, 76 s faster than GEOFON and 271 s faster than the European-Mediterranean Seismological 
Centre’s publication times, and 90% of successful locations found within 54 km of the final accepted epicenter.

INTRODUCTION
Rapid public earthquake information is essential for both the public 
and authorities and can contribute to a more efficient earthquake 
response (1). Until now, the majority of efforts to tackle this challenge 
have been oriented toward the implementation of dense seismologi-
cal networks with fast and robust data communication. In the best 
cases, early warning systems have been deployed to rapidly locate 
earthquakes and estimate their magnitude using the closest seismic 
stations and potentially warn the population before the seismic waves 
reached their location (2–4). However, those performant systems re-
quire high investment and maintenance, and therefore, they are 
only implemented in a few regions of the world. For many earth-
quakes worldwide, even a location within several tens of seconds of 
an event would be a useful acceleration of current practice.

Here, we present a new approach to boost seismic network per-
formance, which we call CsLoc (Crowdseeded Seismic Location). 
Since 2008 (5), the EMSC (European-Mediterranean Seismological 
Centre) has been developing systems for the detection of felt earth-
quakes via crowdsourcing. While other crowdsourced approaches 
in seismology have focused on using accelerometers in smartphones 
(6–9) or dedicated sensors that are maintained by the public (6, 10), 
our approach is a side effect of the public’s search for information or 
their online reactions. Presently, peaks in the rate of connections to 
the EMSC websites, LastQuake app launches, or tweets with certain 
keywords rapidly alert the EMSC that an earthquake is happening 
(11–13), with 85% of these crowdsourced detections having a known 
seismic cause (see table S1). Multiple detections can sometimes occur 
because of the multiple detection methods and also since countries 
are monitored individually to increase signal-to-noise ratio. Following 
a detection, the barycenter of its activity is computed by applying a 
clustering algorithm to individual users’ geolocations, which has been 
found to have an accuracy to within hundreds of kilometers of the 
earthquake’s epicenter (see the Supplementary Materials). The bary-

center represents a center of the public response and so is not neces-
sarily expected to coincide with the epicenter; for instance, the earth-
quake could be offshore or in an uninhabited region. Hence, it 
indicates an earthquake’s region but does not always provide an accu-
rate estimation for its location. Nevertheless, this barycenter is the 
seed for the seismic location algorithm.

The CsLoc procedure is illustrated in Fig. 1. Upon notification of 
a crowdsourced detection, CsLoc searches for phases from sta-
tions within 2000 km of the crowdsourced barycenter and close in 
time to the crowdsourced detection time. A “phase” or “arrival 
time” is the measured time that a seismic wavefront arrives at a seis-
mic station. A simple phase association procedure is then used. The 
chosen phases are located in a window centered on a regression to 
the ak135 seismic propagation model (Fig. 2) (14). These phases are 
then analyzed by the location software iLoc (15). If a location is 
found, then the result must also satisfy publication criteria defined 
in terms of standard seismological parameters. Until the criteria are 
met, the process runs iteratively at 15-s intervals; each iteration may 
add newly received arrival times and starts from the solution ob-
tained in the previous iteration (see Fig. 2A). For this study, P-wave 
arrival times have been provided by the GEOFON program from 
more than 800 stations affiliated to 73 seismic networks distributed 
worldwide from the International Federation of Digital Seismograph 
Networks (FDSN) (16). In real time, data are received via the httpmsgbus 
(HMB) protocol (17), which is essential for the system’s response 
time. The transmission of data from GEOFON to the EMSC has been 
measured to take less than 1 s. Details of the entire procedure are 
available in the Supplementary Materials.

RESULTS
To validate the CsLoc system, we analyzed 1536 earthquakes seen 
by crowdsourced detections recorded between 1 January 2016 and 
31 December 2017 at the EMSC (Fig. 3). The testing was retroac-
tive but made to be as realistic as possible, with each iteration in 
the analysis gaining access to only those phases that would have 
been available according to the creation time of each phase arrival. 
Including duplicated detections of events and 370 crowdsourced 
detections that are unexplained seismically or false detections, we 
tested 2590 crowdsourced detections in total. CsLoc was demonstrated 
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to be a high-reliability system for the detection of felt earthquakes: 
Within the full 2590 detections, only 4 false detections led to a loca-
tion, giving a false-positive rate of only 0.15%. Hence, CsLoc can be 
used to rapidly validate that a crowdsourced detection has a seismic 
origin, which is valuable knowledge independent of the reliability of 
the location found (the corollary is not true; lack of confirmation 
does not imply that a detection is erroneous).

As the seismic network was not homogeneously distributed, suc-
cessful locations occurred predominantly in well-instrumented re-

gions (Fig. 3A). Of the 1536 earthquakes, CsLoc located 735 earth-
quakes well enough to satisfy our publication criteria, and 97% of 
these were located at less than 100 km from the published EMSC 
location and 89% were located at less than 50 km. Successful loca-
tion was not found to depend on earthquake magnitude (fig. S5). 
For the rest, 231 events were poorly located and 520 had insufficient 
data. Although it had been considered a possibility, for this study, 
CsLoc did not locate any earthquakes that were not already recorded 
in the EMSC databases, although it did detect events that were not 

 1. Earthquake crowdsourced detection.
Eyewitnesses feel ground shaking and generate a

fast reaction on the internet and social media.
Launches of the LastQuake app, visits at the EMSC

website, or a peak in earthquake-related words on
Twitter generate a crowdsourced detection.

3. Location of the epicenter
occurs in less than 100 s in most
cases; as soon as a quality criteria is met.
  

2. Fusion with seismic data.
The crowdsourced detection defines 
a reduced area to search for seismic 
data compatible with the earthquake’s
propagation (red circle/red triangles).  

LastQuake App,
EMSC website

and Twitter users

Crowdsourced
barycenter

Station:
detection
selected

Station:
detection

Reduced
search area

Station:

detection

P-wave
front

Epicenter
of the

LastQuake App 
and EMSC website

Earthquake
on Twitter 

earthquake
no

Fig. 1. CsLoc fuses crowdsourced and seismic detection of earthquakes. Crowdsourced detections are quick but do not yield the physical properties of an event, and 
some detections are not related to seismic events. Seismic networks need strong quality criteria for the automatic publication of seismic events to avoid false detections. The 
fusion of the two sources of data improves the reliability of crowdsourced detections and reduces the response time of a seismic network for the rapid location of felt events.
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Fig. 2. The CsLoc procedure. (A) Flowchart of the CsLoc association and location process. (B) First iteration of a typical CsLoc analysis. Fast-arriving Pn-phases up to 10° 
from the initial crowdsourced location are considered in the association process. (C) Phases within three times the median absolute deviation (MAD) are used for the iLoc 
location analysis. (D and E) The location process typically obtains a stable solution in less than 10 iterations. By the 10th iteration, more phases have arrived and the arriv-
al times are highly aligned on the predicted Pn travel-time curve. Consequently, many more stations contribute to the location (note that the EMSC-published epicenter 
is hidden by the CsLoc epicenter).
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officially published by GEOFON while using the same seismic sta-
tions (discussed later).

For the 735 CsLoc-located earthquakes in our test dataset, 50% of 
locations were found within 103 s from the origin time and 90% were 
found within 3 min. The speed of the CsLoc system depends largely on 
two factors: the seismic network coverage and the density of internet-
enabled users in the felt area. Closer stations have shorter seismic 
wave travel times, making the phases available quickly. Equivalently, 
dense populations generally lead to faster crowdsourced detections 
(independently of earthquake magnitude). When both criteria are 
fulfilled, the location can be computed in some cases in less than a 
minute. The delay of the CsLoc system for the selection of phases and 
analysis by the iLoc software was less than 5.3 s in 90% of cases. As 
shown in Fig. 4A, the system was actually often constrained by the 
time taken to receive enough phases to produce a publishable result.

For comparison with a purely seismic system, the current system 
of publishing earthquake locations at GEOFON relies on strict cri-
teria for the automatic analysis to guarantee high-quality solutions. 
To avoid false locations, 30 associated phases are necessary to produce 
an automatic published solution. CsLoc located more events than 
GEOFON within the first 10 min following each event (735 versus 406). 
CsLoc located more small or moderate events usually since these 
events failed to have the 30 phases necessary for GEOFON to publish 
them. GEOFON also located 426 additional earthquakes more than 
10 min after each event; these were mainly large-magnitude events at 
teleseismic scale (a long distance from the network) that were not de-

tected by CsLoc (fig. S6). CsLoc is not currently optimized to detect 
such events as it only runs for a few minutes after each event and be-
cause its publication criteria are optimized for earthquakes with seis-
mic stations relatively nearby (see the Supplementary Materials).

Figure 4B compares the temporal performance of the CsLoc, 
GEOFON, and EMSC location catalogs for the subset of felt events 
detected by all of the systems. The medians of the three distributions 
show that CsLoc accelerates the publication time by 76 s with respect 
to GEOFON and by 271 s with respect to the EMSC’s systems (more 
details in table S4). A study of the internal results of GEOFON showed 
that many of the published earthquakes were registered much earlier 
than their publication time (as well as some that were never published); 
thus, it appears that much of the benefit of CsLoc comes from the low 
false-positive rate obtained from using crowdsourced detections, which 
allows more aggressive publication criteria to be used while still ob-
taining reliable results.

DISCUSSION
In summary, fusion of crowdsourced detections and seismic data 
yields timely, accurate earthquake locations for precisely those 
earthquakes that are felt by and that most affect the public. It accel-
erates the publication of locations by over a minute compared to 
seismic analysis alone, and it can confirm a seismic event more reli-
ably than purely crowdsourced detections (with 97% accuracy 
compared to 85%). This can be used to raise situational awareness 

Fig. 3. Testing of CsLoc on crowdsourced detections from 2016 and 2017. (A) Results of CsLoc analyses overlaid on a density plot of the number of GEOFON seismic 
stations within 1000 km of each position. Successful locations are related to local network density: Almost all nonlocalized events are out of the network. (B) Results 
broken down by crowdsourced detection source. Note that some earthquakes were detected by multiple systems. Success rates are similar for each source of event de-
tection. (C) Histogram of separation of first publishable CsLoc result for each earthquake with respect to the final EMSC-published epicenter.

A B

Fig. 4. Latency of CsLoc during testing. (A) Breakdown of the analysis delays for the 735 earthquakes located by CsLoc using the earliest publishable location. Analysis 
is largely limited by the time required to collect sufficient phases. (B) Violin plot of the minimum publication delays for CsLoc, GEOFON, and EMSC from an analysis of the 
set of 429 earthquakes detected by both CsLoc and GEOFON within 10 min of the origin time.
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and engage with eyewitnesses. CsLoc is also multiscale, locating events 
independently of magnitude as long as there is regional station cov-
erage. CsLoc does not compete with the rapidity of early warning 
systems, but advantageously, CsLoc works on a global scale and is a 
low-cost approach, since it takes advantage of existing seismic net-
works and the crowdsourced detection methods require relatively 
low investment [compared to the installation of early warning de-
tector networks (2)].

This fusion of different data sources (crowdsourced and instru-
mental) unveils a new path in citizen science, where public engage-
ment becomes a tool for improving scientific results. Our intention 
is to start using CsLoc to provide preliminary earthquake locations in 
real time for EMSC’s crowdsourced detections to more rapidly in-
form the public. It is hoped that its global coverage can be improved 
by enlarged collaboration with other seismic networks.

MATERIALS AND METHODS
Crowdsourced detection of earthquakes
In this study, three systems of crowdsourced earthquake detections 
were used: the detection of increased traffic on the www.emsc-csem.
org or m.emsc-csem.org website, the detection of increased launches 
of the EMSC’s LastQuake app, and the detection of peaks in the rate 
of tweets with less than seven words and containing “earthquake” 
in 1 of 59 languages [Twitter Earthquake Detection (TED)]. Each 
peak was associated either automatically or manually to a published 
earthquake record with an 85% success rate. Table S1 shows the de-
tections and success rates for each system during the test period of 
2016–2017.

The EMSC’s detection systems have been developed over several 
years to their current state (5, 12, 18, 19). The TED system is a col-
laboration between the EMSC and P. Earle and M. Guy at the United 
States Geological Survey (USGS). During 2016–2017, detections 
were made at the USGS (13) by their Twitter monitoring process 
and then forwarded automatically to the EMSC for further analysis, 
association with EMSC earthquakes, and integration with the rest of 
the EMSC systems.

To increase the signal-to-noise ratio, both the website and app sys-
tems monitored each country separately, and they only counted users 
who were new within the previous half-hour. In addition, the web-
site system filtered visitors using their referring uniform resource 
locator (url) (only visitors arriving from search engines or directly 
were considered) and a blacklist of internet protocol (IP) addresses 
(for filtering out internet robots or seismological institutes). De-
tections were made when the rate of arrivals per minute exceeded 
a multiple of the average rate per minute for the previous half-hour 
by a certain threshold; the parameters varied by system (12, 13). 
Figure S1 shows the distributions of the detection delays (for 
those detections that could be associated with EMSC earthquakes), 
and table S2 presents some summary percentiles.

Each system geolocated its users in a different way. The website 
system used a database [NetAcuity by digital element (20)] that associ-
ated the visitor’s IP address with a physical location. The accuracy of 
this method varied by country; in Europe and the United States, it 
could be accurate to the street level, but in many other countries, it was 
often accurate only to the city level or less. For users accessing the web-
site via their mobiles, the accuracy was particularly bad since the IP 
addresses showed only the location where the mobile network con-
nected to the internet, which might be far from the user’s true location.

The LastQuake app asked its users to enable access to their mobile 
phone’s location, which could be sourced from Global Positioning 
System readings or the location of the local cell masts. Hence, the posi-
tions could be accurate to less than a kilometer. At the time of writing, 
more than 80% of users allowed LastQuake to use their location.

The Twitter detection system had to perform an analysis of the 
user-written location string found in the profile of the author of each 
tweet. A process called “geocoding” attempted to extract a location 
from the natural language text (i.e., a city, town, or village name) (21). 
Naturally, there were many missing or humorous location entries in 
users’ profiles, but nevertheless, useful information could be extracted.

Once a detection was made, the set of users within 2 min of the 
trigger time (and within the same country as the detection for the app 
and website peaks) was collected and geolocated. A hierarchical 
bottom-up clustering algorithm was applied to this dataset using 
linkage based on the unweighted pair group method with arithmetic 
mean (UPGMA) and a Euclidean distance metric between latitude 
and longitude coordinates. This procedure eliminated outliers and 
found the largest cluster of activity. The barycenter (the average coor-
dinate of this cluster) was taken to be the location of the crowdsourced 
detection. For the crowdsourced detections during 2016–2017, fig. S1 
shows the distribution of the locations with respect to the EMSC-
published epicenters (for those detections that could be associated with 
EMSC earthquakes) and table S2 presents some summary percentiles.

A single earthquake could have multiple crowdsourced detec-
tions from each of the systems, as well as from neighboring countries 
within the same system. However, in general, each system comple-
mented the others, as different regions of the world showed preference 
for different channels of information (see fig. S2).

CsLoc procedure
Upon notification of a crowdsourced detection, CsLoc searched for 
phases from stations within 1000 to 2000 km of the crowdsourced 
barycenter (regional scale), with the maximum radius varying to en-
sure that at least seven stations were present. The search was limited 
to between 210 s before and 120 s after the crowdsourced detection 
time. This was simply a Structured Query Language request performed 
on the phase data, which were stored in a database table.

A phase is the earliest time that a particular type of seismic wave 
is measured as arriving at a seismic station. The P waves arrive the 
earliest and so have the cleanest signal for analysis. A phase is equiva-
lently known as an “arrival time” or a “pick.”

For this study, P-wave arrival times were provided by GEOFON 
from more than 800 stations affiliated to 73 FDSN seismic networks 
distributed worldwide (16). In real time, data are received via the 
HMB protocol (17), which is essential for the system’s response 
time. We note that the analysis of P-wave arrival times from the 
waveform data was found to take approximately 30 s for GEOFON, 
and the transmission of data from GEOFON to EMSC has been 
measured to take less than 1 s.

Once the phases were collected, the phase association procedure 
was applied to filter away outlying events (see below). The chosen 
phases, along with the current epicenter estimate (which is initially the 
crowdsourced location), were given to the iLoc locator for analysis.

The association and location process ran iteratively at 15-s in-
tervals; each iteration might add newly received arrival times and 
started from the solution obtained in the previous iteration. The iteration 
process stopped when the seismic location satisfied the publication 
criteria.

http://www.emsc-csem.org
http://www.emsc-csem.org
http://www.emsc-csem.org
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CsLoc phase association procedure
The phase association algorithm was applied to determine which 
phases may belong to the earthquake. The assumption was made 
that the collected P-phases were all first arriving Pn-phases propa-
gating at 8.04 km/s following the ak135 model (14). Since the 
crowdsourced detection could not estimate the depth, it was also 
assumed that the event was shallow. Starting from the previous 
iteration’s calculated epicenter or from the initial crowdsourced 
barycenter, a wavefront interval between 210 and 15 s before the 
trigger time was used to select phases for analysis (red lines in Fig. 2 
graphs). A robust linear regression with a fixed Pn velocity of 
8.04 km/s was performed on these phases (sloping blue line in Fig. 2 
graphs), relative to the starting epicenter estimate. The final chosen 
phases were those within the bounds of three times the median ab-
solute deviation (MAD) of the fitted ak135 Pn line (sloping dashed 
black lines in Fig. 2 graphs). This algorithm naturally becomes more 
selective as a more accurate solution is used as the starting location 
and has proven effective at rejecting the phases of aftershocks as seen 
in Fig. 2C for the 10th iteration of the CsLoc analysis. The seismic 
inversion was then computed with the selected phases by the loca-
tion software iLoc developed for the International Seismological 
Centre (ISC) (15).

iLoc
The iLoc location algorithm is based on the state-of-the-art lo-
cation algorithm developed for the ISC. The ISC locator (15) 
has been operational since 2011; that is, the ISC Bulletin is pro-
duced with the new locator since January 2009. The relocation 
of the entire ISC Bulletin with the ISC locator is expected to be 
finished by the end of 2019. In addition to the features of the 
ISC locator, iLoc provides further functionality to support the 
needs of national seismological networks. iLoc uses most ak135 
phases (including depth phases) (14) in the location with eleva-
tion, ellipticity (22, 23), and depth-phase bounce point correc-
tions (24). It is fully integrated with the Regional Seismic Travel 
Times [RSTT (25)] three-dimensional global upper mantle and 
crust velocity model, and by default, it obtains travel-time pre-
dictions for crustal and mantle phases from RSTT. It can use 
any three-dimensional crustal and upper mantle model com-
pliant with the RSTT parameterization, and it also supports the 
use of local, one-dimensional velocity models.

One of the major strengths of the locator is that it accounts 
for correlated travel-time prediction errors due to unmodeled 
velocity structures along similar ray paths that allow it to obtain 
reliable locations and uncertainty estimates even with unfavorable 
station distributions. It obtains the initial hypocenter guess from 
the neighborhood algorithm search (26, 27). Once close to the 
global minimum, it switches to an iterative linearized inversion 
using an a priori estimate of data covariance matrix whose off-
diagonal elements represent the correlation structure in the data-
set (28). Another important feature is that it attempts free-depth 
solution, only if there is depth resolution either from local net-
works or from teleseismic depth phases, thus avoiding the pitfall 
of depth–origin time trade-off. If there is no depth resolution in 
the data, iLoc fixes the depth to the most probable value based on 
historical seismicity. The iLoc locator, together with the latest 
RSTT three-dimensional velocity model (25), is available for 
download from the IRIS software depository (https://seiscode.iris.
washington.edu/projects/iloc).

CsLoc publication criteria
The publication criteria were applied to the results of each iteration 
in an analysis to estimate whether the result was reliable. During an 
analysis, the actual effect of the criteria was often to force the algo-
rithm to wait until more phases had been collected before a location  
could be considered reliable or to cause an extra iteration to re-
fine the result.

The following criteria were calculated with respect to the new 
solution’s epicenter and using only the stations that provided phases 
that contributed to the solution:

(1) Minimum distance to the nearest station <306 km.
(2) Largest gap in azimuthal angles between stations <240°.
(3) Largest gap in azimuthal angles between next nearest neigh-

boring stations <300°
(4) Separation between solution and crowdsourced location 

<500 km
(5) Separation between solution and starting location for this 

iteration <200 km
(6) MAD (see Fig. 2) from the ak135 fit of phases selected for 

iLoc but recalculated using the iLoc solution’s epicenter <4.4.
These parameters were optimized empirically using the test 

dataset, trading off between obtaining the most reliable results 
and obtaining the fastest results. Figure S3 attempts to show the 
effect of applying the criteria to the located results for the 10th 
iteration of the analyses. Each parameter eliminates a different set 
of outliers in the results to improve the quality of the published 
locations.

Test dataset
To validate the CsLoc system, we analyzed 2590 crowdsourced 
detections recorded between 1 January 2016 and 31 December 
2017 at the EMSC, of which 2200 were associated to 1536 dis-
tinct earthquakes with published locations (table S1). Some du-
plicate detections had occurred because of multiple detection 
methods (fig. S2) and also since countries had been monitored 
individually to increase the signal-to-noise ratio (table S1). The 
full dataset of crowdsourced detections and the results of testing 
the CsLoc system can be found at (29).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaau9824/DC1
Fig. S1. Analysis of the crowdsourced detections during 2016–2017 that could be associated 
with EMSC-published epicenters, considering each detection method individually.
Fig. S2. A Venn diagram of the earthquakes detected by each crowdsourced system during 
2016–2017.
Fig. S3. Scatter graphs showing all obtained locations for the 10th iteration of the CsLoc 
analyses for all 2200 detections that were associated with an EMSC epicenter.
Fig. S4. Summary of the test dataset and its results starting from the 2590 crowdsourced 
detections; the transition from “seismic” to “distinct earthquakes” corresponds to the 
deduplication of detections from the multiple crowdsourced detection methods.
Fig. S5. An analysis of the 735 earthquakes located by CsLoc with respect to earthquake 
magnitude.
Fig. S6. The earthquakes located by CsLoc and GEOFON by earthquake magnitude; CsLoc had 
a wider spectrum of magnitudes, locating a larger number of events of magnitude lower than 
M5 with respect to GEOFON in the first 10 min.
Table S1. Summary statistics for crowdsourced detections at the EMSC during 
2016–2017.
Table S2. Summary statistics for the earthquakes detected by each crowdsourced 
detection.
Table S3. Summary of the 735 earthquakes located by CsLoc that met the publication criteria.
Table S4. Statistics for the 429 earthquakes located by both GEOFON and CsLoc within 10 min 
of the origin time.

https://seiscode.iris.washington.edu/projects/iloc
https://seiscode.iris.washington.edu/projects/iloc
http://advances.sciencemag.org/cgi/content/full/5/4/eaau9824/DC1
http://advances.sciencemag.org/cgi/content/full/5/4/eaau9824/DC1
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