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Summary

The mammalian brain is composed of diverse, specialized cell populations. To systematically 

ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA 

expression in 690,000 individual cells, sampled from nine regions of the adult mouse brain. We 

identified 565 transcriptionally distinct groups of cells using computational approaches developed 

to distinguish biological from technical signals. Cross-region analysis of these 565 cell 

populations revealed features of brain organization, including a gene-expression module for 

synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated 

ion channels, functional distinctions among the cells of the vasculature and specialization of 

glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex 

basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This 

adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a 

reference for development, disease, and evolution.
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Introduction

Cellular specialization is central to the function of the mammalian brain. At the coarsest 

level, cells of different classes (for example, neurons, astrocytes, and endothelial cells) 

interact to maintain homeostasis and enable electrochemical communication. At finer levels, 

subtle specializations – such as those that distinguish neuron subtypes in the same region – 

can control behaviors such as appetite (Andermann and Lowell, 2017; Sternson, 2013), sex 

drive (Anderson, 2012), habit formation (O’Hare et al., 2016; Wang et al., 2011), spatial 

mapping (Moser et al., 2008), and associative learning (Krabbe et al., 2017). Some cell 

populations have been characterized in detail; many remain uncharacterized or have yet to 

be discovered.

Systematic efforts – to identify cell populations, reveal the RNA repertoires of every cell 

type and state, and identify molecular markers for each population – would help to 

understand the functions and interactions of cells in the brain, including the roles of distinct 

cell types in disease. High-throughput single-cell RNA-seq (scRNA-seq) now enables RNA 

profiling in thousands of individual cells in complex tissue (Han et al., 2018; Klein et al., 

2015; Macosko et al., 2015; Rosenberg et al., 2018; Zheng et al., 2017). To date, single-cell 

gene expression studies have yielded cell-type classifications in the mouse cerebral cortex 

(Tasic et al., 2016; Zeisel et al., 2015), retina (Shekhar et al., 2016), hypothalamic arcuate 

nucleus (Campbell et al., 2017), entopeduncular nucleus (Wallace et al., 2017) and amygdala 

(Wu et al., 2017).

In this work, we sought to analyze cellular diversity across many brain regions in order to 

investigate shared and region-specific patterns in cellular composition and gene expression. 

We overcame several challenges. First, dissociating adult brain into healthy, representative 

cell suspensions is difficult; many scRNA-seq studies have thus used younger mice in which 

developmental programs are comingled with the expression differences that underlie 

functional specializations. Here we developed techniques, borrowing ideas from 

preparations for electrophysiological recordings, that allowed adult brain tissue to be 

dissociated into intact cell bodies while representing all major cell classes. Second, scRNA-

seq data are simultaneously shaped by cellular categories, continuously varying gradients, 

and technical artifacts; cell clusters derived from scRNA-seq often reflect unknown 

combinations of these effects. We developed analytical methods to separate biological and 

technical influences on single-cell data, enabling a more transparent understanding of the 

relationships driving cellular classifications.

Here, we describe a draft mouse brain cell atlas that we created by profiling (using Drop-

seq) 690,000 individual cells from nine major regions of the adult mouse brain. By 

comparing single-cell transcriptional patterns within and across neuron types, we identified 

and validated a pervasive transcriptional program supporting axon and presynaptic function 

and discovered large-scale patterns in ion channel gene expression that may enact neurons’ 
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electrophysiological properties. We found that, in the cortex, glutamatergic neurons tend to 

be specialized by region, while non-neuron cell classes, such as those that make up the 

vasculature, can be variably specialized across cortical and subcortical areas. We also 

highlight the neuronal diversity of individual brain regions through the classification of 

neuron types using examples from the basal ganglia. In the globus pallidus externus (GPe) 

and substantia nigra reticulata (SNr), where neuron types are not well-understood, we 

propose complete neuron-type classifications and identify selective markers for each 

population. In the striatum, where neuronal diversity is well charted, we nonetheless identify 

a novel group of principal neurons that had been overlooked in decades of research.

We hope that these data will advance a wide variety of efforts and nominate many 

unforeseen research questions for further study. To facilitate the exploration and utilization 

of these data, we developed an interactive analysis platform (“DropViz”, http://dropviz.org/) 

for comparing cell types, identifying cell populations that express genes of interest, and 

performing many other kinds of analyses.

Results

Isolation and Molecular Analysis of Cells for an Adult Brain Cell Atlas

To build an atlas of cell populations and cell-type-specific gene expression patterns across 

the adult (P60–70) mouse brain, we prepared single-cell suspensions (STAR Methods) from 

nine brain regions (Table S1 and Data S1) and used Drop-seq (Macosko et al., 2015) to 

profile the RNA expression of 690,207 individual cells (Figure 1A). The resulting cell 

suspensions, which recovered intact 40–50% of cells from most tissues (cortex: 0.46 ± 19 

mean ± sem; striatum: 0.39 ± 20, Figure S4A–C), had cells with morphologies characteristic 

of neurons, astrocytes, and oligodendrocytes (Figure S1A). We generated and analyzed 13 

billion sequencing reads from the resulting Drop-seq libraries, detecting 1.45 billion distinct 

mRNA transcripts (UMIs), which arose from 31,767 distinct genes. We ascertained an 

average of 17,480 reads (median=10,824), 2,218 mRNA transcripts (median=1,450 UMIs), 

and 1,169 genes per cell (median=900).

Cell-class Composition of Nine Adult Brain Regions

We separately analyzed data for each region using a two-stage procedure (Figure 1B and 

STAR Methods). The first stage of analysis robustly grouped cells into 8–11 broad classes 

(Data S2), including neurons, astrocytes, microglia/macrophages, oligodendrocytes, 

polydendrocytes (oligodendrocyte progenitor cells), and components of the vasculature – 

endothelial cells, fibroblast-like cells, and mural cells (Abbott et al., 2006; Marques et al., 

2016; Vanlandewijck et al., 2018). The hippocampus, for example, yielded cells from all 11 

cell classes (Figure S1B–D), including local cell classes native to the ventricle – the choroid 

plexus and ependymal cells - and a class undergoing adult neurogenesis (Habib et al., 2016; 

Hochgerner et al., 2018; Ming and Song, 2011). Distinct brain regions yielded cell classes in 

different proportions (Figure S1E).
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Inference of Cell Types and States Using Independent Components Analysis

The recognition of subtle variation among cells of the same class presents a formidable 

analytical challenge for unsupervised analysis (Mayer et al., 2015; Satija et al., 2015; 

Shekhar et al., 2016; Tanay and Regev, 2017; Tasic et al., 2016). The size, diversity, and 

replicates for each atlas region highlighted limitations in current methods, exemplified by 

clusters specific to experimental replicates or driven by tissue digestion artifacts (see below). 

We sought a strategy that would (i) dissect biological from technical contributions to 

expression data and (ii) generate intermediate outputs (upstream of clustering) that could be 

critically evaluated and analyzed.

We therefore developed an analysis method based on independent components analysis 

(ICA)(Figure 1B–E). ICA reduces large datasets to a smaller number of dimensions in which 

entities (here cells) have score distributions that are maximally structured – as measured by 

deviation from a normal distribution (generally due to a spiky or clustered distribution of the 

cells in that dimension) – and statistically independent (Hyvärinen, 1999). Each of the 

inferred independent components (ICs) is a weighted combination of many genes (the 

weight of each gene’s contribution to an IC is the gene “loading”) and each cell is given a 

score for each IC (cell loading). This score reflects the degree to which the constellation of 

genes encoded by the IC is more or less expressed in that cell as compared to the average 

cell in the analysis. Each cell’s gene-expression profile is a weighted sum of ICs.

We found that individual ICs corresponded to recognizable biological phenomena (Figure 

1D and Figure S2C–H)(Adamson et al., 2016), in contrast to results from principal 

components analysis (Figure S2A). For example, among glutamatergic neurons from frontal 

cortex cluster 6, we identified ICs whose strongly loading genes marked specific cell types, 

cell states or spatial gradients across anatomical axes (Figure 1D). Other ICs captured 

technical effects such as 1) cells from different replicate preparations; 2) RNA libraries of 

different sizes; 3) experimentally identified effects of tissue preparation; or 4) cell-cell 

“doublets” (Figure S2C-H). We found that the interpretability of individual ICs allowed us to 

distinguish presumed endogenous signals (called “biological ICs”) from ICs related to the 

technical signals described above. Removing technical ICs reduced spurious distinctions 

among cells (Figure S2I).

We analyzed the data from each class and region (109 analyses total) using semi-supervised 

ICA, in which we excluded 1,157 ICs as technical and classified the remaining 601 ICs as 

“biological ICs” (STAR Methods). We then grouped cells based on combinations of 

“biological IC” cell loadings into 565 subclusters using network-based clustering (Shekhar 

et al., 2016; Waltman and van Eck, 2013) (Figure 1E and Figures S2J,K). Of these 

subclusters, 323 were neuronal, derived from 368 biological ICs (Data S3). Across 

subclusters, patterns of similar RNA expression generally corresponded to cell class rather 

than brain region (Figure S1F,G).

Characteristics of the Cells of the Blood-Brain Barrier

Non-neuronal cells exhibited broadly consistent expression signals across brain regions. To 

better appreciate diversity among non-neuronal classes, we grouped single-cell libraries 
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across regions by cell class and performed semi-supervised ICA on each of the seven non-

neuronal datasets independently, identifying a total of 53 biological ICs (Figure 2A and Data 

S4A–G). We focus here on cell classes that form the blood-brain barrier – mural, fibroblast-

like and endothelial cells – because they are disease-relevant (Sweeney et al., 2016) and 

remain incompletely characterized (Figure 2B).

Mural cells are intrinsic to the endothelium and control vascular development, stability, and 

homeostasis (Sweeney et al., 2016; Trost et al., 2016). We identified 7 mural subclusters 

from 7 biological ICs (n=4,713 cells, Figure 2C and Data S4E). Mural cells have two 

subtypes: pericytes, which associate with capillaries, and smooth muscle alpha actin (SMA) 

cells, which associate with larger-bore vasculature and control blood flow (Hill et al., 2015; 

Hughes and Chan-Ling, 2004; Nehls and Drenckhahn, 1991). A single IC (IC 13) appeared 

to encode this distinction, with pericyte marker Vtn as the strongest loading gene (Figure 

2C)(Vanlandewijck et al., 2018). Other enriched genes suggest specialized pericyte function. 

For example, expression of a potassium channel activated by diphosphate levels (encoded by 

Kcnj8 and Abcc9) and an ADP-ribosyltransferase (Art3) suggest signaling machinery that 

couples dinucleotide metabolites to membrane potential and post-translational modification. 

Among SMA cells, Acta2 expression correlates with a veinous versus arterial distribution 

(Vanlandewijck et al., 2018). IC 19 represented this difference in a graded rather than 

categorical way, as Rgs5/Acta2 expression and IC cell scores were continuously, rather than 

bimodally, distributed across these cells (Figure 2C)(Vanlandewijck et al., 2018). Our data 

also identify new mural cell diversity. For example, cluster 1 expressed pericyte (Rgs5) and 

SMA (Acta2) markers. Unique markers (e.g. Aldh1a1) will help determine the anatomical 

identify of this population (Data S4E).

While endothelial cells are known as the constituent cell class of blood vessels, fibroblast-

like cells are a recently-described population with unknown function that inhabit the 

perivascular space in the brain (Vanlandewijck et al., 2018). We found 7 subclusters each of 

endothelial (n=16,248) and fibroblast-like (n=1,587) cells (Figure 2D,E). Among the 

fibroblast-like cells, two subclusters (4 and 5) selectively expressed many genes encoding 

membrane transporters (e.g., Slc38a2, Slc4a10, Slc26a2, and Slc47a1) and pumps (e.g., 

Fxyd5 and Atp1b1) (Figure 2D). To varying extents, subclusters 1, 2, and 3 expressed genes 

involved with extracellular matrix (ECM) secretion, angiogenesis, and contraction (Data 

S4F), such as the basement membrane collagen genes (Col4a1, Col4a2, and Col15a1) 

(Figure 2D). Interestingly, cluster 3 expressed higher levels of different collagen genes 

(Col1a1 and Col3a1) (Data S4F). These examples suggest that fibroblast-like cells are 

transcriptionally specialized to support membrane transport and ECM production; ECM 

secretion may involve different sets of co-regulated collagen genes.

We identified endothelial ICs (Figure 2E) with strong contributions from genes with arterial 

(IC 5 and 20) and veinous (IC 3 and 12) expression, suggesting heterogeneity related to 

vessel type (Data S4G) (Vanlandewijck et al., 2018). These genes (e.g. Tm4sf1 and Slc38a5) 

showed continuous, reciprocal expression (Data S4G), consistent with the smooth molecular 

transitions described for endothelial cells associated with arteries or veins (Vanlandewijck et 

al., 2018). Other ICs identified genes with more bimodal expression, indicating 

specializations within this artery/vein gradient. Subcluster 6 exhibited exclusive expression 
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of Cytl1 and enrichment for arterial marker Bmx, along with other genes implicated in 

growth-factor dependent vascular remodeling (Mgp, Fbln5, Eln, Igfbp4, and Clu) (Figure 2E 

and Data S4G)(Boström et al., 2004; Contois et al., 2012; Fu et al., 2013; Guadall et al., 

2011; Karnik et al.; Vanlandewijck et al., 2018). Other subpopulations could represent 

specializations shared across vessel types. For example, IC 10 loads onto cells with both 

artery and vein markers and strongly contributing genes suggest a signal related to host 

immunity, including genes encoding interferons (Ifit3, Ifit1, Ifit2, and Ifitm3), GTPases 

induced by interferons (Iigp1, Irgm1, and Gbp7), and other proteins involved in the anti-viral 

response (Isg15 and Rsad2) (Figure 2E). These examples identify endothelial processes 

within (e.g. arterial angiogenesis) or across (e.g. host defense) vessel types. Other signals 

might reflect cell states specialized for iron handling, calcium signaling, and the stress 

response (Data S4G).

Functional specializations within endothelial, glial, and other non-neuronal cell classes 

could be ubiquitous features of the adult mouse brain, or could be enriched in particular 

brain regions. We compared the relative abundance of cells from each region within 

fibroblast-like and endothelial subclusters (Figure 2F)(results for other non-neuronal classes 

in Data S4H). While endothelial subpopulations had similar abundances across regions, 

fibroblast-like subpopulations exhibited different contributions from cortical and subcortical 

areas: the cortex and hippocampus contributed disproportionately to the population that 

more strongly expressed genes with membrane-transport functions (subcluster 6), while 

collagen-expressing cell populations (subclusters 2 and 3) came largely from the basal 

ganglia and thalamus (Figure 2F).

A Neuronal Transcriptional Program Related to Axon Function

Cell states involve constellations of co-expressed genes that enact cellular functions. In 

neurons, the most well-studied state involves the immediate early genes (IEGs), which are 

transcribed in response to the Ca2+ influx that follows action potentials (Bading, 2013; 

Hrvatin et al., 2017). IEG expression is largely uniform across neuronal types (Hrvatin et al., 

2017) and brain regions and exhibits little background expression, making it straightforward 

to detect in the Drop-seq data.

Neurons might share other transcriptional dynamics in common. To identify such signatures, 

we looked for transcriptional patterns that, despite being ascertained in different regions or 

neuronal classes, involved similar gene combinations. Analysis of pairwise correlations 

across neuronal IC gene loadings revealed three prominent correlation blocks (Figure 3A). 

One such block included 15 inter-correlated ICs representing IEG-expression signatures 

from different regions and neuronal types. A second block arose from diverse thalamic 

neurons, suggesting a tissue-specific transcriptional program. We focused on the third 

correlation block, which consisted of ICs from many brain regions and neuronal types.

This transcriptional pattern involved a constellation of genes that underlie axonal and pre-

synaptic function. We call this signal the “Neurofilament IC,” because three of the most 

strongly contributing genes encode the neurofilament subunits of the axonal cytoskeleton 

(Nefl, Nefm, and Nefh) (Yuan et al., 2012). Other co-regulated genes included Syt2, Vamp1, 
and Cplx1 – which have roles in vesicle exocytosis – and Pvalb and Caln1, which bind 
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presynaptic Ca2+ (Data S5). Genes contributing to this transcriptional pattern appear to 

maintain axon function and support or tune neurotransmitter release.

Neurofilament ICs were ascertained in all brain regions and appeared to shape gene 

expression in diverse neuronal populations. The expression of genes with the strongest 

Neurofilament IC contributions tended to covary both within and across neuronal types. 

Among interneurons, Neurofilament IC cell loading was most prominent in fast-firing Pvalb
+ populations. In frontal cortex interneuron cluster 2, expression levels of the genes strongly 

contributing to the Neurofilament IC – including Nefh, Kcnc3, Syt2, and Nefm – were 

continuously distributed and strongly correlated among Pvalb+ interneurons but lower and 

less correlated among Sst+ interneurons (Figure 3B–D). In the hippocampus, Pvalb± 

interneurons exhibited high cell loading for the Neurofilament IC, as did the Pvalb± 

“prototypical” neurons of the GPe (Mallet et al., 2012; Saunders et al., 2016) (Data S5). We 

ascertained a similar pattern among cortical glutamatergic (Data S5) and subcortical 

neuromodulatory (Figure 7O) populations.

Single-molecule fluorescent in situ hybridization experiments confirmed that, as predicted, 

expression of Pvalb, Syt2, and Nefm were highly correlated among Pvalb+ neurons in the 

frontal cortex (Figure 3E–G). Furthermore, Neurofilament IC cell loading was visible among 

Pvalb+ interneurons following Drop-seq analysis of 28,194 single nuclei isolated from flash-

frozen frontal cortex (Figure 3H). These experiments confirm that the Neurofilament signal 

is present in vivo and not an artifact of cell isolation.

We conclude that diverse neuron types share a coordinated transcriptional program involving 

genes that facilitate maintenance, elaboration, or subcellular transport to the axon and 

presynaptic terminal. Neuronal types characterized by extensive axonal arbors, long-distance 

axonal projections, and/or faster firing rates tended to utilize this transcriptional program 

more than other neurons. At the same time, the magnitude of expression varied among 

neurons of the same subtype, suggesting that this transcriptional program contributes to both 

intra- and inter-type diversity.

Gene-gene Co-expression Relationships Inferred from Hundreds of Cell types and States

Functional imperatives constrain patterns of gene co-expression in unknown ways. To 

analyze co-expression relationships across diverse brain cell types and states, we utilized 

gene-expression profiles for the 565 cell populations (averaging 565 cells and 1.9 million 

UMIs per population); these data are less influenced by biological and statistical noise than 

single-cell-level data (Figure S3A).

To assess whether gene-gene expression correlations captured known functional 

relationships, we focused first on subunits of nicotinic acetylcholine receptors (nAChRs, 

n=16 genes), ligand-gated, pentameric ion channels whose eclectic but well-described 

subunit combinations are known to vary by region and neuron type (Gotti et al., 2006).

Across cell populations, expression of nAChR genes exhibited two prominent correlation 

blocks, each containing genes that encode subunits of known heteromeric α/β channels (Zoli 

et al., 2015)(Figure 4A). For example, expression of Chrna3 and Chrnb4 (known to form 
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functional receptors) was positively correlated across a large range (from 0.01 to 100 

transcripts per 100K) (Figure 4B). Expression of other gene pairs encoding heteromeric 

receptors (Chrna6/Chrnb3 and Chrna4/Chrnb2) was also well correlated, whereas Chrnb1 
and Chrnb2 were not, consistent with a lack of β1/β2 channels in brain (Figure 4B). These 

correlations match prominent subunit combinations associated at a protein level, suggesting 

nAChR composition is achieved in part by cell-type-specific patterns of RNA expression.

Homomeric nAChR subunits that do not have obligate partners might also lack positive 

pairwise correlations with other subunit genes. Several α-subunit genes had this property, 

including those known (Chrna7, Chrna9, and Chrna10) and others not yet known (Chrna1 
and Chrna2) to form homomeric channels in brain (Gotti et al., 2006). Gene expression 

correlations across cell types recapitulated known nAChR receptor subunit combinations 

(Gotti et al., 2006) more accurately than correlations based on the bulk expression profiles 

for the nine regions (Figure S3B).

Co-expression relationships for other vital gene families are less understood. Neurons attain 

type-specific electrophysiological properties by expressing combinations of voltage-gated 

ion channels (Marder and Goaillard, 2006), but we know little about what combinations of 

channels enact neurons’ distinct physiological properties (Tripathy et al., 2017). We 

therefore evaluated expression pattern correlations for 71 voltage-gated potassium (VGK) 

and sodium (VGNA) channel genes across neuronal populations, focusing on the alpha 

(pore-forming) subunits. We observed strong correlation blocks involving specific subsets of 

VGK and VGNA genes (Figure 4C).

To evaluate whether correlation structure relates to electrophysiological properties, we 

identified neuron populations known to be fast-firing (Figure S3D). One set of co-expressed 

genes encoded proteins that enable fast and persistent action potentials, including the 

Kcnc1–3 (Kv3.1), Kcna1 (Kv1.1) and Scn8a (Nav1.6) channels (Chen et al., 2008; Goldberg 

et al., 2008; Rudy and McBain, 2001) (Figure 4D). Fast-firing cell types expressed high 

levels of Kcnc2/Kcnc1 and Scn1a/Scn8a, variable levels of Kcnc4, and low levels of Scn2a1, 

whose expression was inversely correlated with Kcnc1–3 and Scn1a (Figure 4D). These 

relationships nominate hypotheses about channel contributions to physiological properties: 

for example, Kcnc4 could be a Kv3 family member that tailors membrane properties 

orthogonal to firing frequency, and Scn2a1 might undermine fast-firing.

Finally, we asked what other genes were co-expressed with alpha subunits associated with 

fast-firing (Figure S3E). This collection contained Neurofilament genes (Figure 3), ion 

channels (e.g. Hcn2), and unexpected genes, such as the transcription factor Foxj1 and the 

creatine transporter Slc6a8. Indeed, expression of Slc6a8 and Hcn2 were strongly correlated 

and high in fast-firing cell types (Figure 4E). Our data suggest human neurological 

symptoms associated with Slc6a8 mutations (van de Kamp et al., 2013) may in part be due 

to deficits in fast-firing neurons, consistent with cortical GABAergic synapse loss observed 

in mouse models (Baroncelli et al., 2017). Gene co-expression relationships across large 

numbers of cell types yield new hypotheses about genes, brain circuitry, and disease.
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Cell-type Specialization Between Cortical Poles

The cerebral cortex processes motor, sensory, and associative information and is expanded in 

primates, especially humans (Buckner and Krienen, 2013). Little is known about what 

molecular specializations contribute to region-specific cortical function. We first determined 

how accurately our cortex datasets reflect the true balance of cellular populations in vivo and 

then identified transcriptional specializations within each non-neuronal cell class and across 

glutamatergic and GABAergic neurons.

We tested for distortion of cell type abundance by comparing our frontal cortex dataset to 

tissue (Figure S4D–M and STAR Methods). Neurons were over-represented relative to non-

neurons (Drop-seq: 0.76 ± 02 mean±sem; tissue: 0.51 ± 03) and exhibited a twofold greater 

GABAergic/glutamatergic ratio (ISH: 5.1:1; Drop-seq: 11:1). Both effects could be partially 

explained by cell-inclusion thresholds, in which small but real transcript libraries had been 

excluded from downstream analysis (neurons: 5,039±15 mean±sem; non-neurons: 1,696±9; 

Glu: 5,299±16; GABA: 2,626±21)(Figure S4D–I). Among GABAergic interneurons, Vip+ 

cells were over-represented and Sst+ and Pvalb+ cells were underrepresented (ISH vs Drop-

seq: Vip+, 16% vs 35%; Pvalb+, 31% vs 25%; Sst+, 28% vs 22%), which cannot be 

explained by higher transcript counts (Pvalb+: 2,996 ± 61; Sst+: 2,758 ± 53; Vip+: 2,236 

± 32), suggesting a preferential depletion (Figure S4K–M). We conclude our data exhibit 

modest skews in cellular representation driven by transcript abundance and viability.

To identify molecular specializations across cortical regions, we performed semi-supervised 

ICA on cells from frontal and posterior cortex (grouped together), analyzing each cell class 

separately. Glutamatergic neurons generated more regionally specialized ICs than 

GABAergic interneurons and non-neurons (Figure 5A), and exhibited subclusters with 

skewed regional abundances (Figure 5B–D). Selective markers for these cell subclusters 

confirmed their asymmetric distributions across the cortical mantle (Figure 5D and Figure 

S5). Glutamatergic neurons exhibited unusual regional specialization not only in 

subpopulation representation (subclusters), but in the precise gene expression pattern within 

each subpopulation: far more genes were differentially expressed when comparing regions 

within glutamatergic neuron as opposed to interneuron or non-neuronal subpopulations 

(Figure 5E). All these lines of evidence suggest that regional specializations are driven by 

glutamatergic neurons, consistent with theory from humans and other primates (Krienen et 

al., 2016).

Resolving Neuron Types within the Basal Ganglia

We identified 323 neuronal subclusters across 9 regions (Data S3). Here, we illustrate 

systematic neuron classification using three disease-relevant nuclei of the basal ganglia 

(Albin et al., 1989). Neurons of the striatum have been extensively characterized, yet 

neurons of the globus pallidus externus (GPe) and substantia nigra reticulata (SNr) have 

received less attention (Figure 1 & Data S1).

To define GPe neuron types, we screened markers of global clusters and subclusters for 

expression in the GPe (GP/NB dataset). GPe neurons were present in cluster 2 (n=11,103 

cells), one of three neuron clusters (Figure 6A). Cluster 1 contained cholinergic neurons 
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(n=437 cells) and cluster 3 contained neurons of the adjacent striatum and basolateral 

amygdala (n=9,847 cells). Within cluster 2, 8 of 25 subclusters appeared intrinsic to the GPe 

or adjacent ventral pallidum (VP), of which 4 were GPe-exclusive (Figure 6B–E). The other 

17 subclusters mapped to the thalamic reticular nucleus, the substantia innominata, and the 

lateral olfactory tract (Figure S6A–D).

To associate subclusters with putative neuron types, we compared published GPe markers to 

selective markers we identified (Figure 6D). Only Pvalb and Penk/Foxp2 were selectively 

expressed in GPe subclusters (Kita, 1994; Voorn et al., 1999), suggesting 2–14 represents 

fast-spiking “prototypical” neurons, while 2–19 represents the slow-firing “arkypallidal” 

population (Abdi et al., 2015; Mallet et al., 2012). Interestingly, 2–13 is similar to 2–14, 

sharing markers like Grem1, but is distinguished by stronger expression of Scn4b, Kcnc3 
and other “Neurofilament program” genes (Data S5). The fourth GPe subcluster (2–17) is 

enriched for Elfn1/Grik3 and has not been characterized. Several subclusters (2–15, 2–21, 

and 2–18) expressed markers in the VP and bordering GPe (Figure 6D,E), suggesting neuron 

types shared across regions with different behavioral functions and connectivity (Gittis et al., 

2014; Kita, 2007; Smith et al., 2009). Border-spanning subclusters may explain a neuron 

type that is synaptically incorporated into the GPe, but exhibits VP-like axonal projections 

(Chen et al., 2015; Saunders et al., 2015).

SNr neurons were identified with a similar procedure (SN/VTA dataset). Of 4 global neuron 

clusters (Figure 6F), one (cluster 3, n=10,049 cells) contained SNr neurons (Figure 6G). 

Other clusters contained hippocampal (cluster 1, n=73 cells), thalamic (cluster 2, n=297), 

and dopaminergic (cluster 4, n=1,841) populations. Within cluster 3, 6 of the 19 subclusters 

mapped to the SNr (Figure 6H–J and Figure S6E–H). Two subcluster pairs shared selective 

markers (3–18/3–19: Sema3a, Adarb2; 3–17/3–13: Pax5, Pou6f2), suggesting relatedness, 

but were distinguished by ion channels (Kcnc3, Kcna1), transmembrane proteins 

(Tmem132c), and transcription factors (Pou3f1) that could imply a state or subtype 

distinction (Figure 6I). Of the remaining subclusters, 3–12 expressed Slc17a6±, likely 

corresponding to the glutamatergic projection to thalamus (Antal et al., 2014). Subcluster 3–

2 was Gad2+/Pvalb− and expressed the developmental marker Zfpm2 (Lahti et al., 2016), 

likely representing a third GABAergic type marked by Sox14 and Cplx3 expression (Figure 

6I).

The GPe and SNr abut populations of neuromodulatory neurons that release acetylcholine 

(ACh) or dopamine (DA), respectively. Molecular specializations related to anatomical 

location exist for DA neuron subtypes (Lammel et al., 2008; Poulin et al., 2014), yet it is 

unclear if ACh-releasing neurons exhibit similar heterogeneity and whether this diversity has 

a spatial component.

Subcluster analyses of the dopaminergic (SN/VTA, cluster 4, 919 cells) and cholinergic 

(GP/NB, cluster 1, n=218 cells) clusters revealed that dopaminergic neurons were indeed 

more heterogeneous than the cholinergic neurons (DA: 6 biological ICs, 9 subclusters; ACh: 

2 biological ICs, 2 subclusters)(Figure 6A,F). While aspects of DA diversity related to 

spatial positioning – for example, delineating the dorsal (IC 10) from ventral (IC 12) VTA 

(Figure 6L–N) - cholinergic neurons exhibited only a Neurofilament-like signal (IC 4), with 
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no spatial component (Figure 6O,P). Thus, DA neurons are more transcriptionally 

regionalized than cholinergic neurons. Sampling cholinergic neurons from other areas of the 

basal forebrain (Zaborszky et al., 2013) could reveal additional signals.

Molecular Specializations of Striatal Principal Neurons

Spiny projection neurons (SPNs) represent ~95% of neurons in rodent striatum. Two 

principal categories distinguish SPN subsets. The first – based on divergent axonal 

projections and dopamine signaling – assigns SPNs to similarly numerous “direct” (dSPN) 

and “indirect” (iSPN) pathways (Albin et al., 1989). The second – based on processing 

limbic versus sensory/motor information – groups SPNs into spatial compartments, the so-

called “patch” and “matrix” (Gerfen, 1992; Graybiel and Ragsdale, 1978). Both dSPNs and 

iSPNs are present in the patch and matrix.

Two large clusters corresponded to dSPNs (Cluster 10, n=30,835 cells) and iSPNs (Cluster 

11, n=25,305)(Striatum dataset, Figure 7A,B) and were distinguished by 68 differentially 

expressed genes, including known and undescribed pathway markers (Figure 7C). To 

identify cells from patch and matrix, we inspected transcriptional signals from SPN 

subclustering (dSPN Cluster 10: n=9 biological ICs; iSPN Cluster 11: n=10, Data S6). Each 

analysis identified a single candidate “patch IC” whose most strongly contributing genes 

included known patch markers such as Tac1 and Pdyn. Approximately 10% of iSPNs and 

dSPNs exhibited this patch signal (Figure S7A,B).

To appreciate how the patch/matrix distinction affects pathway specialization, we compared 

gene loadings across the patch-encoding ICs for dSPNs and iSPNs (Figure S7C). We 

observed classic (Tac1) and undescribed (Tshz1) pan-patch markers (Figure S7D) as well as 

genes enriched in either iSPN (Asic4) or dSPN (Necab1) patches (Figure S7E). Our data 

suggest complex SPN specializations across pathways and compartments: the transcriptional 

features endowed by patch compartments are not identical for dSPNs and iSPNs, and some 

of these differences appear to eliminate pathway expression differences found in the matrix 

dSPNs and iSPNs (Figure S7E).

“Eccentric” SPNs: A novel, third axis of SPN diversity

Surprisingly, about 4% of SPNs (Ppp1r1b+) were observed in a third, smaller cluster that 

also expressed Adora2a and Drd1 (cluster 13: n=2,744 cells; 4.5% of Ppp1r1b+ neurons; 

Figure 7A,B). These SPNs differed in expression from dSPNs+iSPNs by 110 genes (more 

than the 68 that distinguished dSPNs and iSPNs from each other) (Figure 7C), and expressed 

many genes that had little expression in the rest of the striatum (Figure 7D). Due to their 

transcriptional divergence from canonical SPNs, we call this population “eccentric” SPNs 

(eSPNs). eSPNs were intermixed with other SPNs in the striatum with no obvious spatial 

organization (Figure 7E,F). Our data account for all known striatal interneuron types (3.9% 

of total neurons)(Tepper and Bolam, 2004), suggesting by exclusion that eSPNs are not 

interneurons. We conclude that eSPNs are striatal principal neurons.

eSPN subclusters (Figure S7F–H) were divided into two major groups (Figure 7H), 

separated by a gene set that included markers used to distinguish canonical iSPNs from 

dSPNs, such as Drd1 and Adora2a (Figure 7I). Expression of markers associated with 
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canonical SPNs suggests eSPNs have been molecularly “camouflaged,” including in studies 

using mice that have employed Drd1 and Adora2a driven–transgenes to label and manipulate 

dSPNs or iSPNs (Heiman et al., 2008; Kozorovitskiy et al., 2012; Kravitz et al., 2012). 

Despite sharing markers, Adora2a+ eSPNs and Drd1+ eSPNs are distinguished from their 

canonical SPN counterparts by expression levels of many genes (Adora2a+ SPNs: 35 genes; 

Drd1+ SPNs: 96 genes; Figure S7I). We validated additional eSPN diversity predicted by 

Drop-seq, including an ultra-rare eSPN Adora2a±/Th±/Npffr1+ subtype (13–5) that accounts 

for just 0.3% of all SPNs (n=88 cells)(Figure 7J). One clue about the anatomical identity of 

eSPNs comes from this small Th+ population, as spiny Th+ principal cells with similar 

spatial arrangement to eSPNs have been observed in striatum and appear to be dynamically 

regulated by dopamine (Darmopil et al., 2008). Subsets of the eSPN class share markers 

previously reported to distinguish SPN subtypes (Gökce et al., 2016).

We conclude that 1) eSPNs represent a third axis of SPN diversity, distinct from the dSPN/

iSPN and patch/matrix distinctions; 2) eSPNs harbor rare, additional molecular diversity; 

and 3) by using markers thought to exclusively distinguish iSPNs from dSPNs, functional 

studies have lumped eSPNs in with canonical SPNs. These results highlight the utility of 

unbiased, high-throughput single-cell methods for defining neuronal populations.

Discussion

The mammalian brain is a mosaic of spatially intermixed cell classes and types. Since Cajal 

and Golgi, single-cell analyses of cell morphology, membranes, and synapses have helped 

illustrate how structure relates to function in neural circuits. High-throughput single-cell-

resolution molecular techniques such as Drop-seq allow newly systematic approaches for 

cataloging the cellular building blocks of the brain.

Here, we analyzed RNA expression in more than 690K individual cells sampled from nine 

different regions of the adult mouse brain, encompassing all brain cell classes. We developed 

an ICA-based computational method that we used to disentangle technical effects from 

endogenous biological signals. We highlighted several ways in which such data identify 

novel cell types, ascertain cell states, and clarify the molecular basis of regionalization 

across brain circuits and cell classes.

Transcriptional variation among individual cells has diverse sources. Cluster-groups derived 

from these and other data should not be reflexively equated with cell “types”. We identified 

categorically distinct patterns of RNA expression originating from cell types, but also 

continuously varying patterns that appeared to correspond to spatial locations and cellular 

states. Our computational approach was critical for recognizing and understanding these 

diverse effects on RNA expression, all of which can simultaneously affect a cell’s RNA 

expression profile. This approach allowed us to identify a transcriptional program we believe 

is enacted to maintain axon and presynaptic function, to different degrees both within and 

across neuron types. We also resolved signals from striatal SPNs representing differences in 

pathway (“direct” versus “indirect”), spatial arrangement (“patch” versus “matrix”), and a 

cryptic molecular SPN distinction (“eccentric” SPNs).
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The size and complexity of single-cell datasets can limit their utilization. To enable diverse 

uses of our atlas, we developed interactive web-based software (DropViz, http://

dropviz.org/) that facilitates access and dynamic exploration of the data. We hope that 

single-cell gene expression profiles, and the patterns present among very many such profiles, 

can function as a lingua franca for discussing – and functionally dissecting – the cellular 

diversity of the adult brain.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information may be directed to Lead Contact Steven A. McCarroll 

(mccarroll@genetics.med.harvard.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell suspensions were generated from adult male mice (60–70 days old; C57Blk6/N). Two 

BAC transgenic mouse lines Ald1l1-EGFP (Jackson Labs, 026033) and Cx3cr1-GFP 

(Jackson Labs, 005582) used in IHC experiments were also included as single replicates in 

the Frontal Cortex Drop-seq dataset. Both transgenics were on a C57BL/6N background. To 

estimate the fraction of cells retained in single-cell suspensions, Nestin-Cre driver mice 

(Jackson Labs, 003771) were bred lox-stop-lox (lsl) ZsGreen Cre-reporter (Jackson Labs, 

007906). Mice were group housed prior to experimentation on a reverse 12-hour light-dark 

schedule. All experiments were approved by and in accordance with Harvard Medical 

School IACUC protocol number IS00000055–3.

METHOD DETAILS

Adult mouse brain single-cell suspensions—Cell suspensions were generated by 

adapting protocols from single-cell patch-clamp recording (Carter and Bean, 2009) and 

digest times were optimized for each region (Table S1). Mice were anesthetized by 

isoflurane inhalation and perfused through the heart with ice-cold Sucrose-HEPES “Cutting 

Buffer” containing (in mM) 110 NaCl, 2.5 KCl, 10 HEPES, 7.5 MgCl2, and 25 glucose, 75 

sucrose (~350 mOsm kg−1). The brain was removed and placed in ice-cold Cutting Buffer. 

Blocking cuts depended on the region of interest and desired slice orientation (Table S1). 

Blocked brains were then transferred to a slicing chamber containing ice-cold Cutting 

Buffer. 400 μm thick brain slabs were cut with a Leica VT1000s vibratome. Slabs containing 

the regions of interest were gently transferred to a dissection dish with ice-cold 

“Dissociation Buffer” containing (in mM): 82 Na2SO4, 30 K2SO4, 10 HEPES, 10 glucose 

and 5 MgCl2. Dissociation Buffer avoided activity-induced toxicity by 1) excluding 

extracellular Ca2+ and 2) utilizing ionic concentrations that maintain voltage-gated Na 

channels in an inactivated state [Vm = −30.5 mV, estimated by the Goldman-Hodgkin-Katz 

equation using the following parameters: Inside(mM): K+ = 140, Na+ = 4, Cl− = 24; 

Outside(mM): K+ = 30, Na+ = 82, Cl− = 5; P: K+ = 1, Na+ = 0.05, Cl− = 0.45; T = 34°C]. 

Regions of interest were gently dissected under visual guidance of a stereoscope (Leica 

MZ10). Dissection also served as a wash step between buffers. Chunks of tissue containing 

the regions of interest were then transferred into 5 ml of “Dissociation + Enzyme Buffer” in 

a 15 ml falcon tube. “Dissociation + Enzyme Buffer” consists of “Dissociation Buffer” with 
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3 mg/ml of Protease XXIII (Sigma-Aldrich, P5380) and 10 units/ml of Papain, 0.5 mM L-

Cysteine and 0.25 mM EDTA (Worthington, LK003153). Digestion was performed at 34 C 

using durations that were optimized for each region in a separate set of experiments (Table 

S1; see below). Tubes containing digested tissue were transferred onto ice and the 

“Dissociation Buffer + Enzyme” replaced with 10 ml of “Dissociation Buffer + Stop 

Solution” containing “Dissociation Buffer” and 1 mg/ml Trypsin Inhibitor (Sigma-Aldrich, 

T6522), 2 mg/ml BSA (Sigma-Aldrich, A2153) and 1 mg/ml Ovomucoid Protease Inhibitor 

(Worthington, LK003153). Tissue chunks were then carefully titrated with a series of n=4 

fire-polished, Pasteur pipets with successively smaller bores. Bubbles were avoided. Falcon 

tubes containing 10 ml of titurated cells were then centrifuged at 300 g for 10 minutes. The 

supernatant was removed and discarded, taking care not to disturb the cell pellet. The pellet 

was then resuspended in 5 ml of “Dissociation Buffer + Stop Solution” and centrifuged 

again using the same conditions. The supernatant was again removed. The cleaned cell pellet 

was resuspended in “Dissociation Buffer” containing 0.01% BSA (w/v; “Dissociation Buffer 

+ BSA”). The volume of resuspension depended on the region (Table S1). Suspensions were 

then passed through a pre-wet 40 μm filter into a new tube on ice. N=2 10 μl samples were 

then drawn from the tube and mixed 1:1 with 10 μl of 2× dye mix containing Dissociation 

Buffer and 20 μM EthD-1 (Thermo Fisher Scientific, L-3224), 20 μM Calcein-AM (Thermo 

Fisher Scientific, L-3224) and 40 μM Hoechst 33342 (Thermo Fisher Scientific, 62249). 

After 5 minutes incubation, 10 μl from each sample was loaded onto a haemocytometer 

(Propper, 090001) and imaged using a fluorescent microscope (Zeiss, Axio Observer Z1). 

For each of the two samples, three random locations were imaged using DIC and three 

fluorescent channels to capture the dyes. These images were used to calculate cell 

concentrations and metrics of cell intactness. Drop-seq analysis was performed on 44 cell 

suspensions, with 3–7 replicates per region.

Characterization of single-cell suspensions

Cell recovery rates from intact tissue: To determine what fraction of total brain cells are 

retained in a single cell suspension, we compared estimates of total cell number from 

stereological counts of tissue to cell totals in suspension. For suspension assays, we 

estimated cell totals from a single 400 μm coronal slab of either Frontal Cortex or dorsal 

Striatum. Stereological assays were performed on a series of thinner, paraformaldehyde-

fixed tissue from the same anterior-posterior location (40 μm; see IHC section for fixation 

procedure). To get total counts, densities were multiplied by volume estimates calculated 

using a thickness of 400 μm and surface area calculated from slide scans of the same tissue 

sections (Olympus VS110). A 10% shrinkage factor due to fixation was taken into account. 

We aided cell counting by using a double transgenic mouse (male, P59–60) carrying a 

Nestin-Cre driver (Jackson Labs, 003771) and lox-stop-lox (lsl) ZsGreen Cre-reporter 

(Jackson Labs, 007906). ZsGreen aids in the identification of single-cells as it is sequestered 

in the soma and proximal processes of cells. Specifically, confocal stacks were obtained with 

a 40× objective using the FV1200 (Olympus). ZsGreen+ and DAPI+ cells were randomly 

sampled within a grid, using bounding box of 5 μm in the Z dimension to avoid over-

counting (Cortex, mouse 1: n=22 stacks, n=181 boxes; mouse 2: n=12 stacks, n=108 boxes; 

Striatum, mouse 1: n=15 stacks, n=1135 boxes; mouse 2: n=16 stacks, n=144 boxes). In 

both Frontal Cortex and Striatum, ~66% of DAPI+ cells were ZsGreen+ on average. To 
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estimate cell totals in suspensions of acute 400 μm slabs of Frontal Cortex or Striatum were 

cut from Nestin-Cre;lsl-ZsGreen mice. We controlled the volume of tissue in each tube by 

processing only one coronal slice / tube at the appropriate anterior-posterior location. We 

resuspended the pellet in 1 mL of Dissociation Buffer + BSA and then re-measured the 

volume to account for extra buffer introduced by filter wetting. 20 μl samples were assayed 

n=3 times on the haemocytometer. Each sample was randomly imaged at n=5 locations. To 

estimate the concentrations of all cells and ZsGreen+ cells, images containing DIC, DAPI 

and ZsGreen channel were analyzed using ImageJ. Sample concentrations were converted 

into an average total number of cells for each experiment using the volume of the 

suspension.

Cell class, type and subtype acquisition bias: To determine in what ways Drop-seq 

datasets are or are not representative of brain tissue, we compared cellular representations 

between tissue and Drop-seq datasets focusing on cell classes, types and subtypes within 

Frontal Cortex.

To evaluate representations at the level of cell class, we performed two sets of stereological 

counting experiments using IHC and transgenic mouse lines. In the first experiment, we used 

the Ald1l1-GFP (Jackson Labs, 026033) line to drive GFP expression in astrocytes and the 

immuno-labeled Neurons using anti-NeuN (Millipore, MAB377) antibody and 

Oligodendrocyte/Polydendrocyte using anti-Olig2 (Millipore, AB9610) antibody. We 

visualized NeuN using a secondary antibody in the red channel (goat-anti mouse 568; 

Abcam, ab175473) and Olig2 (goat-anti Rabbit 647; Abcam, ab150079) in far-red. GFP was 

not immune-enhanced. Sections were mounted in media containing DAPI as counterstain 

(Vector Laboratories, Vectashield). Four sections containing Frontal Cortex were counted 

from n=1 mouse, using n=34 random fields with n=9 boxes sampled from each. In the 

second set of experiments, we replaced Ald1l1-GFP with Cx3cr1-GFP mice (Jackson Labs, 

005582) to label microglia instead of astrocytes. Three sections were counted from n=2 

mice, using n=68 random fields in total with n=9 boxes sampled from each.

To evaluate representations at the level of cell type and subtypes, we used smFISH labeling 

combined with whole-slide imaging to quantify neuron populations in situ. We sampled the 

frontal cortex of n=3 p60 male mice by performing smFISH on every 5th cryosection (18 

sections per animal) followed by whole-slide imaging on a Zeiss Axioscan z1 at 20× 

magnification. For quantification, images were down sampled (Zoom factor × 4) and 

converted to TIFF via the Zeiss CZItoTiffBatchConverter (CZI to Tiff Converter Suite 

software by Zeiss). Regions of interest that approximated the regions microdissected as 

inputs for Drop-seq experiments (i.e. frontal cortex) were defined by hand using a custom 

ROI pipeline in CellProfiler 2.1.1 (Carpenter et al., 2006) and subsequently input into a 

custom CellProfiler cell-counting pipeline. To evaluate cell type comparisons, we assessed 

inhibitory/excitatory ratios, using cocktails of smFISH probes to label GABAergic (Gad1/

Gad2) and glutamatergic (Slc17a6/Slc17a7/Slc17a8) populations (Advanced Cell Diagnostic 

Biosystems). We counted a total of 487,003 glutamatergic and GABAergic neurons total 

from n=3 mice using a custom pipeline in CellProfiler. To evaluate representations at the 

level of subtypes, we focused on cortical interneurons, using smFISH probes against Pvalb, 
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Sst and Vip. We quantified n=68,734 interneurons, calling cells as single, double and triple-

positive population using a second custom CellProfiler pipeline (n= 3 mice).

Nuclei Drop-seq—Frontal cortex sections (400 μm) were flash frozen using liquid 

nitrogen, minced and resuspended in 4 mL, then passed through a 20 μm then a 5 μm filter 

before being centrifuged for 10 minutes at 500 g. The pellet was then resuspended in 1 mL 

of “Dissociating Buffer” (see above). Isolated nuclei were Hoechst stained and counted, then 

analyzed in standard Drop-seq devices at a concentration of 176 nuclei/μL.

Immunohistochemistry, smFISH and Stereology

smFISH: Mouse brains were extracted, flash frozen in liquid nitrogen, and embedded in 

OCT (Sakura Tissue-Tek ref 4583). Frozen, 14 μm, coronal sections were cut on a cryostat 

(Leica CM 1950) and processed for 3-color smFISH according to the ACD RNAScope 

multiplexed fluorescent protocol for fresh frozen tissue (ACD user manual document 

numbers 320513 & 320293). Briefly, sections were post-fixed in 4% PFA (Electron 

Microscopy Sciences) in PBS for 15 minutes, followed by alcohol dehydration. Sections 

were permeabilized with the proprietary protease cocktail in “pretreat IV” followed by target 

probe hybridization (Key Resources). For each experiment, ACD 3-plex positive control and 

3-plex negative control probes were run alongside target probes to ensure tissue quality and 

control for background respectively. Probes were visualized with the ACD “Alt-B” color 

module across all experiments. For puncta counting experiments, stacks were acquired Leica 

SP8 at 63× magnification (n= 4–10 Z planes, 1 μm steps). In situ expression was quantified 

by smFISH puncta counting in Pvalb+ cells using maximum projections through confocal 

stacks acquired in Frontal Cortex. Soma were manually segmented based after Gaussian-

filtering Pvalb puncta. The resulting regions of interest (ROIs) were used as masks for 

analysis of other fluorescent channels. ROIs contained DAPI nuclei and exhibited little 

overlap. Manual segmentation and automated puncta detection/surface area measurements 

were implemented in CellProfiler 2.1.1 (Carpenter et al., 2006).

IHC: Mice were deeply anesthetized with isoflurane and transcardially perfused with 4% 

paraformaldehyde (PFA) in 0.1 M sodium phosphate buffer (1× PBS). Brains were post-

fixed for 1–3 days, washed in 1× PBS and sectioned (40 μm) coronally using a Vibratome 

(Leica). Slices were then immunostained for antibodies described. Slices were incubated in a 

1× PBS blocking solution containing 5% normal horse serum and 0.3% Triton X-100 for 1 

hour at room temperature. Slices were then incubated overnight at 4°C in the same solution 

containing primary antibodies at the following concentrations (1:100, NeuN; 1:500, Olig2; 

see above section “Cell class, type and subtype acquisition bias in Drop-seq datasets” for 

antibody details). The next morning, sections were washed three times for five minutes in 1× 

PBS for and then incubated for 1 hour at room temperature in the blocking solution 

containing donkey anti-goat Alexa 647 or Alexa 568. After drying, slices were mounted on 

slides (Super Frost) and allowed to dry. ProLong antifade mounting media containing DAPI 

(Molecular Probes) was applied and slides were coverslipped and sealed.

Drop-seq library preparation and sequencing—Drop-seq libraries were prepared as 

previously described (Macosko et al., 2015)(Drop-seq protocol v3.1), with full details 
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available online (http://mccarrolllab.com/dropseq/). Deviations from the original protocol 

are noted. Cell and bead concentrations were matched to two different sets of PDMS devices 

generating droplet of different volumes such that the lambda loading parameter for cells was 

0.08–0.1 and for 0.09–0.13 for beads. Cell suspensions were diluted with using room 

temperature “Dissociation Buffer + BSA.” For device A (droplet diameter: 125 μm; droplets/

μl: 980), cells were loaded at 100 cells/μl (λcell = 100/980=0.1). For device B (droplet 

diameter: 100 μm; droplets/μl: 2631), cells were loaded at 220 cells/μl (λcell = 

220/2631=0.08). Bead concentrations of 125 beads/μl (A) and 250 beads/μl (B) achieved 

λbeads between or 0.09 (A) and 0.13 (B). Flow rates for cells/beads were 1.8 – 4 mL/hr, 

adjusted to the highest value possible while ensuring homogenous droplet sizes. Oil flow 

rates were between 13–15 mL/hr. Cell suspensions were split between two Drop-seq rigs to 

reduce runtime. Drop-seq encapsulation was performed within 2 hours after suspension 

preparation. Drop-seq conditions for nuclei paralleled those outlined for cells (λnuclei ~ 

0.08). The molecular workflow for Reverse Transcription, cDNA Amplification, 

Tagmentation and Sequencing follows that of Macosko et al. Note, the number of beads and 

corresponding STAMPs that were pooled for SMRT cDNA amplification varied between 2–

8K beads/reaction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Distinguishing single-cell libraries—To identify Drop-seq beads that hybridized 

mRNA from intact cells versus mRNAs in solution, we plotted total library size (UMI 

counts) versus the library fraction corresponding to mitochondrial and ribosomal transcripts. 

We reasoned that since mitochondrial/ribosomal transcripts are present at high-concentration 

in the suspension, their abundance could serve as a signature for non-cellular (ie 

background/ambient) hybridization. To identify beads containing cellular libraries, we 

plotted the library size versus library fraction attributed to mitochondrial/ribosomal 

transcripts.

These two-dimensional plots revealed three regions of density:

1. Large cell libraries with low fractions of mitochondrial and ribosomal transcripts 

corresponding to cell-bead interaction events

2. Small cell libraries with high fractions of mitochondrial and ribosomal 

transcripts corresponding to background-bead interactions

3. Small libraries with low fractions of mitochondrial and ribosomal transcripts that 

likely represent libaries that have splintered from a larger, “sibling” library due to 

mutations incurred in the cell barcode during amplification.

To distinguish these groups, we used an automaton-based approach to distinguish 

“watershed boundaries” allowing us to define borders for each region of density.

Pre-processing of Drop-seq data—Illumina sequencing data were aligned to a 

composite genome consisting of GRCm38.81 and transgenes as previously described 

(Macosko et al., 2015). Full details are available online (http://mccarrolllab.com/wp-content/
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uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf). Digital gene expression 

(DGE) matrices from each sequencing pool were compiled before ICA-based analysis.

ICA based analysis and clustering—Analysis of Drop-seq data was performed using 

two iterative rounds of independent component analysis (ICA) on each of the nine tissue 

regions separately (first round, “Global clustering”; second round, “Subclustering”). 

Function definitions and parameter settings of all operations performed are provided. In the 

first stage, digital gene expression matrices were column-normalized. Cells with fewer than 

400 expressed genes were removed from analysis. To identify a set of highly variable genes, 

we first calculated the average mean and variance of each gene, and selected genes that 

were: (1) 0.1 log10 units above the expected variance for a perfectly Poisson-distributed 

gene of equivalent mean expression; and (2) above a Bonferroni-corrected 99% confidence 

interval defined by a normal approximation of a Poisson distribution. These selected genes 

were then centered and scaled across all cells, and ICA was performed with 60 components 

(except for cerebellum, where only 30 components were used), using the fastICA package in 

R. Clustering of these components was performed by a very similar process to that of the R 

package Seurat(Gierahn et al., 2017; Satija et al., 2015): a shared nearest neighbor (SNN) 

graph was generated, setting the k parameter to 25 from a distance matrix computed in IC 

space. Next, clustering of this graph was performed with the smart local moving algorithm 

(SLM)(Waltman and van Eck, 2013), a modularity-based approach to detecting 

communities, using a resolution setting of 0.01. This produced 11–22 Global clusters across 

the nine different tissues, partitioning cells into broad “classes.”

To identify finer substructure amongst these classes, classes with more than 200 cells were 

selected for subclustering. The largest 50% of the cells from each of these clusters was 

subjected to a variable gene selection, scaling, and independent component analysis. The 

independent component space is highly dependent on the number of components K that are 

selected for computation. To automatically nominate a value for K, we took advantage of the 

fact that the fastICA algorithm begins with a whitening step, in which a singular value 

decomposition is used to select the top K eigenvectors (i.e. principal components) for 

maximization of non-Gaussianity(Hyvärinen, 1999). We therefore calculated the number of 

statistically meaningful principal components using the Jackstraw method (Chung and 

Storey, 2015), to obtain a suitable value for K. In almost all instances of subclustering, this 

value was used, with a few exceptions where K was increased slightly. These values of K 

were then used to compute ICs for each subclustered class.

A total of 1,758 ICs, distributed across 11 cell classes, were then individually manually 

curated for inclusion in clustering. By studying gene loadings and cell scores, each IC was 

assigned to one of four “status” categories:

1. Doublet (n=759), in which top loading genes were identified as markers of 

another cell class (e.g. microglial genes seen in the analysis of a neuronal cell 

class);

2. Outlier (n=99), in which only a small number of cells (less than five) showed 

high cell scores;
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3. Artifact (n=315), in which either: (a) cell scores showed obvious replicate-

specific biases, or (b) the top loading genes largely intersected with those 

observed to vary strongly with digest time (Figures 3 and S3), or contained many 

heat-shock proteins;

4. Biological (n=601), in which the IC signal is believed to be likely biologically 

meaningful (or cannot be confidently assigned to categories 1, 2, or 3).

To detect and remove cells with high scores on doublet and outlier ICs, we simulated a 

Gaussian centered at the mode of the IC cell loading distribution, and flagged cells that were 

situated at the far-right of the distribution. The mode was detected by performing a kernel 

density estimation of the IC loadings using the density() function in R, and the standard 

deviation was calculated across all scores for that IC. Doublets and Outliers were identified 

as cells whose upper-bound p-value was less than 0.01 (FDR-corrected). Only ICs annotated 

as Biological ICs were included in the generation of the SNN graph for clustering; Technical 

ICs (Doublet, Outlier, and Artifact) were not included. We note however, additional 

“technical” influences may exist in Biological ICs. Our goal was to subcluster the data such 

that, as best as possible, cells with strong cell loading for each Biological IC defined their 

own particular subcluster. To do this, we clustered the cells across a range of the parameters 

k (number of nearest neighbors used in SNN generation) and r (resolution parameter in 

SLM), inspected the resulting clusters for enrichment for specific ICs, and selected a 

specific pair of parameters k and r that maximized the 1:1 correspondence between IC and 

subcluster (Figure S2J,K).

Cross-cortex analysis—Drop-seq profiles from six classes—excitatory neuron 

(n=82,936 cells), inhibitory neuron (n=7,783), oligodendrocyte/polydendrocyte (n=3,505), 

microglia/macrophage (n=1,027), astrocyte (n=7,782), and fibroblast-like/endothelial 

(n=3,578) — were individually extracted from the Frontal and Posterior Cortex DGEs, and 

run through a single round of the ICA analysis pipeline described above. To calculate the 

regional skew of ICs (Figure 5A), cells from each region were downsampled to equal 

representation, and each IC that passed curation was manually thresholded (by examining 

that IC’s cell score distribution) to identify cells with positive IC scores. The skew was the 

fraction of supra-threshold frontal cortex cells divided by the total number of positive cells 

(Skew score is 1 if only FC cells contribute and 0 if only PC cells contribute; Equal 

contribution is 0.5). Biological ICs were used to generate subclusters within each cell class 

analysis. Subclusters were classified as having FC versus PC skew if they 1) exhibited >3:1 

compositional difference between FC and PC and 2) P < 0.05 (Bonferroni-adjusted) using 

Barnard’s exact test. To quantify the number of differentially expressed genes between 

frontal and posterior cortical cells within each subcluster, differential expression was 

performed using the binomTest from the edgeR package (Robinson et al., 2010), using a 

fold-change threshold of 2, and a Bonferroni-adjusted P-value of 0.05.

Correlation analysis across cell populations—We generated subcluster-level profiles 

by summing the integer counts of each cell in each subcluster together to form 565 distinct 

profiles (Figure S7A,B). To compare pairwise correlations across nAChR subunits, all 565 

profiles were selected and normalized to 100K UMIs. Pearson correlations were calculated 
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across all genes using linear expression data and grouped via hierarchical clustering using 

the heatmap.2 function of the gplots R package. Note, Chrna3/Chrnb4/Chrna5 are adjacently 

located on chromosome 9; Chrna4/Chrnb2 genes are on chromosome 2 and 3, respectively. 

For voltage gated Na and K alpha subunit analysis, only the 323 profiles corresponding to 

neurons were used and the gene set was thresholded to include only those genes with > 1 out 

of 100K transcripts. Scatterplots of profile expression were displayed in log10 space.

Neuron classification in the GP/NB and SN/VTA—In dot plots, dot diameter 

represents the fraction of cells within a subcluster where a transcript was counted. Colors 

represent average single-cell scaled expression value (out of 100K UMIs, log10).

Transcriptional diversity of striatal SPNs—To identify differentially expressed genes 

across SPN populations, we first generated subcluster-level profiles by summing the integer 

counts of each cell in each SPN subcluster. Differentially expressed genes exhibited >2 fold 

differences and had P<10−100 based on the binomTest (Robinson et al., 2010) and were 

visualized in SPN scatterplots with large, dark dots. Non-eSPN subclusters (13–6, 13–7, 13–

8, 13–9 and 13–10) were excluded from the differential expression analysis described in 

Figure S7I.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is GEO: GSE116470. 

Processed sequencing files – including single-cell DGEs for each region and DGEs of cell 

populations based on subcluster assignments – are also available from the DropViz website 

(http://dropviz.org/).

ADDITIONAL RESOURCES

Dropviz—To present data for exploration, analysis and sharing, we developed a web-based 

application called DropViz. The application allows a user to filter cells in the atlas data by 

brain region, cell class, cell cluster and cell type. The application displays global and cluster-

specific t-SNE plots of the filtered cells. Users can also search by gene name and then 

overlay relative gene expression on t-SNE plots or display a ranked plot of gene expression. 

The application provides a scatter plot to compare the relative expression between two cell 

sets, which allows for the identification of differentially expressed genes. The source code is 

available at https://github.com/broadinstitute/dropviz.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Sample insights:

• Systematic survey of molecular diversity across all cell classes

• Neuronal “Neurofilament” program & co-regulation of ion channels

• Glutamatergic neurons specialize cortical regions

• Neuronal classification within the basal ganglia, including a rare population 

of striatal SPNs
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Highlights

• 690K individual cells analyzed from nine regions of adult mouse brain

• RNA expression patterns corresponding to cell types, states and locations

• Transcriptional programs supporting axonal function and neuronal 

specializations

• Online data resource “DropViz”

Sampling across multiple brain regions identifies hundreds of transcriptionally distinct 

groups of cells and reveals large-scale features of brain organization and neuronal 

diversity
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Figure 1. Single-cell transcriptional profiling of the adult mouse brain using Drop-seq and 
identification of transcriptional programs with independent component analysis
(A) Sagittal schematic illustrating profiled brain regions and numbers of cells sampled 

(anatomical detail in Data S1). (B) Workflow for semi-supervised Independent Components 

Analysis (ICA)-based signal extraction and clustering (STAR Methods). In stage 1, the DGE 

matrix is clustered into cell classes (Figure S1) using ICA (“global clustering”). In stage 2 

(“subclustering”), the process is repeated for each individual cluster from stage 1. In stage 2, 

however, the resulting ICs are curated as “technical” or “biological” with only “biological” 

ICs used as input for subclustering. (Figure S2) (C) tSNE plots for frontal cortex global 

clustering (left) and two representative subclusterings, GABAergic interneurons (cluster 1) 
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and glutamatergic layer 2/3 and a subset of layer 5 neurons (cluster 6). (D) Examples of 

heterogeneous “Biological” ICs from frontal cortex cluster 6, representing a cell state (top, 

IC 16), cell type (middle, IC 22), and spatial anatomical signal (bottom, IC 29). For each 

example, a cell-loading tSNE plot, gene loading plot, and in situ hybridization experiment 

(Allen Mouse Brain Atlas, “Allen”) for a top-loading gene are shown from left to right. IC 

16 corresponds to the immediate early gene signal. The IC 22 signal originates from layer 5a 

glutamatergic neurons, as suggested by Deptor expression. IC 29 represents a spatial signal, 

evidenced by a medial to lateral gradient of Lypd1. (E) Correspondence between 

heterogeneous transcriptional signals (biological ICs) and subclusters identified by 

modularity-based clustering (STAR Methods). Cell loadings for Biological ICs from frontal 

cortex cluster 6 and the resulting n=5 subclusters identified. Alternative subcluster solutions 

are shown in Figure S2K.
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Figure 2. Comprehensive description of transcriptional diversity within non-neurons as 
illustrated by cell classes of the vasculature.
(A) Number of Biological ICs identified during curation for each non-neuronal cell class. 

All non-neuronal ICs are shown in Data S4. (B) Vasculature cell classes. (C-E) Subcluster 

assignments and examples of two biological ICs for each vasculature cell class. Subclusters 

(color-coded), IC cell-loadings, and gene expression values displayed on tSNE plots. Left, 

subcluster assignments. Middle, IC cell- and gene-loadings. For each IC, the top ten loading 

genes are listed. Right, expression plots for individual genes. For Mural Cell IC 19, the 

bottom loading gene Acta2 is shown in purple. (F) Dot plots illustrating fractional 
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representation of cells from each region contributing to fibroblast-like and endothelial 

subclusters. Other non-neuronal cell classes are shown Data S4H.
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Figure 3. A prevalent expression program in neurons related to axon structure and presynaptic 
function
(A) Hierarchical clustering of pairwise Pearson correlations of gene-loading scores for 

biological ICs from 45 neuronal subclustering analyses. Right, enlargement of boxed region. 

Correlation blocks correspond to the immediate early gene (“IEG”) transcriptional state, 

thalamus-specific ICs (“TH”), or “Neurofilament” ICs, which are contributed from different 

regions and driven by genes that encode neurofilament subunits and other proteins involved 

in Ca2+ handling, vesicle exocytosis, and membrane excitability. (B) The Neurofilament 

transcriptional signal (IC 17) in frontal cortex Sst+/Pvalb+ interneurons (Cluster 2). Left, IC 

17 cell-loadings displayed on subcluster tSNE plot. Right, gene-loading plot, with the top 20 

genes shown. (C) Color-coded subcluster identities for frontal cortex cluster 2. N=10 

subclusters were based on n=9 biological ICs. The graded loading of IC 17 is discretized 
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into subclusters 2–8, 2–7, and 2–9. (D) Single gene expression plots. (E) Comparison of 

Neurofilament (Syt2, Pvalb, and Nefm) and control gene (Gabra4) single-cell transcript 

counts across Pvalb+ subclusters from Drop-seq. Transcript means were compared with a 

one-way Anova. Asterisk, P < 0.05; n.s P > 0.05. Tukey Honest Significance Difference 

Test. (F-G) Neurofilament gene and control gene in situ transcript count experiments within 

Pvalb+ frontal cortex cells using smFISH. Left, example single confocal planes. Right, 

quantification of transcript densities. Pvalb+ cells were split into n=3 groups based on Syt2 
levels (low, medium, and high) mimicking subclusters 2–9, 2–7, and 2–8. Differences in 

transcript densities were statistically tested as in (E). Longer arrows indicate higher Pvalb 
expression. (F) Experiment 1, Pvalb, Syt2, and Nefm. (G) Experiment 2, Pvalb, Syt2, and 

Gabra4 (control).

(H) The Neurofilament IC is observed in flash-frozen nuclei from frontal cortex. The 

Neurofilament (IC 25) cell-loading signal distribution across the Sst+/Pvalb+ interneuron 

subcluster. Left, cell-loadings displayed on subcluster tSNE plot. Right, gene-loading plots 

with top 20 genes are shown.
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Figure 4. Inferring ion channel gene-gene co-expression relationships across hundreds of brain 
cell types and states
(A-B) Nicotinic acetylcholine receptor (nAChR) subunit co-expression correlations across 

565 brain cell populations. (A) Hierarchical clustering of pairwise correlations of n=16 

nAChR subunit genes (color-coded by family). (B) Scatterplots of subunit expression (log10 

scale). (C-E) Correlation structure among voltage-gated (VG) Na and K channels measured 

from 323 neuronal populations. (C) Hierarchical clustering of pairwise expression 

correlations. The VGK (n=17) and VGNA (n=1) alpha subunit families are color-coded and 

labeled. The correlation block containing channels known to control firing rate is shown 

with an arrow. (D-E) Select pairwise subunit expression correlations. Neuronal populations 

known to exhibit fast firing rates are shown in red (Figure S3D). Slc6a8 and Hcn2 were 

frequently correlated with the alpha subunit genes that putatively encode firing rate (Figure 

S3D). See also Figure S3.
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Figure 5. Excitatory glutamatergic neurons underlie regional specialization in cortex.
(A) Relative contributions of frontal (FC) vs posterior (PC) cortex cells to biological ICs in 

six separate cell-class analyses. IC Skew is 1 if only FC cells contribute and 0 if only PC 

cells contribute; equal contribution is 0.5 (dotted line). (B-D) Subcluster analyses illustrate 

stronger regionalization for excitatory neurons than other cell classes across cortical regions. 

(B) Subcluster tSNE plots for six cell classes. Cells are color-coded by region (left) and 

subcluster (right). Total numbers of subclusters are shown. (C) Representation of FC vs PC 

cells within subclusters. Dot size denotes fractional representation; asterisks denote 

significant FC vs PC difference (> 3:1 compositional skew and P < 0.05, Barnard’s test, 

STAR Methods). (D) Top left, tSNE plot of excitatory neurons color-coded by region. Top 

right, expression of Sccpdh and Whrn, genes enriched in subclusters disproportionately 

composed of FC or PC cells, respectively (Figure S5). Bottom, ISH (Allen). High 
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expression, long arrow; Medium expression, short arrow. (E) FC-PC expression differences 

within cell populations. Barplot shows the number of differentially expressed genes between 

FC and PC cells within each subcluster (> 2-fold change, P < .05, Bonferroni corrected). See 

also Figure S4 and Figure S5.
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Figure 6. Transcription-based identification of known and novel neuron type distinctions within 
the basal ganglia.
(A-E) Globus pallidus externus (GPe). (F-J) Substantia nigra reticulata (SNr). (K-O) 

Dopaminergic vs acetylcholinergic neuromodulatory neuron populations. (A) tSNE plot of 

color-coded global clusters (n=11) for GP/NB dataset. Clusters 1, 2, and 3 are neuronal. (B) 

Subclusters within cluster 2. Black subclusters correspond to those of GP/NB. (C) 

Subclusters color-coded by candidate anatomical regions, inferred by ISH expression 

patterns of selective marker genes (Figure S6) and consistent with dissections (Data S1). 

Ventral pallidum (VP), substantia innominata (SI), striatum (STR), lateral olfactory tract 

(LOT), rostral entopeduncular nucleus (EP) and the thalamic reticular nucleus (TRN). (D) 

Dot plot illustrating the expression patterns of neurotransmitter genes, neuron type markers 
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from the literature and novel markers identified here. (E) ISH experiments (Allen) 

illustrating expression within the GPe and/or VP (sagittal sections). Dotted line approximate 

boundaries. (F) tSNE plot of color-coded global clusters (n=14) for substantia nigra/VTA. 

Clusters 1, 3, and 4 are neuronal. (G) Subcluster structure within cluster 3. Black subclusters 

correspond to those of SNr. (H) Candidate anatomical regions inferred by ISH (Figure S6). 

Ventral tagmental area (VTA), red nucleus (RN), supramammillary nucleus (SuM), thalamus 

(TH), and deep mesencephalic nucleus (DpMe). (I) Dot plot as in (D). Genes for 

neurotransmitters, current SNr markers, and novel markers identified here. (J) ISH 

experiments (Allen) illustrating expression within the SNr (sagittal sections). (K) 

Subclusters within Th+/Ddc+ dopaminergic cluster 3 from the SN/VTA dataset. (L-M) 

Example cluster 3 ICs that encode spatial signals within the SNc/VTA. (L) IC cell loadings 

displayed on tSNE plot. (K). IC gene-loadings. Top ten genes shown at right.

(L) ISH experiments (sagittal sections) for Lpl (IC 10, top) and Aldh1a1 (IC 12, bottom). IC 

10 identifies the dorsal VTA, while IC 12 identifies the ventral VTA and SNc (Allen). (O-P) 

Minimal heterogeneity identified within Chat+/Slc5a7+ cholinergic cluster 1 from the 

GP/NB dataset. (O) Plot of IC 4 cell-loadings. Based on IC 4, cells are assigned as 

subcluster 1–1 or 1–2. (P) IC 4 gene-loading plot. Top ten loading genes suggest a 

Neurofilament-type signal (Figure 3).
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Figure 7. Eccentric spiny projection neurons represent a third axis of SPN diversity
(A) tSNE plot of color-coded global clusters (n=15) for striatum dataset. Clusters 10, 11, and 

13 are presumed SPNs. (B) Expression plot of pan-SPN marker Ppp1r1b, direct pathway 

SPN (dSPN) marker Drd1, and indirect pathway SPN (iSPN) marker Adora2a. Ppp1r1b+ 

cells within Cluster 13 are eccentric SPNs (eSPN). (C) Mean expression comparisons 

between SPN populations (log-normal scale). Left, cluster 10 vs cluster 11 (iSPN vs 

dSPNs). Right, cluster 13 vs clusters 10 and 11 (eSPNs vs d/iSPNs). Differentially expressed 

genes (fold ratio > 2 and P < 10−100 by binomTest (Robinson et al., 2010), STAR Methods) 

are shown with dark dots and totals listed above. Red arrow indicates selective expression in 

eSPNs. (D) Expression plot of n=4 genes (Casz1, Otof, Cacng5, and Pcdh8) enriched in 

eSPNs vs d/iSPNs (red arrow in C). Across all global clusters, genes are highly enriched in 

cluster 13 (red arrows). (E-F) eSPNs are anatomically dispersed throughout the striatum. (E) 
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Single confocal planes from smFISH experiments validating co-expression of pan-SPN 

(Ppp1r1b) and highly-selective eSPN markers (Cacng5, Otof, and Casz1) in dorsal striatum. 

Top, Ppp1r1b, Cacng5, and Otof. Bottom, Ppp1r1b, Cacng5, and Casz1. Arrowhead 

indicates triple-positive cells. (F) Locations of triple positive Ppp1r1b, Cacng5, and Otof 
cells on a schematic of coronal striatum. D, dorsal; V, ventral; L, lateral; M, medial. (G) 

Color-coded subclusters from cluster 13. Subclusters 13–1, 13–2, 13–3, 13–4, and 13–5 

correspond to eSPNs (83% of cells, black labels). The identity of other subclusters (17% of 

cells, gray labels) is described in Figure S7. (H) Expression plot of pan-SPN (Ppp1r1b), pan-

eSPN (Otof), dSPN (Drd1), iSPN (Adora2a), subcluster 13–5 (Th, Npffr1) markers. (I-J) 

Single confocal planes from smFISH experiments validating co-expression of markers in 

dorsal striatum. Arrowhead indicates triple-positive cells. (I) Co-expression of Otof with 

Adora2a and Drd1. (J) Co-expression of subcluster 13–5 markers. Triple-positive cells in 

dorsal striatum are indicated with white arrowheads. Top, Adora2a, Th, Otof. Bottom, 

Adora2a, Th, Npffr1.
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