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SUMMARY

The large-scale organization of dynamical neural activity across cortex emerges through long-

range interactions among local circuits. We hypothesized that large-scale dynamics are also shaped 

by heterogeneity of intrinsic local properties across cortical areas. One key axis along which 

microcircuit properties are specialized relates to hierarchical levels of cortical organization. We 

developed a large-scale dynamical circuit model of human cortex that incorporates heterogeneity 

of local synaptic strengths, following a hierarchical axis inferred from magnetic resonance 

imaging (MRI)-derived T1- to T2-weighted (T1w/T2w) mapping and fit the model using 

multimodal neuroimaging data. We found that incorporating hierarchical heterogeneity 

substantially improves the model fit to functional MRI (fMRI)-measured resting-state functional 

connectivity and captures sensory-association organization of multiple fMRI features. The model 

predicts hierarchically organized higher-frequency spectral power, which we tested with resting-
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state magnetoencephalography. These findings suggest circuit-level mechanisms linking 

spatiotemporal levels of analysis and highlight the importance of local properties and their 

hierarchical specialization on the large-scale organization of human cortical dynamics.

In Brief

Demirtaş et al. report a large-scale circuit model of human cortex incorporating regional 

heterogeneity in microcircuit properties using T1w/T2w mapping for parametrization across the 

cortical hierarchy and fitting models to resting-state functional connectivity. This study shows that 

hierarchical heterogeneity provides an organizing principle for spatiotemporal dynamics of human 

cortex.

INTRODUCTION

Spatiotemporal dynamics of a neural system are shaped by structural constraints on 

interactions among the system’s components, as well as intrinsic dynamical properties of 

those components. An open question in systems neuroscience is how areal heterogeneity of 

local circuit properties across cortex shapes large-scale structure-function relationships. 

Hierarchical organization provides a parsimonious principle for anatomical properties of 

inter-areal connections in primate cortex (Felleman and Van Essen, 1991; Dombrowski et 

al., 2001; Markov et al., 2014). Anatomically defined cortical hierarchy aligns with sensory 

processing hierarchies, with early sensory areas at lower levels and association areas at 

higher levels (Felleman and Van Essen, 1991; Markov et al., 2014). Functional and 

dynamical properties (Murray et al., 2014; Honey et al., 2012), as well as specialization of 

cortical microcircuitry (Burt et al., 2018; Chaudhuri et al., 2015), vary across hierarchical 

levels, yet it is unclear how hierarchical specialization of local circuit properties across 

human cortex shapes the large-scale organization of neural dynamics.

Advances in magnetic resonance imaging (MRI) have provided noninvasive methods for 

characterizing large-scale connectivity in the human brain at the structural and functional 

levels. Structural connectivity (SC) is often inferred from diffusion MRI (dMRI), which 

aims to quantify the density of anatomical fibers linking brain regions. The functional 

organization of human brain activity has been studied most extensively through functional 

MRI (fMRI) measurements of blood-oxygen-level-dependent (BOLD) signals. Resting-state 

functional connectivity (rs-FC) provides a measure of temporal correlations in spontaneous 

activity between regions and has revealed an intrinsic architecture of the human brain (Cole 

et al., 2014). Recent findings suggest that hierarchy may be a useful principle for rs-FC 

patterns in human cortex (Margulies et al., 2016), including capturing sensory-association 

differences in inter-individual variation (Mueller et al., 2013; Finn et al., 2015) and 

dysfunction in disease states (Baker et al., 2014; Yang et al., 2016).

Computational models of large-scale brain circuits propose dynamical circuit mechanisms 

linking the structural and functional organization of human cortex. In a major class of 

biophysically based dynamical models, large-scale patterns of rs-FC arise through 

physiological dynamics of local cortical circuits interconnected through long-range 

structural connections (Deco et al., 2011; Breakspear, 2017). Importantly, simulated 
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functional connectivity (FC) in these models is shaped by the physiological properties of the 

local circuits, such as strengths of excitatory and inhibitory synaptic connections (Deco et 

al., 2013, 2014; Yang et al., 2014). However, the role of inter-areal heterogeneity of local 

circuit properties has not been systematically studied in large-scale models of human cortex.

Microcircuit specialization across human cortex can be informed by structural neuroimaging 

measures of cortical architectural variation. In particular, the MRI-derived contrast ratio of 

T1- to T2-weighted (T1w/T2w) maps has been proposed to provide an in vivo measure of 

intracortical myelin content (Glasser and Van Essen 2011; Glasser et al., 2014). Cortical 

myelin content has been observed to correlate with a prominent sensory-association gradient 

in rs-FC variation (Margulies et al., 2016; Huntenburg et al., 2017). Burt et al. (2018) found 

that the T1w/T2w map provides a noninvasive neuroimaging proxy measure of anatomical 

hierarchy in primate cortex. Multiple aspects of hierarchical specialization, including in 

excitatory and inhibitory microcircuitry, vary along this cortical axis. In the human cortex, 

the T1w/T2w map captures the dominant areal pattern of variation in gene expression (Burt 

et al., 2018). We hypothesized that hierarchical specialization of local microcircuitry across 

human cortex, as captured by T1w/T2w maps, shapes the large-scale organization of rs-FC.

To address these issues, we developed a large-scale cortical circuit model incorporating 

hierarchical heterogeneity of local microcircuit properties and quantitatively fit the model 

using multimodal human neuroimaging data from the Human Connectome Project (HCP) 

(Van Essen et al., 2013). We used the T1w/T2w map to parametrize hierarchical 

heterogeneity in local synaptic strengths across cortical areas. Compared to a model with 

homogeneous microcircuit properties across areas, this heterogeneous model better captured 

empirical rs-FC patterns, with the T1w/T2w map providing a preferential axis for areal 

heterogeneity. Furthermore, the model predicts a hierarchical axis of specialization for 

spectral features of higher-frequency neural dynamics, which we found to be consistent with 

resting-state magnetoencephalography (MEG). Our study provides a computational 

framework to study how areal specialization of microcircuitry shapes large-scale network 

function of the human brain, opening applications to neuropsychiatric disorders and 

pharmacological effects.

RESULTS

We first describe the computational framework for the large-scale circuit model of human 

cortex, incorporating areal heterogeneity of local properties, which we applied to the HCP 

multimodal neuroimaging dataset from a large number of healthy subjects (n = 334) (Figure 

1A). The cortical surface was parcellated into multiple contiguous areas. Here, we applied a 

recently developed multimodal parcellation from the HCP, which yielded 180 cortical areas 

per hemisphere (Glasser et al., 2016). Each cortical area was modeled as a local circuit 

comprising excitatory pyramidal neurons and inhibitory interneurons coupled through 

recurrent synaptic interactions, with neurophysiologically interpretable parameters 

governing local dynamics, as described below. Areas in the large-scale network interact via 

structured long-range excitatory projections constrained by a matrix, derived here from 

dMRI and probabilistic tractography (Figure S1). We simulated only within-hemisphere 

interactions to focus model fitting on capturing the network structure of rs-FC and because 
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dMRI is limited in mapping callosal projections. The SC matrix thereby provides a 

structural scaffold for long-range neural interactions in the model.

The model simulates time-varying activity of excitatory and inhibitory neuronal populations 

in a local circuit for each cortical area. For computational tractability of model fitting, as 

well as mathematical analysis of the system, we used a reduced mean-field approximation of 

synaptic dynamics for each neuronal population in the network (Wong and Wang, 2006; 

Deco et al., 2013, 2014). Populations receive synaptic input from multiple sources, with 

contributions from the fluctuating background, local recurrent connections, and long-range 

connections from other areas, which induces structured correlated fluctuations across the 

network. Each local node is characterized by two synaptic parameters, which set the 

strengths of local excitatory-to-excitatory (WEE) and excitatory-to-inhibitory (WEI) 

connections. The inhibitory-to-excitatory strength (WIE) was set to maintain a uniform 

baseline firing rate, dependent on theother parameters (Deco et al., 2014) (Tables 1 and 2). 

Global coupling parameters g{L,R}scale the strengths of long-range interactions within the 

left and right hemispheres. Synaptic activity is used to simulate the BOLD signal using the 

mechanistic Balloon-Windkessel model for the hemodynamic response (Friston et al., 2003; 

Deco et al., 2013). The model can thereby yield a simulated BOLD FC matrix, which can be 

compared to empirical BOLD rs-FC data. The neurophysiological model parameters can 

then be optimized to provide the best fit to empirical rs-FC.

A key extension to the model framework introduced here is a hypothesis-driven approach to 

incorporate areal heterogeneity of local circuit properties (Figure 1B). We compared 

performance of the circuit model with homogeneous and heterogeneous local circuit 

parameters. In the “homogeneous” model, synaptic parameters were uniform across cortical 

areas, and its four parameters were optimized globally (WEE, WEI, gL, and gR). In contrast, 

in the “heterogeneous” model, parameter values (here, WEE and WEI) can vary across 

cortical areas, parametrized according to a predefined heterogeneity map. The heterogeneity 

map thereby constrains the topography of local circuit specialization in the heterogeneous 

model.

T1w/T2w as a Hierarchical Heterogeneity Map

We hypothesized that cortical hierarchy provides a principle describing specialization of 

microcircuit properties across cortical areas that shapes large-scale functional dynamics. We 

therefore sought to implement the model with a heterogeneity map that reflects a 

hierarchical ordering of cortical areas. Because anatomical hierarchy is derived through 

invasive tract-tracing, which has precluded direct investigation in human cortex, we sought a 

noninvasive proxy measure. Burt et al. (2018) found that the MRI-derived T1w/T2w map is 

negatively correlated with anatomical hierarchy in macaque cortex and that specialization in 

multiple aspects of cortical microcircuitry were found to correlate with the T1w/T2w map 

(Figure 1C). In particular, they found a negative correlation between T1w/T2w values and 

the number of spines on pyramidal cell dendrites, which can be interpreted as a 

microanatomical correlate of recurrent excitatory synaptic strengths (Elston, 2003; 

Chaudhuri et al., 2015), suggesting stronger values of WEE in association areas with low 

T1w/T2w values.
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In human cortex, areas can be contextualized in terms of coherent resting-state networks 

(RSNs) associated with different sensory and higher-order association functions. We 

assigned all areas to 8 canonical RSNs comprising three sensory networks (visual, 

somatosensory, and auditory) and five association networks (frontoparietal, cingulo-

opercular, default mode, dorsal attention, and ventral attention) (Ito et al., 2017) (Figure 1D). 

We observed that T1w/T2w map values were significantly higher in sensory networks than 

in association networks (p < 0.003, Wilcoxon signed-rank test) (Burt et al., 2018) (Figure 

1E). In further support of the T1w/T2w map as a proxy measure of hierarchical microcircuit 

specialization across human cortex, Burt et al. (2018) analyzed the topography of cortical 

gene expression and found that the T1w/T2w map captures the dominant spatial pattern of 

gene expression variation in human cortex.

These findings suggest that the T1w/T2w map may capture a key axis of areal heterogeneity 

across cortex, which we quantitatively instantiated in the model. We derived a hierarchical 

heterogeneity map by rescaling and inverting the raw T1w/T2w map, such that its values are 

relatively uniformly distributed between 0 and 1, with high-T1w/T2w sensory areas at low 

map values and low-T1w/T2w association areas at high map values (Figure S2). Local 

synaptic strengths (WEE and WEI) were then parametrized for each area i as an affine 

function of the heterogeneity map values {hi}, characterized by an intercept wmin and scale 

factor Wscale: Wi = Wmin + Wscalehi (Figure 1B). Use of a heterogeneity map in model 

fitting thereby enables hypothesis-driven investigation of areal differences in local circuit 

properties while increasing model complexity by only a single additional parameter for each 

heterogeneous property.

Model Fitting

We quantitatively fit the models described above to rs-FC data. To estimate the optimal 

model parameter values, we used hierarchical population Monte Carlo (hPMC), a Bayesian 

optimization technique (Figure S2C). hPMC approximates the posterior distribution in 

parameter space by iteratively drawing a set of model parameters (i.e., “particles”) from the 

proposed distribution to minimize a distance measure between model and empirical data. We 

fit the model parameters to maximize the average Pearson correlation between model and 

empirical FC across subjects (n = 334). To calculate the model FC, we used an analytical 

approximation of linearized system dynamics, which enables computationally efficient 

calculation of dynamical features of the system, including the FC matrix (Deco et al., 2013, 

2014) (Figure S3). Here, we extended this approach to include linearization of the Balloon-

Windkessel hemodynamic model for direct calculation of the BOLD FC matrix. This 

analytical calculation of BOLD FC provided computational efficiency needed for parameter 

fitting while producing a highly accurate estimate of simulated BOLD FC (r = 0.972 ± 0.005 

for simulations of duration ~1 h, i.e. 4,800 repetition times [TRs]) (Figure S3). The fitting 

procedure produced the approximated posterior distribution of the optimal model 

parameters. To assess parameter identifiability, we performed hPMC fitting on model-

generated FC matrices from the approximate posterior of the heterogeneous model. The 

fitting procedure recovered parameters well, with and without observation noise over the 

objective FC (Figure S4).
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Hierarchical Heterogeneity Improves Fit to FC

We tested whether hierarchical heterogeneity improves similarity between empirical rs-FC 

and fit model FC patterns compared to a homogeneous model with uniform properties across 

cortical areas. Figures 2A–2D show empirical group-averaged SC and FC matrices and 

particle-averaged FC matrices for the homogeneous and heterogeneous models. We 

quantified model performance using the goodness of fit (i.e., squared Pearson correlation 

coefficient) of empirical FC, averaged across subjects, captured by the model FC, averaged 

across samples from the approximate posterior distribution. We found that the similarity 

between empirical and model FC was significantly higher in the heterogeneous model (r = 

0.560, r2 = 0.313) than in the homogeneous model (r = 0.407, r2 = 0.166) (p < 10−4, 

dependent correlation test) (Figure 2G). Both models yielded higher FC similarity compared 

to the SC-FC similarity as a baseline (r = 0.284, r2 = 0.081) (p < 10−4, dependent correlation 

test).

The fit between SC and model FC was significantly lower for the heterogenous model (r = 

0.440, r2 = 0.190) than the homogeneous model (r = 0.595, r2 = 0.354) (p < 10−4, dependent 

correlation test), which suggests that areal heterogeneity can help to explain FC patterns not 

accounted for by SC (Chaudhuri et al., 2015). We tested this suggestion with a multiple 

regression model of FC with SC as an additional predictor. Regression coefficients of both 

models were significant (p < 10−4. However, the heterogeneous model FC improved the 

explained variance by 20% relative to a reduced model including only SC, compared to only 

3% for the homogeneous model.

The optimal fit parameters for the heterogenous model exhibited a large scaling of local 

recurrent excitatory-to-excitatory synaptic strengths (WEE) across the hierarchical 

heterogeneity map W  scale 
EE /Wmin

EE ≈ 0.89  (Figure 2H). We tested the impact of hierarchical 

heterogeneity in other, non-weight parameters, specifically the excitatory and inhibitory time 

constants (i.e., τE and τI). This model did not outperform the heterogeneous model based on 

synaptic weights (r = 0.45; p < 10−4, dependent correlation test). We also investigated 

hierarchical heterogeneity of local self-coupling in more abstract dynamical models, 

specifically an Ornstein-Uhlenbeck (OU) model and a simultaneous autoregressive (SAR) 

model. For both models, heterogeneity substantially improved model fit (OU: r = 0.517 for 

heterogeneous versus r = 0.419 for homogeneous; SAR: r = 0.504 versus r = 0.414), but 

neither outperformed the heterogeneous circuit model (p < 10−4, dependent correlation test).

To provide mechanistic insight into the models, we examined the eigenvalues and 

eigenvectors of the linearized dynamical system (Figure S5). In the homogeneous model, the 

leading eigenvectors (i.e., with largest eigenvalues and longest timescales) exhibited a global 

activation pattern, whereas the heterogeneous model showed spatially structured leading 

eigenvectors. These leading eigenvectors exhibited a network-dependent hierarchical 

organization rather than a strictly monotonic relationship with the T1w/T2w. The slowest 

eigenvector weights showed a strong positive correlation with T1w/T2w map in the visual 

RSN, but not globally, peaking at lateral inferior parietal and lateral prefrontal cortex, 

consistent with the visual hierarchical organization.
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Because the heterogeneous model has more parameters than the homogeneous model (6 

versus 4), we tested that fit improvement was not due to over-fitting with the more 

expressive model. Implementing repeated random subsampling cross-validation, we repeated 

the fitting procedure for a randomly selected subset of 80% of the subjects (267), and 

measured the model fit to the remaining 20% of subjects (67). Across 100 cross-validation 

samples, the predictive power of the heterogeneous model (r = 0.548 ± 0.01) always 

outperformed the homogeneous model (r = 0.405 ± 0.005).

In addition, we tested whether the improved model fit in the heterogeneous model can be 

explained by known non-neural confounds in rs-fMRI, such as head motion, variations in 

heart rate, and respiration. If the improved fit of the heterogeneous model is due to its 

capture of non-neural FC contributions, then individual differences in non-neural measures 

should explain individual differences in the improvement in empirical-model FC similarity 

for heterogeneous versus homogeneous models. The heterogeneous model improved the FC 

fit for98.5% of the 334 subjects. We performed a regression analysis across subjects on the 

difference in model-empirical fit between heterogeneous and homogeneous models. A 

constant term (i.e., without non-neural measures) explained 80% of the total sum of squares, 

and inclusion of individual non-neural measures improved the explained variance by only 

1.5%. This suggests that the substantial improvement in fitting by the heterogeneous model 

is not attributable to non-neural confounds.

T1w/T2w Map as Preferential Axis of Areal Specialization

Does the T1w/T2w-based hierarchical heterogeneity map provide a preferential axis of 

cortical specialization in comparison to other possible heterogeneity maps? To address this 

question, we repeated the model fitting procedure for a single hemisphere using the T1w/

T2w-based heterogeneity map and 500 randomized surrogate heterogeneity maps. Because 

T1w/T2w map values are spatially autocorrelated, we developed a procedure to generate 

surrogate maps that randomly vary in their particular topographies but preserve the general 

spatial autocorrelation structure of the T1w/T2w-based map (Figures 3A–3C).

We found that the model fit of the surrogate maps was slightly higher than that of the 

homogeneous model, with an average correlation r = 0.44 for surrogates versus r = 0.41 for 

the homogeneous model. Nonetheless, among all surrogate maps, the T1w/T2w-derived map 

exhibited significantly higher model fit than surrogates (p = 0.008, r = 0.55 for the 

heterogenous model) (Figure 3D). Furthermore, the model fit using surrogate heterogeneity 

maps was significantly correlated with their similarity to the T1w/T2w-based heterogeneity 

map (Figure 3E). To test the importance of finer gradients within the T1w/T2w map, we 

tested an alternative model with a heterogeneity map defined by two categorical levels for 

sensory versus association networks. This categorical model performed better than the 

homogeneous model but worse than the T1w/T2w-based heterogeneity map model (r = 0.51; 

p < 10−4 for both, dependent correlation test). These findings suggest that the T1w/T2w map 

provides a preferential neural axis for cortical microcircuit specialization, in line with prior 

empirical characterization of microanatomical and transcriptional specialization along the 

T1w/T2w map (Burt et al., 2018).
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Model Fit across RSNs

We examined how the improved performance of the hierarchical heterogeneous model was 

distributed across different functionally relevant cortical networks and whether this was due 

to capturing rs-FC patterns within networks or across networks. We calculated the model-

empirical FC similarity for each of eight RSNs (three sensory, five association), 

decomposing its FC pattern into within-network and across-network components (Figures 

4A and 4D). We found that both within- and across-network fits to empirical FC were higher 

in the heterogeneous model than in the homogeneous model for all RSNs (Figures 4B–4F), 

with association RSNs showing a larger improvement than sensory RSNs in within-network 

similarity. Among the association RSNs, the frontoparietal (FPN) and cingulo-opercular 

(CON) networks exhibited large increases in both within- and across-network fits. These 

results show that incorporating hierarchical heterogeneity not only improves the whole-

cortex model FC fit but also preferentially improves the within-network model FC fit in 

association networks.

Global Brain Connectivity

The RSN analyses presented above suggest that hierarchical heterogeneity may allow the 

model to capture important rs-FC differences between sensory and association networks. To 

investigate sensory-association differences more directly, we studied the topography of 

global brain connectivity (GBC), a measure of global FC strength for each area (Figure 5A). 

Studies have found GBC to be an informative measure of rs-FC alterations in psychiatric 

disorders (Cole et al., 2011; Yang et al., 2016) and individual differences in cognition (Cole 

et al., 2012). Furthermore, there is evidence that the cortical topography of 

pharmacologically induced changes in GBC is aligned with the topography of gene 

expression for the targeted receptor (Preller et al., 2018). We therefore examined whether 

hierarchical heterogeneity of circuit properties in the model shapes the cortical GBC 

topography in healthy subjects.

We found that GBC, calculated within cortex, was significantly different across sensory and 

association RSNs, with higher GBC in sensory areas than in association areas (p < 0.003, 

Wilcoxon signed-rank test) (Figures 5B and 5C). The correlation with empirical GBC was 

significantly higher for the heterogeneous model (rs = 0.743) than that for the homogeneous 

model (rs = 0.482) (p < 10−4, dependent correlation test) (Figures 5D–5F). Notably, SC input 

strengths are normalized such that the net in-degree is homogeneous across nodes, in both 

models. We further assessed these results by examining relationships between model GBC, 

degree of the binarized SC graph, and weights of the slowest eigenvectors (Figures S5N–

S5P). The homogeneous model GBC was strongly correlated with degree of binarized SC (rs 

= 0.680) (Baria et al., 2013). In contrast, the heterogeneous model GBC was mostly driven 

by the eigenvector of the slowest Jacobian mode (rs = 0.933. These findings suggest that 

hierarchical heterogeneity of local circuit properties may play a role in shaping sensory-

association differences in the large-scale organization of rs-FC.

Inter-individual Variation

Cortical rs-FC patterns vary across individuals. Mueller et al. (2013) characterized the 

degree to which cortical areas vary in their FC profiles across subjects and found a marked 
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hierarchical difference across RSNs; sensorimotor regions exhibited low inter-individual 

variation in FC, whereas association regions exhibited higher variation. As noted above, our 

model fitting approach uses hPMC to fit a posterior distribution in parameter space to the 

full set of FC patterns across subjects in the HCP dataset. Of note, particles share the same 

structural connectivity matrix and heterogeneity map and differ only in their synaptic 

parameter values. We can therefore study whether the best-fit model exhibits hierarchical 

differences in FC variation across particles drawn from the approximated posterior 

distribution, comparable to the FC variation across subjects in the empirical data.

We quantified the variability within the population as the dissimilarity of FC patterns across 

individuals, following the approach of Mueller et al. (2013). In the model, the dissimilarity 

of FC patterns was calculated across 1,000 particles that were sampled from the posterior 

distribution (Figure 6A). In this study, model particles all used the same SC matrix, averaged 

over subjects. This allowed our analyses to isolate potential contributions to individual 

variation in rs-FC arising from variation in physiological circuit properties. We note this is 

one potential source of variation and that individual differences in SC likely also shape 

differences in FC (Zimmermann et al., 2019).

Across the 334 subjects, we found that the inter-individual dissimilarity was higher in frontal 

and temporal brain regions (Figure 6B). The inter-individual dissimilarity in association 

RSNs was on average higher than in sensory RSNs (p < 0.003, Wilcoxon signed-rank test; Z 
score 0.265 ± 1.055 and 0.659 ± 0.410 for association and sensory RSNs, respectively). 

Similar to the empirical data, the heterogeneous model showed higher inter-particle 

dissimilarity in frontal association areas (Figure 6C). The topography of empirical 

dissimilarity was positively and moderately correlated with that of the heterogeneous model 

(r = 0.491), unlike with the homogeneous model (r = −0.08). The heterogeneous model 

exhibits a similar hierarchical distinction in dissimilarity, with higher inter-particle 

variability in association regions than in sensory regions, whereas no such pattern is present 

in the homogeneous model (p < 0.0001, network × model type ANOVA, z = 5.30) (Figure 

6D). We also compared the SD of each FC connection across subjects or particles and found 

that the model-empirical similarity of this measure was higher for the heterogeneous model 

than for the homogeneous model (r = 0.521 versus r = 0.305; p < 10−4, dependent 

correlation test).

Incorporation of heterogeneity expanded the dimensionality of fitting to the empirical 

population (Figures 6F–6I). We applied principal-component analysis (PCA) to the 

distribution of model particles from the hPMC fitting in the fit parameter space. The 

homogeneous model exhibited only a single axis of particle variation in its four-dimensional 

parameter space, indicating one-dimensional expressiveness of the synaptic parameters. In 

contrast, the heterogeneous model exhibited four effective dimensions of variation in its six-

dimensional parameter space. Hierarchical heterogeneity of local recurrent strengths 

therefore contributes degrees of freedom that substantially increase model expressiveness. 

These findings suggest that hierarchical heterogeneity may contribute to individual variation 

in the functional organization of cortex.
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Heterogeneity in Neural Dynamics across Multiple Timescales

How does hierarchical heterogeneity in the model shape neural dynamics across a wide 

range of timescales? The results described above examined simulated BOLD signals from a 

hemodynamic model that are driven by synaptic activity in the neural circuits. Cortical areas 

differ in the spectral properties of their intrinsic dynamics at rest (Honey et al., 2012; 

Murray et al., 2014; Keitel and Gross, 2016; Mellem et al., 2017). In local circuit models, 

synaptic strengths can shape these spectral properties (Chaudhuri et al., 2015; Murray et al., 

2017). We therefore sought to examine in the model how hierarchical heterogeneity 

produces specific areal topographies of neural dynamics across multiple timescales.

We first characterized the dynamical repertoire of the local microcircuit model at each node 

in the large-scale network as a function of the recurrent excitatory strengths onto excitatory 

and inhibitory neurons: WEE and WEI (Figures 7A and S6). As WEE increases, there is a 

threshold value (i.e., a bifurcation point) beyond which the system’s baseline state 

destabilizes (Deco et al., 2013). When WEI is large, the system exhibits another dynamical 

regime in which the system’s dynamics undergo damped oscillations. In the heterogeneous 

model, areas are hierarchically dispersed along a line in the (WEE; WEI) parameter space, 

whereas in the homogeneous model, all areas are set at the same point. We found that the 

optimal parameters of both models were close to the bifurcations (Figures 7B and 7C), in 

line with prior studies (Deco et al., 2013, 2014).

We characterized the power spectral density (PSD) of the underlying synaptic activity in the 

models (Figures 7D and 7E). The homogeneous model exhibits PSDs that did not differ 

substantially across areas. In contrast, the heterogeneous model exhibits gradual shifts in 

PSD profiles across hierarchical levels. To examine the contributions of inter-areal 

connectivity to these dynamics, we simulated the effect of “disconnection” in the network 

(Figure S7). We found that long-range connections primarily shape low-frequency power 

(<1 Hz), suggesting differential contribution of local and long-range inputs in shaping 

spectral features. Distance-dependent synaptic delays in long-range projections did not 

substantially affect simulated PSD or BOLD FC patterns (Figure S7). These results suggest 

that hierarchical heterogeneity shapes the spatial topography of spectral features across 

multiple timescales.

MEG PSD

We tested the model prediction that spectral features are hierarchically organized using the 

PSD from resting-state MEG. The empirical MEG-derived PSD of many areas exhibits a 

prominent alpha-band peak with a posterior-anterior topography (Figure 8A). To remove 

strong topographic effects of alpha- and beta-band peaks, we fit the MEG PSD to its 0-Hz, 

alpha and beta peak Lorentzians and removed the alpha and beta Lorentzians from the PSD 

(Figures 8B and S8). We then performed PCA on the normalized PSDs (see STAR 

Methods). The first principal axis is the spectral pattern that captures the most variation in 

PSDs across areas (67.5% for the empirical MEG) (Figure 8C). The first principal 

component (PC-1) is the areal map whose values are the loadings of spectral variation for 

each area onto the first principal axis (Figure 8D). We found that the PC-1 map was 

significantly correlated with the T1w/T2w map (rs = 0.631, p = 0.002, against 500 

Demirtaş et al. Page 10

Neuron. Author manuscript; available in PMC 2020 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



randomized surrogate maps with matching spatial autocorrelation). These results show that 

spectral features in resting-state MEG exhibits topographic signatures of hierarchical 

heterogeneity across cortical areas, in line with model predictions.

We also performed the same PCA procedure on the PSDs of the heterogeneous and 

homogeneous models (Figures 8E–8G and S8). The correlation between empirical and 

model PC-1 topographies was significantly higher for the heterogeneous model (rs = 0.631) 

than for the homogeneous model rs = 0.138) (p < 10−4, dependent correlation test). These 

results suggest that the hierarchical organization of cortical circuits may shape the large-

scale organization of spectral features across a range of timescales.

DISCUSSION

In this study, we proposed a biophysically based large-scale dynamical model of human 

cortical activity that incorporates hierarchical heterogeneity in local circuit properties. We 

hypothesized that the T1w/T2w map would provide a key neural axis along which 

microcircuit properties and spatiotemporal dynamics would vary. This hypothesis was 

informed by a convergence of findings across multiple modalities linking the T1w/T2w map, 

microcircuit specialization, functional organization, and the organizing principle of cortical 

hierarchy. Incorporating hierarchical heterogeneity in local circuit properties substantially 

improved the model fit to BOLD rs-FC and captured the sensory-association organization of 

multiple fMRI features. The heterogeneous model predicted a hierarchical topography of 

higher-frequency spectral features, which we found to be present in MEG. Collectively, our 

findings suggest that heterogeneity in local circuit properties shapes the large-scale 

organization of neural dynamics in human cortex.

The T1w/T2w map captures a number of aspects of microcircuit specialization across 

cortex. This structural MRI-derived contrast measure is sensitive to regional variation in 

multiple microstructural properties, including intracortical myelin content (Glasser et al., 

2014, 2016). Burt et al. (2018) found that the T1w/T2w map captures areal variation in 

cytoarchitecture (Hilgetag et al., 2016), cell-type distributions, and synaptic properties. The 

number and density of dendritic spines on pyramidal neurons, a microanatomical correlate 

of local synaptic excitation, increase with cortical hierarchy, as captured by the T1w/T2w 

map (Elston, 2003; Glasser et al., 2014; Chaudhuri et al., 2015; Burt et al., 2018). This 

observation provides microanatomical support for our heterogeneous model’s local recurrent 

excitatory strengths following an increasing hierarchical gradient (Chaudhuri et al., 2015). 

Furthermore, large-scale gene expression mapping of human cortex reveals that the 

T1w/T2w map captures the dominant neural axis of transcriptional variation, suggesting a 

common hierarchical organization for functional specialization (Burt et al., 2018). These 

findings support our use of the T1w/T2w map as a key neural axis for hierarchical 

microcircuit specialization.

Electrophysiological studies have established that functional dynamics of cortical areas also 

exhibit an organization along a sensory-association hierarchy. The timescales of intrinsic 

fluctuations vary across hierarchical levels both in humans (Honey et al., 2012) and in 

monkeys at the single-neuron level (Murray et al., 2014). Computational modeling studies 
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have demonstrated that these differences can arise from hierarchical differences in synaptic 

properties, including excitatory strengths. In turn, models have shown how hierarchical 

differences in synaptic properties can contribute to functional specialization of areas, such as 

their capacity to generate robust persistent activity related to working memory computations 

(Chaudhuri et al., 2015; Murray et al., 2017).

fMRI has also revealed functional organization of human cortex along sensory-association 

hierarchical gradients. Margulies et al. (2016) found that the principal gradient of rs-FC 

variation across cortex separated primary sensory areas from higher-order association areas, 

and this gradient aligns with the topography of intra-cortical myelin content as measured by 

T1 mapping (Huntenburg et al., 2017). Compared to sensory cortex, association areas 

exhibit greater variation in rs-FC profiles across subjects, suggesting that cortical hierarchy 

plays a role in shaping single-subject specificity of FC patterns (Mueller et al., 2013; Finn et 

al., 2015). Our model provides a circuit mechanism linking hierarchical variation in 

microcircuit properties to functional specialization.

Relationships between dMRI-derived SC and rs-FC in human cortex have been consistently 

shown in prior studies (Greicius et al., 2009; Hagmann et al., 2008; Honey et al., 2009; Baria 

et al., 2013) and provide the foundation for large-scale structure-function relationships. 

Computational studies of large-scale cortical circuits have shown that the structure-function 

relationship improves when neural dynamics are near the edge of instability (Deco et al., 

2013, 2014), which was also confirmed in our study. Here, we showed that heterogeneity in 

local microcircuit properties has a substantial effect on model FC predictions, beyond prior 

modeling studies. In addition to the role of SC in shaping FC, this study provides a 

complementary perspective that emphasizes the importance of intrinsic properties within 

local circuits in shaping the large-scale functional organization of human cortex.

Beyond the T1w/T2w-based hierarchical heterogeneity map examined here, our model 

framework can be flexibly extended to include other axes of variation. Heterogeneity maps 

could reflect varying distributions of receptor subtypes, neuronal cell types, and 

neuromodulators. These maps could be derived from gene expression, positron emission 

tomography, or autoradiography. Large-scale models can be fit to pharmacological 

neuroimaging, through simulation of hypothesized parameter perturbations that follow the 

expression topography of affected receptors (Preller et al., 2018; Murray et al., 2018). This 

approach can further be applied to clinical neuro-imaging to fit the heterogeneous effects of 

disorder-related alterations (Yang et al., 2016; Murray et al., 2018). Further computational 

studies of areal heterogeneity can further inform the relationships among structure, function, 

and physiology in the human brain.

An important limitation in modeling neural mechanisms underlying rs-FC is the existence of 

multiple, potentially confounding, non-neural contributions to noninvasive neuroimaging 

measures, such as head motion, respiration, and heart-rate variability (Power et al., 2017). 

Individual differences in non-neural measures did not explain the improvement in model-

empirical FC fit by the heterogeneous model. Nevertheless, complete removal of, or control 

for, non-neural confounds in a given neuroimaging modality is difficult. Characterization of 

neural sources of rs-FC components can be provided through convergence of multiple 
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modalities (Kucyi et al., 2018), including invasive recordings in animal models (Schölvinck 

et al., 2010; Mateo et al., 2017).

Our heterogeneous circuit model is parsimonious, as it simulates simplified local node 

dynamics, comprises only cortex, and implements a single neural axis of microcircuit 

specialization. The model framework can be extended in multiple important directions, 

which will expand the range of questions it can address. More complex local node models 

with multiple neurobiological dynamical processes, and inclusion of subcortical structures, 

may be needed to capture frequency-specific features of FC and power spectra (Keitel and 

Gross, 2016; Mellem et al., 2017; Frauscher et al., 2018; Salvador et al., 2005). For instance, 

cortical microcircuitry exhibits hierarchical gradients in the densities of multiple classes of 

inhibitory interneurons (Burt et al., 2018). An extended cortical microcircuit model with 

distinct superficial and deep layers could exhibit richer spectral features (Mejias et al., 

2016). Such greater diversity of temporal dynamics likely cannot be resolved by fMRI but 

can potentially be constrained by MEG, electroencephalography (EEG), or 

electrocorticography (ECoG). Multimodal functional neuroimaging may play a key role in 

the development of biophysically based circuit models that operate across a wide range of 

spatiotemporal scales.

Another promising direction for model extension is to incorporate subcortical structures, 

which can be generators of distinct dynamical processes. For instance, our cortical model 

does not capture strong alpha-band power in occipital cortex, which is thought to originate 

from interactions between cortex and thalamus (Hughes and Crunelli, 2005). Dynamical 

neural models of a thalamocortical loop can capture key aspects of resting-state dynamics, 

such as dynamics of alpha-band activity in occipital cortex measured with EEG (Freyer et 

al., 2011). This circuit modeling framework is well suited to study how large-scale recurrent 

cortico-subcortical interactions shape the spatiotemporal dynamics of cortex.

In conclusion, we report a large-scale neural circuit model of human cortex with hierarchical 

heterogeneity of local microcircuit properties across cortical areas. The model proposes a 

specific circuit mechanism for how microcircuit specialization shapes the large-scale 

functional organization of human cortical dynamics. Our findings highlight the importance 

of regional heterogeneity in local circuit properties and provide support for a hierarchical 

neural axis reflecting important structure-function relationships in the human brain.

STAR✰METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Lead Contact, John D. Murray (john.murray@yale.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Multi-modal Neuroimaging Dataset—We used resting-state fMRI (rs-fMRI) and 

diffusion MRI (dMRI) of 334 unrelated subjects from the Human Connectome Project 

Demirtaş et al. Page 13

Neuron. Author manuscript; available in PMC 2020 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(HCP) 900-subject data release (12/08/2015) (Van Essen et al., 2013). The magnetic 

resonance (MR) preprocessing relied on the surface-based multimodal intersubject 

registration (MSMAll) (Robinson et al., 2014). The analyses also involved resting-state 

magnetoencephalography (MEG) data of 89 subjects from the same HCP dataset.

Cortical areas were defined according to a multimodal parcellation (MMP1.0) comprising 

360 areas, 180 per hemisphere, using the 210P boundaries from Glasser et al. (2016). 

Intersubject alignment in the HCP dataset was achieved using multi-modal areal-feature-

based surface registration (MSMAll) (Robinson et al., 2014), which provides a number of 

improvements over registration techniques based only on geometrical features (such as 

cortical folding) and reduces biases due to registration error in group-averaged datasets. 

Cortical parcel boundaries in this parcellation were defined using convergent data features 

from multiple independent magnetic resonance imaging modalities, including T1w/T2w, 

cortical thickness, task-based fMRI, and resting-state functional connectivity gradients. The 

MMP1.0 parcellation was defined using the same HCP dataset used in our present study.

METHOD DETAILS

Resting-State Functional Connectivity—The preprocessing of rs-fMRI time series 

was done according to the HCP minimal preprocessing pipeline; for details see Glasser et al. 

(2013). BOLD time series were further denoised using ICA-FIX which yielded the signal 

that drove the cortical parcellation used in this study (Glasser et al., 2016). ICA-FIX is 

designed to remove spatially structured artifactual signals through application of 

independent component analysis (ICA), and a machine-learning algorithm applied to 

classify structured components into signal or artifact. Artifactual components are then 

regressed out of the data, yielding a de-noised signal. No further preprocessing step was 

performed to ensure that the time series are consistent with those that produced the 

parcellations as referenced in Glasser et al. (2016). We note that other pre-processing 

methods are available, but not investigated here, such as regression based on physiological 

measurements (Kasper et al., 2017).

The rs-fMRI time series of each subject comprised 4 sessions each spanning 15 min 

recorded with repetition time (TR) 0.72 s. The rs-fMRI time series were parcellated into 360 

areas (180 areas per hemisphere) using the MMP1.0 parcellation (Glasser et al., 2016). We 

removed the first 100 time points from each of the BOLD scans to mitigate any baseline 

offsets or signal intensity variation. We z-scored the time series of each area, then 

parcellated time series of each subject were concatenated to a single time series comprising 

4,400 time points (52.8 min). The time series of each area was z-scored again after 

concatenation. The functional connectivity (FC) matrix of each subject was computed using 

Pearson’s correlation coefficient between the time series of all pairs of areas.

Structural Connectivity—Structural connectivity (SC) matrices were constructed using 

probabilistic tractography, for each of the 334 subjects, from the HCP diffusion MRI (dMRI) 

minimally preprocessed data (Glasser et al., 2013; Sotiropoulos et al., 2013). Following the 

HCP dMRI step, the diffusion images underwent FSL’s bedpostx and probtrackx2 analysis 

workflows for probabilistic tractography. The SC matrices were derived by seeding at the 
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white matter-gray matter boundary interface and counting the number of streamlines that 

intersected 60,000 white matter-gray matter boundary locations. Fiber orientations used in 

tractography were derived using a parametric deconvolution approach available in FSL 

(Jbabdi et al., 2012; Hernández et al., 2013; Sotiropoulos et al., 2016) (up to 3 orientations 

per voxel).

The dense connectome was then parcellated by considering the average between pairs of 

areas, and the resulting SC matrices were averaged across subjects. The diagonal elements 

of the group-averaged SC matrix were removed and then values of the SC were normalized 

between 0 and 1 (i.e., the SC matrix was divided by the maximum SC weight). For use in the 

computational model, the SC matrix was normalized row-wise, so that the summed long-

range input strengths are equalized for each node in the network, which is simulated as a 

cortical microcircuit. Due to row-wise normalization, the net SC in-degree does not vary 

across nodes in the models.

T1w/T2w maps—The MSMAll registered and bias field-corrected maps of the ratio 

between T1- to T2-weighted images (T1w/T2w) were provided with the HCP dataset. In the 

MMP parcellation, each of the 180 areas in each hemisphere is assigned a paired homolog in 

the other hemisphere (Glasser et al., 2016). For homologous parcels between left and right 

hemispheres to have the same hierarchical level in the heterogenous model, the T1w/T2w 

maps were symmetrized by averaging the T1w/T2w map values of the homologous parcels 

between left and right hemispheres.

MEG Data Processing—We used eyes-open resting-state MEG data of 89 subjects from 

the Human Connectome Project (HCP) (Larson-Prior et al., 2013; Van Essen et al., 2013). 3 

runs of 6 min each were recorded per subject with a sampling frequency of 2034.5 Hz. 

Preprocessing included in the HCP release performed the following steps: removal of 

channels and segments as determined by the HCP quality assurance standards (Larson-Prior 

et al., 2013), bandpass (1.3–150 Hz) and notch (59–61 Hz, 119–121 Hz) filtering, and 

removal of non-brain components through ICA. A precomputed single shell volume 

conduction model was provided in this HCP release.

Preprocessing followed the pipeline provided in the HCP dataset (Larson-Prior et al., 2013; 

Van Essen et al., 2013), the steps of which we summarize here. Source reconstruction was 

performed for approximately 8,000 vertices on the cortical surface, using the software 

provided by HCP and custom scripts written in MATLAB and employing the FieldTrip 

toolbox. Sensor data were bandpass filtered from 1.3 to 55 Hz and then projected to source 

space by synthetic aperture magnetometry. The sensor-covariance matrix was regularized by 

adding a value of 75% of its mean eigenvalue to the diagonal, and the noise covariance was 

assumed spherical. The direction of the source dipole was determined using a non-linear 

search in each dipole’s tangential plane to obtain the maximum signal-to-noise-ratio for the 

source power. After source reconstruction on the 8k-grid, source time courses were 

parcellated using the 360-area MSMAll atlas. Each parcel’s time course was determined as 

the first principal component of its constituting voxels’ time courses, and then z-scored. We 

note that the spatial resolution of source-reconstructed MEG signals is lower than that of 
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fMRI (Larson-Prior et al., 2013), which is likely to degrade the regional specificity of MEG 

spectral features.

The power spectral density (PSD) for each parcel was computed using Welch’s method with 

a frequency resolution of about 1 Hz. For each parcel, the PSDs were averaged across 

subjects and runs, and then normalized such that the integrated PSD over the range 3–50 Hz 

equals 1. Analyses were performed on these cortical relative power maps, as in prior studies 

(Mellem et al., 2017; Hillebrand et al., 2012; Martín-Buro et al., 2016). The relative power 

map, defined for a particular frequency or band, provides a regional topography of the 

relative contribution of that frequency to the region’s power.

However, the presence of a strong peak in the alpha-frequency range — and to a lesser 

degree in the beta-range — for some, but not all, parcels strongly affects the normalization 

factor. As a result, the information about the alpha (and beta) peak impacts the relative 

power maps of other frequencies through the normalization. We therefore sought to analyze 

relative power with these peaks removed prior to normalization. To remove alpha and beta 

peaks, we first fit the group-averaged PSDs with models with sums of Lorentzian 

distributions (Chaudhuri et al., 2018). Specifically, we fit the following two models 

individually to each parcel’s group-averaged PSD:

pα( f ) = L a1, 0, γ1, f + L a2, c2, γ2, f = :L0 + Lα (1)

with free parameters a1; γ1; a2; c2; γ2 and

pαβ( f ) = L a1, 0, γ1, f + L a2, c2, γ2, f + L a3, c3, γ3, f = :L0 + Lα + Lβ (2)

with free parameters a1;γ1;a2;c2;γ2;a3;c3;γ3. Here,

L(a, c, γ, f ) = a

1 + f − c
γ

2 (3)

is a Lorentzian distribution over frequency f defined by amplitude a, center frequency c and 

half-width γ. Fitting was performed using least-squares with the following constraints on the 

parameters : a1 ∈ [0, am], γ1 ∈ [1,15], a2 ∈ [0, am], c2 ∈ [7,15], γ2 ∈ [1,15], a3 ∈ [0, am], c3 

∈ [15.1,30] and, γ3 ∈ [1,15], where is the bound am is 1.5 times the maximal amplitude in 

the parcel’s empirical power spectrum. The best fit obtained from 10 random initializations 

was used. We then subtracted Lα and Lβ from the parcel’s empirical group-averaged PSD, 

and then normalized it such that it sums to 1. According to both the R2 goodness-of-fit 

metric and visual inspection, the pαβ fit provided a cleaner removal of the peaks in the PSD 

than the pα fit, and we therefore preferred pαβ (Figure S8).

Resting-State Network Assignments—We used network-level analyses to characterize 

the hierarchical organization of empirical and simulated resting-state FC measure (i.e., 
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comparison of the variation between sensory versus association areas). Resting-state 

network (RSN) assignment was performed through community detection analysis on the 

correlation between resting-state fMRI time series of the HCP dataset (Ito et al., 2017). This 

network assignment was selected because it was performed on the MMP1.0 parcellation and 

the HCP dataset used here, and because it yielded networks with sufficient granularity for 

comparisons between sensory and association networks. Specifically, this approach yielded 

8 functional networks in cortex, which corresponded to functional networks identified 

elsewhere in the literature: three sensory networks (visual, auditory, and somatomotor), and 

five association networks (dorsal attention, ventral attention, default mode, fronto-parietal 

and cingulo-opercular). The sensory-association comparisons were performed by combining 

the values across the three sensory networks, and across the five association networks.

Large-Scale Computational Model

Synaptic Dynamical Equations: We adapted the biophysically-based large-scale 

computational model proposed by Deco et al. (2014). This model reduces the complexity 

and the number of local microcircuit parameters in a spiking neural network model using a 

dynamical mean field approach (Wong and Wang, 2006). Exploiting the long time-constants 

of NMDA receptors, the local node model reduces from a large spiking neural network to a 

two-dimensional dynamical system.

Each cortical area is characterized by a microcircuit comprising a system of coupled 

excitatory and inhibitory populations. For each cortical microcircuit node i∈{1, …,N}, 

excitatory (E) and inhibitory (I) currents are given by:

Ii
E(t) = WEIb + wEESi

E(t) + gJ∑
j

Ci jS j
E − wIESi

I(t) (4)

Ii
I(t) = W IIb + wEISi

E(t) − Si
I(t) (5)

where WpIb and Si
p, respectively, denote the background current and synaptic gating variable 

for each population p ∈ {E, I} g is the global coupling parameter, Cij is the long-range 

structural connectivity strength from node j to node i, J is the effective NMDA conductance, 

WEE sets the local excitatory-to-excitatory strength, WEI sets the local excitatory-to-

inhibitory strength, and WIE sets the local inhibitory-to-excitatory strength.

The firing rate of each population, rp, p ∈ {E, I} is computed using the transfer function 

ϕ Ii
p :

ri
p(t) = ϕ Ii

p(t) =
apIi

p(t) − bp

1 − e−dp apIi
p(t) − bp (6)
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Finally, the synaptic gating variables obey:

dSi
E(t)
dt = −

Si
E(t)
τE

+ 1 − Si
E(t) γri

E(t) + σvi(t) (7)

dSi
I(t)

dt = −
Si

I(t)
τI

+ ri
I(t) + σvi(t) (8)

where σ is the standard deviation of the input noise taken from a random Gaussian process 

ni (Wong and Wang, 2006; Deco et al., 2014).

Implementing feedback inhibition control (FIC) proposed in Deco et al. (2014), for each 

parameter set, the inhibitory-to-excitatory strengths WIE were adjusted to satisfy the 

condition ri
E ≈ 3 Hz. This was done by analytically solving for WIE to satisfy the self-

consistency of Equations 4–8 at the steady-state condition with ri
E ≈ 3 Hz, which 

corresponds to 〈SE〉 ≈ 0.164757 and 〈IE〉 ≈ 0.37738 nA:

wi
IE =

WEIb + wEE SE + gJ SE − IE

SI (9)

where the steady-state inhibitory synaptic gating variable Si
I = ϕ Ii

I τI was estimated 

numerically by solving for Ii
I :

W i
IIb + wEI SE − ϕ Ii

I τI − Ii
I = 0 (10)

Hemodynamic Equations: The synaptic activity of each cortical area is defined by the 

excitatory synaptic gating variable (SE). The excitatory synaptic activity of each area was 

transformed to a blood-oxygen-level dependent (BOLD) signal using the Balloon-

Windkessel model (Friston et al., 2003). The three dimensionless magnetic field strength-

dependent parameter values k1, k2, and k3 were derived for 3T using Appendix A of Heinzle 

et al. (2016); all other hemodynamic parameter values were taken from Obata et al. (2004). 

In the Balloon-Windkessel model, the hemodynamic response obeys the following system of 

equations:

dx(t)
dt = SE(t) − kx(t) − γ( f (t) − 1) (11)
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d f (t)
dt = x(t) (12)

τ dv(t)
dt = f (t) − v

1
α(t) (13)

τ dq(t)
dt = f (t)

ρ 1 − (1 − ρ)
1

f (t) − q v
1
α − 1

(t) (14)

where SE is the excitatory synaptic gating variable, x is the vasodilatory signal, f is blood 

inflow, v is blood volume, and q is deoxyhemoglobin content; parameters ρ, τ, κ, λ, and α 
are the resting oxygen extraction fraction, hemodynamic transit time, rate of signal decay, 

rate of flow-dependent elimination, and the Grubb’s exponent, respectively. The BOLD 

signal is then calculated as

y(t) = V0 k1(1 − q(t)) + k2 1 − q(t)
v(t) + k3(1 − v(t)) (15)

where V0 is the resting blood volume fraction.

Values for all fixed parameters in Equations 4–15 are provided in Table 1.

Analytical Approximation of BOLD Functional Connectivity: Correlations between the 

excitatory population activity of the modeled cortical microcircuits can be approximated 

analytically by linearizing the system near a stable fixed point Deco et al. (2013, 2014). In 

brief, the linearization of the model equations enables computationally efficient calculation 

of the synaptic FC matrix. However, in prior studies by Deco et al. (2013, 2014), this 

calculation was not extended to fluctuations of the BOLD signal. We extended the 

linearization approximation to include the hemodynamic model for the BOLD signal. The 

computational efficiency provided by analytical calculation of the BOLD FC matrix was 

required for computationally tractable fitting of model parameters to empirical BOLD FC 

data.

The details of the derivation for the statistical moments of the synaptic equations were 

described previously in Deco et al. (2013, 2014). Here, we combine the equations that 

describe synaptic dynamics (Equations 7–8) and the hemodynamic response (Equations 11–

14) to form a single dynamical system comprised of two synaptic and four hemodynamic 

state variables. Given the Jacobian matrix A and noise covariance matrix Qn of the extended 

system, evaluated at the system’s stable fixed point, the covariance matrix P can be 

approximated analytically by solving the Lyapunov equation:
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AP+PAT + Qn = 0 (16)

The Jacobian of the extended system is determined by the partial derivatives of the equations 

for synaptic dynamics (Equations 7 and 8) and the hemodynamic response (Equations 11–

14). The synaptic sub-block of the full Jacobian matrix is obtained by expanding the 

synaptic equations (Equations 7 and 8) around the synaptic variables’ stable fixed point:

∂Ṡi
E

∂Si
E = − 1

τE
+ 1 − Si

E γ
∂ϕi

E Ii
E

∂Si
E wi

EE − γϕi
E Ii

E (17)

∂Ṡi
E

∂S j
E = 1 − Si

E γ
∂ϕi

E Ii
E

∂S j
E

1
∑ j Ci j

gJCi j, i ≠ j (18)

∂Ṡi
E

∂Si
I = − 1 − Si

E γ
∂ϕi

E Ii
E

∂Si
I wi

IE (19)

∂Ṡi
I

∂Si
E = − ∂

ϕi
I Ii

I

∂Si
E wi

EI (20)

∂Ṡi
I

∂Si
I = − 1

τI
−

∂ϕi
I Ii

I

∂Si
I (21)

∂Ṡi
E

∂S j
I =

∂Ṡi
I

∂S j
I = 0 (22)

where 〈…〉 denotes the temporal average (i.e., the steady-state value). The remaining non-

zero elements of the full Jacobian matrix A can then be obtained by computing the partial 

derivatives of hemodynamic equations (Equations 11–14) with respect to the four 

hemodynamic variables and the excitatory synaptic gating variable, given by:
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∂ ẋi

∂S j
E = δi j (23)

∂ ẋi
∂x j

= − κδi j (24)

∂ ẋi
∂ f j

= − γδi j (25)

∂ f i
.

∂x j
= δi j (26)

∂v̇i
∂ f j

= 1
τ δi j (27)

∂v̇i
∂v j

= − 1
ταδi j (28)

∂q̇i
∂ f j

= 1
τ 1 + 1

ρ (1 − ρ)ln(1 − ρ) δi j (29)

∂q̇i
∂v j

= α − 1
ατ δi j (30)

∂q̇i
∂q j

= − 1
τ δi j (31)
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where δij if i ≠ j, and δij otherwise. All other partial derivatives are identically 0. From the 

full Jacobian A, the covariance matrix of the extended system P is then estimated by solving 

the Lyapunov equation (Equation 16). Finally, the covariance matrix of the first-order BOLD 

signal fluctuations is given by:

PBOLD = KPK† # (32)

where K is the matrix of partial derivates of the BOLD signal (Equation 15), evaluated at the 

fixed point. The model-estimated BOLD FC matrix can then be computed from the BOLD 

covariance matrix PBOLD via

FCi j
BOLD =

Pi j
BOLD

Pi
BOLDP j

BOLD
. (33)

The parameters for estimating the BOLD signal were updated based on Heinzle et al. 

(2016), to match the parameters used for 3T field strength (i.e., k1 = 3.72, k2 = 0.53, k3 = 

0.53).

The transformation of the synaptic signals to BOLD signals may operate in part as a low-

pass filter. We observed that the analytical BOLD FC was highly correlated with the low-

frequency coherence in the synaptic system. To further characterize the role of BOLD 

linearization on the model fit performance, we compared the analytical BOLD FC and 

synaptic FC. For the homogeneous model, the similarity between synaptic and BOLD FC 

was high (r = 0.99 ± 0.002). In contrast, the heterogeneous model BOLD FC exhibited lower 

similarity to the synaptic FC (average r = 0.955 ± 0.005, worst r = 0.90). Furthermore, the 

magnitudes of the correlations in synaptic FC were substantially lower than the correlations 

in BOLD FC. Therefore, simulation of hemodynamics might have substantial impact on a 

model’s fit to empirical BOLD FC (Figure S3).

Theoretical Characterization of the Model—To provide a mechanistic view of the 

local microcircuit dynamics, we performed theoretical analysis of the model from a 

dynamical systems approach. We first characterized the dynamical stability and the 

qualitative behavior of a single model node, with no external current (Iext = 0). For a set of 

local excitatory-to-excitatory and excitatory-to-inhibitory synaptic strengths (WEE and WEI, 

respectively), the feedback inhibitory-to-excitatory strength WIE is set to maintain an 

excitatory firing rate at rE ≈ 3 Hz (Deco et al., 2014) (See section: Homogeneous and 

heterogeneous modeling paradigms). Therefore, although the phase diagram was constructed 

for WEE and WEI, the solution of the system implicitly depends on WIE.

The stability of the model was characterized by the largest eigenvalue λ of the Jacobian 

matrix A of the synaptic system. We denote ℜ λ  and 𝔍 λ  as the real and imaginary parts, 

respectively, of the eigenvalue with largest real part. The fixed point dynamics are stable if 

ℜ λ < 0 and 𝔍 λ = 0, unstable if ℜ λ > 0 and 𝔍 λ = 0, stable spiral if ℜ λ < 0 and 
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𝔍 λ ≠ 0, and unstable spiral if ℜ λ > 0 and 𝔍 λ ≠ 0 The system exhibits a pitchfork 

bifurcation when 𝔍 λ = 0 and a Hopf bifurcation when 𝔍 λ ≠ 0.

For WEI values between 0.001 and 5, we numerically solved the equations for WEE when 

ℜ λ = 0 and 𝔍 λ = 0 to determine critical points. The natural frequency of the system was 

calculated as 𝔍 λ /2π.

To illustrate optimal model parameters projected onto the phase plane, we adjusted the 

external input according to the total synaptic input to each area such that Iext = gJ 〈SE〉 
where g the global coupling parameter and J is the long-range NMDA conductance, and 

〈SE〉 is the average synaptic gating variable.

To characterize modes of spatiotemporal dynamics in the fully connected models, we 

performed eigenvalue and eigenvector analyses on the heterogeneous and homogeneous 

models at the optimal solutions. We performed eigen-decomposition of the Jacobian matrix 

and then we ordered the eigenvalues by characteristic timescale (i.e., −1/ℜ λ ). Then we 

studied the patterns of the corresponding eigenvectors of the system. In particular, we 

examined the relationship between the eigenvector of the slowest mode and the T1w/T2w-

based hierarchical heterogeneity map (Figure S6).

Homogeneous and Heterogeneous Modeling Paradigms—In both modeling 

paradigms, all parameters were kept constant except local excitatory-to-excitatory synaptic 

strength WEE, excitatory-to-inhibitory synaptic strength WEI, and global coupling parameter 

g. In the homogeneous model, the values of recurrent excitatory synaptic strength WEE and 

excitatory-to-inhibitory synaptic strength WEI were assigned globally; i.e., the same value 

for each area. In the heterogeneous model, WEE and WEI were defined by a map based on 

the hierarchical level of each area.

We showed that the T1w/T2w map is characterized by high values in sensory regions and 

low values in association regions (Figure 1). In the heterogeneous model, we introduced 

hierarchical heterogeneity using the median T1w/T2w map values computed across 334 

subjects. The raw T1w/T2w map values across brain areas exhibit a positively skewed 

distribution (Glasser et al., 2014). For model parameterization, we transformed the raw 

T1w/T2w map values into hierarchical heterogeneity map values which are more uniformly 

distributed, rescaled between 0 and 1, and inverted such that high- (low-) T1w/T2w areas 

have low (high) hierarchical heterogeneity map values (Figure S2). Specifically, hierarchical 

heterogeneity map value hi, for each i, was determined by:

hi =
max T − T i

max T − min T (34)

Ti is calculated from the raw T1w/T2w value T i
(raw)  using the error function erf: 

T i =  erf  T i
(raw) . Local microcircuit parameters WEE and WEI were linearly scaled by hi map 

values:
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wi
EE = Wmin

EE + Wscale
EE hi (35)

wi
EI = wmin

EI + wscale
EI hi (36)

where the subscript min denotes the minimum parameter value and the subscript “scale” 

denotes the scaling factor that defines the steepness of the hierarchical heterogeneity map. 

We note that the above procedure for setting local parameters as a function of the T1w/T2w 

values is only one possible implementation. In particular, monotonic but nonlinear 

transformations could provide higher-order dependencies, but these were not investigated in 

this study.

Because the sensory–association distinction is a prominent feature of the T1w/T2w map, we 

tested an alternative heterogeneity map reflecting only the binary categorization of areas into 

sensory versus association networks. Specifically, we fit the model using a heterogeneity 

map parameterized such that WEE and WEI strengths can each take only two values, one 

within sensory networks (visual, somatomotor, auditory) and another within association 

networks. The resulting map is assigned a value of 0 for all areas assigned to sensory 

networks, and a value of 1 for other areas.

We used white-matter/gray-matter seeding for diffusion tractography, as this improves 

agreement of within-hemisphere connectivity with tracer-measured connection strengths 

(Donahue et al., 2016). We focused on modeling and analyzing within each hemisphere, i.e., 

not including inter-hemispheric connections, for multiple reasons. First, this focus 

prioritized fitting the network structure of FC, rather than inter-hemispheric FC of 

homologous areas. Second, dMRI tractography may have relatively poorer performance at 

mapping callosal connections. Consistent with this consideration, the correlation between 

SC and FC in the HCP dataset is higher for intra-hemispheric connections (Figure S1). 

Third, this focus selection increased computational efficiency of model fitting, as on our 

high-performance computing cluster, the runtime of a single execution of the model was 

approximately 1 s for the intra-hemispheric model (180 regions), whereas it exceeded 10 s 

for the entire cortex (360 regions). For these reasons, we excluded inter-hemispheric 

connections and simulated the left and right hemisphere models separately. In both 

homogeneous and heterogeneous paradigms, the models comprised two intra-hemispheric 

compartments in which the local microcircuit parameters in homologous areas are identical 

but the two hemispheres do not interact.

Optimization of Model Parameters—We estimated the optimal model parameters for 

homogeneous and heterogeneous models. The homogeneous model included four free 

parameters: WEE, WEI, and gI, and gr. The heterogeneous model parameters included six 

free parameters: Wmin
EE , Wscale

EE , Wmin
EI , Wscale

EI , and gI, and gr.
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Bayesian statistics has substantial advantages over point estimates of model parameters 

because it provides a better description by estimating the full posterior probability 

distributions of the model parameters. However, estimation of the model FC is based on a 

stochastic dynamical system. Therefore, it is not possible to analytically solve for the 

likelihood function. For this reason, we used Approximate Bayesian Computation (ABC), 

which approximates the likelihood function by minimizing a distance measure, to estimate 

the optimal model parameters. To find the model parameters that minimize the distance 

between empirical FC (FC) and model FC (FC) we used adaptive hierarchical Population 

Monte Carlo (hPMC) (Beaumont et al., 2009; Turner and Van Zandt 2014). Since the 

variations across subjects are removed in average FC, we defined the distance measure based 

on individual FCs. Specifically, we estimated parameters which minimized the average 

empirical to model FC distance across the entire population (Turner and Van Zandt, 2014) 

(Figures S2 and S4).

In the initial step, each parameter value was drawn from its prior distribution (Table 2). In 

subsequent steps, the parameters were drawn from a proposal distribution. The prior 

distributions were informed by the phase-diagram (Figures 6 and S6).

In the PMC approach, a particle is defined as a set of model parameters that is drawn from 

the proposal distribution. For each particle, the model FC (FC) was calculated according to 

Equation 32, if the system of equations is dynamically stable. Then, we calculated the 

distance (δ) as:

δ = 1 − 1
S ∑

i

S
r

FCi, FC
− 1

S ∑
i

S
FCi − FC

2
(37)

where r is the Pearson correlation coefficient, S ∈ {1, …,334} is the number of subjects, and 

〈〉 denotes the average FC across regions. first term in the parentheses of Equation 37 

quantifies the average Pearson distance between the model FC and subject FCs. The second 

term is an additional cost term quantifying the difference between mean FCs (since Pearson 

correlations involve mean-subtraction), ensuring that the mean model FCs do not diverge 

from the mean empirical FCs.

The particles were rejected if the distance, δ, was larger than the rejection threshold ε. 

Initially, the rejection threshold was defined as the Pearson correlation distance between the 

empirical FC and SC. In subsequent iterations, the rejection threshold was iteratively 

adjusted according to the first quantile of accepted distances in the previous iteration. The 

algorithm was run until the number of accepted particles exceeded the minimum sample size 

(N). For the rest of the iterations (T), samples were drawn from the proposal distribution:

πt θ(t) ∝ ∑
j = 1

N
w j

(t − 1)Kt θ(t) θ j
(t − 1) (38)
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where the importance weight W i
t for an accepted particle θi

t is

wi
t ∝

π θi
(t)

πt θi
(t) (39)

and the random walk kernel (Kt) is defined as:

Kt θ(t) θ j
(t − 1) = τ−1φ τ−1θ(t) − θ j

(t − 1) (40)

where φ is standardized (multivariate) normal density and τ is the scaling factor, which is 

calculated as twice the weighted empirical covariance: τ2 = 2Cov(θ).

In both homogeneous and heterogeneous models, the minimum sample size was set to N = 

1000 and the maximum number of iterations was set to T = 100. The algorithm was 

terminated if it reached either the maximum number of iterations or the acceptance rate (i.e., 

N/Ntotal) was lower than 0.001, indicating convergence. The homogeneous model converged 

after 74 iterations and the heterogeneous model converged after 84 iterations due to low 

acceptance rate, but the distance between empirical and model FC stabilized after 

approximately 50 iterations (Figure S4).

To test that the improved fitting in the heterogeneous model is not due to overfitting with the 

higher number of degrees of freedom in the model, we performed leave-p-out cross-

validation. We repeated the optimization procedure for both homogeneous and 

heterogeneous models (using left cortical hemisphere, minimum sample size N = 200, 

maximum number of iterations T = 50) on 267 of 334 subjects, after holding out 20% of the 

subjects randomly (non-overlapping subjects). Then, we calculated the model fit on the held-

out test subjects.

In addition to leave-p-out cross-validation, we compared the T1w/T2w-based hierarchical 

heterogeneity map against surrogate maps with spatial autocorrelation structure matched to 

the hierarchical heterogeneity map, as described in the following section (Figure 2). We 

repeated the procedure for 500 surrogate heterogeneity maps. For computational efficiency, 

we ran the optimization for left cortical hemisphere, with a minimum of 500 particles for at 

most 50 iterations.

We also performed this fitting procedure for T1w/T2w map-derived hierarchical 

heterogeneity maps under the same conditions. The best fit for re-optimized T1w/T2w-based 

hierarchical heterogeneity maps was the same as that for the main optimization of the 

heterogeneous model (i.e., left-right concatenated). For all maps, we ensured that the 

similarity between empirical and model FC stabilized within 50 maximum iterations (Figure 

S4).

To assess how well the optimization procedure can identify known parameter values, we 

generated 334 model FC matrices (i.e., the number of subjects) from the approximated 
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posterior distribution. We then performed the optimization procedure using these FC 

matrices. We also repeated this procedure after adding an observation noise with 𝒩(0, 0.05)
(approximately matching the noise level in the empirical data). Finally, we calculated the 

errors in estimated model parameters with respect to the original model parameters. Both 

with and without observation noise, the model recovered the parameter values with low 

error.

We assessed an alternative parametrization of the model — i.e., which parameters vary along 

the heterogeneity map — which does not depend on synaptic weights: the time constants of 

the excitatory and inhibitory populations, τE and τI, respectively. Here, we multiplied the 

parameters τE and τI by a factor αE and αI. The time constants decrease if α < 1.0, and 

increase if α > 1.0. To ensure that the fixed-point solution of the system does not change, 

thereby isolating changes in timescales, we updated the equations such that:

dSi
E(t)
dt = −

Si
E(t)

αEτE
+ 1

αE
1 − Si

E(t) γri
E(t) + σvi(t) (41)

dSi
I(t)

dt = −
Si

I(t)
αIτI

+ 1
αI

ri
I(t) + σvi(t) (42)

The posterior distributions for the parameters were defined as U(0.8, 1.2) for τmin and U 
(0.0, 1.0) for τscale parameters. The rest of the parameters and optimization procedure were 

the same as the standard parameterization of synaptic strengths.

Ornstein-Uhlenbeck and Simultaneous Autoregressive Models—Below, we 

describe two simple non-neural models of simulated BOLD dynamics: the Ornstein-

Uhlenbeck (OU) process model, and the simultaneous autoregressive (SAR) model, the 

latter of which is the discrete time counterpart to the former. Fitting these more 

phenomenological models can test whether hierarchical heterogeneity of local properties 

improves the fit to empirical FC patterns, with generality across a broader set of dynamical 

models.

We generalize these models by introducing hierarchical heterogeneity of self-coupling 

strengths, denoted wi for node i, which vary across nodes parametrically by the 

heterogeneity map values{hi} according to:

W i = Wmin + Wscalehi (43)

The heterogeneity parameters Wmin and Wscale were included in the set of fit parameters for 

each model.
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Ornstein-Uhlenbeck Process Model—We simulated BOLD activity directly with a 

coupled OU-process model which, when written as a Langevin equation, has the standard 

functional form, for the activity yi of node i:

ẏl(t) = − yi(t) + ∑
j

Ai jy j(t) + σvi(t) (44)

where σ sets the strength of noise inputs and vi(t) is independent Gaussian white noise. For 

the coupling matrix A, we use the structural connectivity matrix C scaled by a scalar-valued 

global coupling parameter G:

ẏι(t) = − ∑
j

1 − wi δi j − GCi j y j(t) + σvi(t) (45)

The expression in brackets in Equation 45 above defines the system’s Jacobian matrix, i.e.,

Ji j ≡ − 1 − wi δi j − GCi j (46)

The noise terms, σvi(t), are assumed to be independent and normally distributed inputs with 

zero mean and equal variance, as in the dynamic mean-field model, resulting in a noise 

covariance matrix Qn = σ2I. Thus, we can solve for the covariance matrix of the OU-process 

model analytically using the Lyapunov equation:

JP+PJT + Qn = 0 (47)

Simultaneous Autoregressive Model—We simulated BOLD activity directly with a 

simultaneous autoregressive (SAR) process model. In general, SAR-process models can be 

written with the temporally discretized functional form

y t + 1 = ρW y t + ϵt, (48)

where W is a weight matrix describing the influence of activity at time t on the activity at 

time t + 1, ρ is a coupling constant which scales the strength of this autoregressive process, 

and εt is white noise (i.e., serial autocorrelation-free samples with zero mean and finite 

variance). In general, autoregressive processes are the discrete time analogs of OU 

processes.

We introduced hierarchical heterogeneity with the addition of a hierarchically varying self-

coupling term:
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yi
t + 1 = wiyi

t + ρ∑
j

Ci jy j
t + σvi

t (49)

where wi sets the strength of the self-coupling in area i parametrized according to Equation 

43, C corresponds to the structural connectivity matrix, and σ sets the standard deviation of 

the Gaussian noise, i.e., vi
t 𝒩(0, 1).

To obtain analytic expressions for the covariance matrices, we multiply both sides of 

Equation 49 by their transposes and apply the temporal averaging operator, ⋯ . In the 

steady-state condition,

Y i
t + 1, Y j

t + 1 = Y i
t, Y j

t = Cov y (50)

from which it follows that

Cov(y) = σ2[(𝕀 − w) − kC]−1[(𝕀 − w) − kC]−T (51)

where w is a diagonal matrix.

We fit both OU and SAR models to the empirical BOLD FC using a grid-search algorithm. 

20 samples for each parameter (8000 parameter sets in total) were executed from uniform 

distributions: for OU, Wmin; Wscale; G = U (0, 1); for SAR, Wmin = U (0, 1), Wscale = 

U(− 0.5,0.5), G = U (0,1). The model fit at the optimal solution was r = 0.517 for OU, and r 
= 0.504 for SAR. An alternative parametrization of SAR, based on hierarchical 

heterogeneity of σi, produced the same fit value, and therefore was not included here.

Surrogate Heterogeneity Map Generation—First we characterized the spatial 

autocorrelation structure of median empirical cortical T1w/T2w maps using a spatial lag 

model. We fit the data using a spatial lag model of the form y = ρWy, where y is a vector of 

first Box-Cox transformed and then mean-subtracted map values. The Box-Cox 

transformation was first applied to the maps so their values were approximately normally 

distributed. W is the normalized weight matrix with zero diagonal and off-diagonal elements 

proportional to W i j = zi
−1exp −Di j/d0 , where Dij is the surface-based geodesic distance 

between cortical areas i and j, and zi ≡ Σj exp(−Dij/d0) is a normalization factor. Weights Wij 

define the fraction of spatial influence on area i attributable to area j. To calculate j geodesic 

distances, we used the 32k-vertex midthickness surface mesh in the HCP atlas.

Two free parameters ρ and d0 are estimated by minimizing the residual sum-of-squares 

(Anselin, 2001). Using best-fit parameter values ρ and d0 surrogate maps ysurr are generated 

according to ysurr = 𝕀 − ρW d0
−1u, where u 𝒩(0, 1) For the Box-Cox normalized 

T1w/T2w values, this fit yielded d0 = 7.00 mm, and ρ = 1.060. To match distributions of 
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surrogate map values to the distribution of values in the corresponding empirical map (e.g., 

the T1w/T2w map), rank-ordered surrogate map values were re-assigned the corresponding 

rank-ordered values in the empirical map. Note that this approach to surrogate data 

generation approximates a spatial autocorrelation-preserving permutation test of the 

empirical neuroimaging map.

Using these surrogate maps, we constructed null distributions for N = 500 models and report 

significance values as the proportion of samples in the null distributions whose model fit 

value is greater than or equal to that obtain from the model using the T1w/T2w-based 

hierarchical heterogeneity map.

Examination of Potential Confounding Variables—We used regression analysis, 

performed across subjects, to test whether the improved rs-FC fit of the heterogeneous 

model, relative to the homogeneous model, may be driven by fitting of FC components 

attributable to non-neural confounding factors such as head motion, heart rate variations, and 

respiration (Power et al., 2017). The movement parameters and physiological logs were 

provided in the HCP dataset. The head motion of each subject was calculated as the mean 

absolute movement and mean relative movement. Heart rate and respiration variations were 

calculated as the total variance of each variable across sessions. To test whether the 

relationship between movement parameters and model fit can explain the improved 

performance of the heterogeneous model, we constructed a linear regression model (Y(full):

Y( f ull) = β0 + ∑
k ∈ C

βkXk + error (52)

Each subject yields a data point in Y, defined as the difference in model fit for the 

heterogeneous model compared to the homogeneous model (i.e., rheterogeneous − 

rhomogeneous). Xk denotes the z-score of four subject-specific non-neural confounding factors 

k in the set of four denoted C: mean absolute head movement, mean relative head 

movement, heart rate variance, and respiration variance.

We compared the full regression model Y(full) above to a reduced model that corresponds to 

the difference in model fit being independent of confounds: Y(reduced) = β0 + error. Through 

comparison of the full and reduced regression models, we examined the contribution of the 

non-neuronal confounding factors on the improved model fit in the heterogeneous model. 

We compared the fraction of variance in the data which is captured by the model, calculating 

the ratio of explained variance for the full versus reduced regression models, which we 

found to be very small.

Within-Network and Across-Network Fitting—To study the differences between the 

performance of the homogeneous and heterogeneous models, we quantified the model fitting 

for the FCs within and across 8 canonical resting state networks (RSNs). The within-

network fit for network N was calculated as:
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rN
within = rp FCl j

e , FCl j
m , ⋅i, j ∈ N (53)

where FClJ
S  S∈ {e: empirical, m : model} is a vector comprising the mean functional 

connectivity values between regions i and j, and rp(x,y) denotes the Pearson correlation 

coefficient between variables x and y. Similarly, the across-network fit for network N is 

defined as:

rN
across = rp FCl j

e , FCl j
m , ⋅i ∈ N⋅ and  j ∉ N (54)

Global Brain Connectivity—We tested whether hierarchical heterogeneity can also 

explain rs-FC measures which exhibit a hierarchical preference. One such measure is global 

brain connectivity (GBC) (Cole et al., 2010). Here, we adapted GBC to parcellated rs-FC 

matrices. The GBC of region i was defined as the average FC between region i and the rest 

of the regions:

GBCi = 1
N ∑

j ≠ i

N
FCi j (55)

where N is the number of brain regions. GBC is equivalent to the graph-theoretic measure of 

node strength normalized by total number of nodes.

To provide mechanistic insight into the model-generated GBC, we compared the patterns of 

model GBC to the SC node degree (Baria et al., 2013), and to the eigenvector of the slowest 

mode. We calculated the SC node degree as the sum of non-zero connections of each brain 

area, after binarizing the SC matrix using a threshold (T = 10−5 for the normalized SC 

matrix) (Figure S6).

Inter-Individual Dissimilarity—To characterize variation in rs-FC patterns of each region 

across subjects, we adapted inter-individual variability as proposed in Mueller et al. (2013). 

Since this measure reflects the dissimilarity across rs-FC patterns, we refer to it as a measure 

of dissimilarity instead of variability. In empirical data, we refer to the measure as inter-

individual dissimilarity, whereas in the model, we refer to it as inter-particle dissimilarity. 

The inter-individual/particle dissimilarity Vi is calculated as:

V i = E 1 −  corr  Fi sp , Fi sq , p ≠ q (56)

where Fi(s) is a vector of rs-FC values between region i and rest of the regions in subject/

particle s, corr(x,y) is the Spearman rankcorrelation between variables x and y, and E[.] 

denotes expected value. Due to the analytical approximation of the model FCs, the scales of 
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inter-individual and inter-particle dissimilarity were different. To normalize the scales of 

both measures, we z-scored the final spatial maps of inter-individual/particle dissimilarity. 

Of note, cross-subject alignment in MMSAll registration is limited by atypical topologies, 

and therefore some portion of inter-individual dissimilarity is attributable to mis-registration 

of areas to the atlas (Robinson et al., 2014).

In addition to inter-individual dissimilarity, we characterized the standard deviations of each 

connection in empirical and model FC, calculated across subjects for empirical and across 

particles for model. Then, we calculated the similarities between the empirical and model 

standard deviation FC matrices.

Spectral Characterization of the Model—As described in Deco et al. (2014), the 

power spectrum of the model can be analytically approximated around its fixed points. The 

cross-spectrum Φ as a function of frequency ω can be calculated by:

Φ ω = σ2 A + iωI −1 AT − iωI −1
(57)

where A is the Jacobian of the system of synaptic variables described by Equations 4–8, σ is 

the standard deviation of the input noise, i is −1, and I is the identity matrix.

The power spectral density (PSD) was computed as the diagonal elements of Φ(ω) for 

frequencies ω∈ (0.01, …, 75 Hz). The PSDs of left and right hemisphere models were 

normalized by dividing by total PSD. The PSDs were reported in dB (10log10).

To study the role of long-range connections on the behavior of the system, we estimated the 

PSDs of the model without long-range connections (Figure S7). Briefly, we replaced the 

term S j
E in Equation 4 with a constant current set to the average excitatory synaptic gating 

variable 〈SE〉, such that the long-range connection term reduced to an external synaptic 

input, i.e., Iext = gJ〈SE〉.

Principal Component Analysis of Empirical and Model Power Spectral Density
—We applied principal component analysis (PCA) to the group-averaged MEG PSDs across 

cortical areas (Mellem et al., 2017; Hill-ebrand et al., 2012; Martín-Buro et al., 2016) 

(Figures 7 and S8). The PSDs were log-transformed so that the data are in units of dB. Prior 

to PCA, the PSDs were normalized across areas by parcel-averaged spectral power of each 

frequency, so that they expressed fractional deviation from the mean. Then PCA was applied 

to this data matrix X whose axes are parcel by frequency (size: 360 samples × 48 features). 

PCA yielded principal axes (as eigenvectors of the data covariance matrix) in the frequency 

feature space. Principal axis 1 is therefore the spectral pattern which captures the most 

spectral variance across areas. We define the principal components (PCs) as the coordinates 

of the data expressed in the basis of corresponding principal axes. PC-1 is therefore the areal 

map whose values are the loadings of spectral variation for each area onto principal axis 1. 

PC-1 maps were compared to the T1w/T2w map. For both homogeneous and heterogeneous 

models, we used the same data analysis procedure to extract the first principal components, 
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in the same frequency range as the empirical data (3–50 Hz). We repeated the same analysis 

using raw (i.e., without alpha/beta components removed) MEG PSD relative power maps, 

and after removal of alpha, or alpha and beta, Lorentzians (Figure S8). We also performed 

PCA over the model PSDs in a broader frequency range (0–75 Hz) (Figure S8).

Numerical Simulations—To show the validity of the analytical approximation of BOLD 

FC and PSD, we employed full simulations of the model. We integrated synaptic Equations 

4–8 and BOLD Equations 11–14 using Euler method with dt = 0.1 ms. The input noise 

levels were defined as σ = 10−5. This input noise level was chosen to avoid noise-induced 

destabilization of the system as it approaches a bifurcation. To calculate BOLD FC, we 

simulated the BOLD signals for 870 s to match experimental recording sessions. The first 6 

s of simulations were discarded to ensure that the system’s state converges to the 

neighborhood of the baseline fixed point. The simulated BOLD signals were down-sampled 

using 0.72 s resolution resulting in 1200 TRs as in the single–session empirical BOLD data 

from the HCP. To calculate simulated PSDs, we simulated the excitatory synaptic gating 

variables for 170 s, and later downsampled to 10 ms after removing the first 6 s of 

simulations. In total, 10 simulations were performed for 20 random iterations using particles 

that were drawn from the posterior distribution.

To assess the role of noise in numerical simulations we concatenated the simulated time 

series (after z-scoring across time points), and calculated the simulated BOLD FC for 

different scan times. The similarity between simulated and analytical BOLD FC rose to r = 

0.972 ± 0.005 for the simulations with 4800 TR (≈ 1 h; matching the duration of 4 sessions 

of empirical BOLD time series in HCP data).

The same simulation protocol was repeated using synaptic delays. The distance between 

brain regions was defined by the average pairwise Euclidean distance between two parcels. 

The conductance velocity was defined as v = 6 m/s, which is consistent with empirically 

observed values (Horowitz et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

As a statistical test for the difference between similarities of the measures derived from 

homogeneous and heterogeneous models to the empirical data, we employed the dependent 

correlation test. The dependent correlations test provides a non-parametric test to compare 

the correlations of two variables against a common dependent variable based on 

bootstrapping (Wilcox, 2016). The dependent correlation tests were employed directly when 

Spearman rank correlation was used as a measure of similarity (i.e., GBC and BLP). When 

Pearson correlation was used as a measure of similarity (i.e., FC, within-/across-network FC, 

inter-individual/particle dissimilarity), skipped Pearson correlation was used to perform 

dependent correlation tests due to sensitivity of Pearson correlation to possible outliers 

during bootstrapping. However, using Pearson correlation instead of skipped Pearson 

correlation did not change the results.

To assess the improvement in explanatory power of each model with respect to SC alone, we 

constructed a linear regression model to predict empirical FC such that (Y(full)):
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Y( f ull) = β0 + βscXsc + βmodelXmodel + error (58)

We compared the variation explained by the full model to the reduced model, in which the 

empirical FC is predicted by only SC (Y(reduced)):

Y(reduced) = β0 + βscXsc + error (59)

We calculated the coefficient of partial determination (CPD) as:

CPD = SS(reduced) − SS( f ull)

SS(reduced) (60)

The CPD is the proportion of variation that cannot be explained by the reduced model, but 

can be explained by the full model.

To test for differences between the average measures in sensory and association areas in 

empirical data (i.e., T1w/T2w maps, GBC, inter-individual dissimilarity), we used the 

Wilcoxon signed-rank test. The Wilcoxon signed-rank test provides a non-parametric 

measure for the difference between the ranks of repeated measurements of two related 

samples.

The surrogate heterogeneity maps were used to generate various sample null distributions 

for statistics (e.g., model FC fitting). Reported significance values were calculated as the 

proportion of samples in the null distributions whose values exceeded that of the test 

statistic.

DATA AND SOFTWARE AVAILABILITY

All results derive from the publicly available HCP dataset. Parcellated maps and 

connectivity matrices related to this study are available via the BALSA database (https://

balsa.wustl.edu/). Custom modeling and analysis codes written in Python are available at 

https://github.com/murraylab/hbnm.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A circuit model with areal heterogeneity across cortex is fit to resting-state 

fMRI

• Hierarchical specialization of microcircuitry follows the MRI-derived 

T1w/T2w map

• T1w/T2w provides a preferential axis of specialization to fit functional 

connectivity

• Hierarchical specialization is an organizing principle for spatiotemporal 

dynamics
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Figure 1. Large-Scale Model of Human Cortex with Heterogeneous Local Circuit Properties
(A) Model framework. Each parcellated cortical area is modeled as coupled excitatory (E) 

and inhibitory (I) populations. Areas interact through long-range projections following 

dMRI-derived intra-hemispheric structural connectivity (SC). Fit model parameters 

comprised recurrent excitatory strength (WEE), excitatory-to-inhibitory strength (WEI), and a 

global coupling parameter scaling the strength of long-range connections (g). Inhibitory-to-

excitatory strengths (WIE) were adjusted to maintain a uniform baseline excitatory firing rate 

across areas. Dynamics of synaptic gating variables (SE) are transformed into a simulated 

BOLD signal via the Balloon-Windkessel hemodynamic model. For computational 

tractability of model fitting, model BOLD FC matrices were calculated via linearization of 

the extended dynamical equations around the fixed point of the system. Model parameters 

were fit to maximize the similarity between model and empirical FC matrices.

(B) Parametrizing local properties via a heterogeneity map. In the homogeneous model, the 

parameters (WEI and WEE) were identical across cortical regions. In the heterogeneous 

model, the parameters (WEI and WEE) varied across cortical areas based on a heterogeneity 

map h, whose minimum and maximum value is 0 and 1, respectively. For each region (i), the 

parameter values were set by an affine function of the heterogeneity map values {hi}, 

characterized by an intercept Wmin and scale factor Wscale: Wi = Wmin + Wscalehi.

(C) Cortical T1w/T2w map. The median (n = 334 subjects) cortical T1w/T2w map values of 

each parcellated cortical area (180 per hemisphere).

(D) Network assignments. Cortical areas were assigned to eight functional resting-state 

networks (RSNs) comprising three sensory (AUD, auditory; VIS, visual; and SOM, 

somatomotor) and five association (DAN, dorsal attention; FPN, frontoparietal; VAN, 

ventral attention; DMN, default mode; and CON, cinguloopercular) networks.

(E) T1w/T2w map values per RSN, averaged across areas. T1w/T2w values are significantly 

lower in association RSNs than in sensory RSNs (p < 0.003, Wilcoxon signed-rank test, 
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difference between sensory and association T1w/T2w across subjects). Error bars indicate 

the SD across areas within an RSN.
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Figure 2. Hierarchical Heterogeneity Improves the Model Fit to rs-FC
(A and B) Structural connectivity (SC) (A) and empirical FC (B) matrices (left hemisphere 

only), averaged across subjects. Colored bars (top and left of matrices) denote resting-state 

network assignments (colored as in Figure 1).

(C and D) Model FC of the homogeneous (C) and heterogeneous (D) models (left 

hemisphere only), averaged across particles (***,p < 10−3).

(E and F) Correlation between average empirical FC and average model FC for the 

homogeneous (E) and heterogeneous (F) models.

(G) Goodness of fit (i.e., fraction of explained variance r2) between the average empirical 

FC and the SC (gray), homogeneous model FC (blue), and heterogeneous model FC (red). 

The fit for the heterogenous model is greater than that of the homogeneous model, which is 

greater than that of the SC (p < 10−5 for each, dependent correlation test).

(H) The best-fit values for recurrent excitatory parameters for the models, with regions 

ordered by increasing values of the T1w/T2w-derived hierarchical heterogeneity map. 

Shaded regions show SD across particles.
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Figure 3. Surrogate Heterogeneity Maps Show that the T1w/T2w Map Provides a Preferential 
Axis of Specialization
(A) The T1w/T2w-based hierarchical heterogeneity map, for the left hemisphere, and 

example surrogate heterogeneity maps with matched spatial autocorrelations.

(B) Spatial autocorrelations of the Box-Cox-transformed T1w/T2w map (black) and 

surrogate heterogeneity maps (gray) as a function of geodesic distance.

(C) Histogram of spatial correlations (Spearman rank) between all pairs of random surrogate 

maps.

(D) Histogram of the best fit (correlation between empirical and model FC) of random 

surrogates. The T1w/T2w map gradient fit is significantly higher than random surrogates (p 
= 0.008).

(E) The correlation between hierarchical heterogeneity-surrogate map similarity (i.e., 

absolute values of correlation) and model performance (i.e., model-empirical FC similarity). 

The model-empirical FC similarities for surrogate maps increase with the absolute value of 

the correlation with the hierarchical heterogeneity map (r = 0.73, p < 10−3).
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Figure 4. Model Fits across Resting-State Networks Are Network Specific
(A and D) Schematic of within- and across-network fits. Correlations between empirical and 

model FC within or between RSNs were calculated for homogeneous and heterogeneous 

models.

(B and E) Within-network (B) and across-network (E) fits of the models. The heterogeneous 

model showed substantial improvements compared to the homogeneous model, for within- 

and across-networks fit in all networks. Across-network fit improvements were distributed 

across sensory and association networks. Within-network fit improvements were 

preferentially in association networks.

(C and F) Topography of the improvement in fit for within-network (C) and across-network 

(F). Values are shown for each RSN.
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Figure 5. Hierarchical Topography of Cortical GBC
(A) GBC of each region is calculated as the average FC of that region with all other cortical 

regions.

(B) The areal topography of empirical GBC.

(C) GBC of sensory areas is significantly larger than that of association areas (p < 0.001, 

Wilcoxon signed-rank test).

(D–F) The correlation between empirical and model GBC is significantly larger in the 

heterogeneous(D) model than for the homogeneous (E) model (p < 10−4, dependent 

correlation test; ***, p < 10−3).
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Figure 6. Hierarchical Topography of Inter-individual Dissimilarity of FC
(A) Dissimilarity calculated for FC patterns across subjects (n = 334) in the empirical 

dataset and across particles (n = 1, 000) in the model fitting framework. The dissimilarity for 

area i, Vi, is given by Vi = E(1 - Corr(Fi(sp),Fi(sq)), where E(…). is the mean across subject 

pairs and Fi(sp) is the FC of area i for subject sp. To compare the areal topographies of 

empirical and model dissimilarity maps, we standardize the values through Z score.

(B and C) Topography of empirical inter-individual dissimilarity (B) and heterogeneous 

model inter-particle dissimilarity (C). The inter-particle dissimilarity for the homogeneous 

model was not depicted due to lack of spatial patterns.

(D) Inter-individual dissimilarity is higher for association areas than for sensory areas (p < 

0.003, Wilcoxon signed-rank test). The heterogeneous model exhibits a similar hierarchical 

differentiation in inter-particle dissimilarity. The association-sensory difference is larger in 

the heterogeneous model than homogeneous (p < 10−4, 2×2 ANOVA, z = 5.3).

(E) Similarity between empirical and model SD of FC across subjects (particles).

(F and H) Correlations between parameters, across particles in the approximate posterior 

distributions, for the homogeneous (F) and heterogeneous (H) models. Homogeneous model 

parameters are very strongly correlated with each other.

(G and I) PCA applied to the distribution of particles drawn from the posterior, with their 

parameter values normalized by the population mean for each parameter. Plotted is the 

fraction of explained variance by the top PCs. 100% of the variation in homogeneous model 

parameters is explained by a single dimension (G). The variation in the heterogeneous model 

is explained by four components (I).
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Figure 7. Intrinsic Dynamics of a Local Microcircuit Model Vary with Recurrent Strengths
(A) The phase diagram of a local microcircuit model (i.e., one node in the large-scale 

network) without external input. The black line indicates the critical points beyond which 

the baseline state is unstable, and the green lines indicate the boundaries at which the system 

exhibits a transition to oscillatory dynamics. For excitatory-to-inhibitory synaptic strengths 

(WEI) smaller than 1.35, the system exhibits a pitchfork bifurcation (in asynchronous 

dynamics), and for larger WEI values, the system exhibits a transition to damped oscillatory 

dynamics.

(B and C) A representative example of optimal homogeneous (B) and heterogeneous (C) 

model parameters projected onto the phase diagram. The external input is adjusted to 

provide the same mean long-range input as in the fit large-scale model from other areas.

(D and E) The power spectral densities (PSDs) of the synaptic gating variables (SE) of the 

homogeneous (D) and heterogeneous (E) models. The colors indicate the hierarchical level 

of each area based on its T1w/T2w map value (light, sensory; dark, association).
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Figure 8. Hierarchical Topography of Spectral Power in MEG
(A and B) The empirical PSD derived from raw MEG (A) and with removal of alpha-band 

(α) and beta-band (β) Lorentzians (B). The shading of lines indicates values of the T1w/

T2w-based hierarchical heterogeneity map.

(C and D) PCA applied to empirical MEG PSDs, with removal of α and β Lorentzians. The 

first principal axis is the spectral pattern that captures the most spectral variation across 

areas (C) inset. The first principal component (PC-1) is the areal map whose values are the 

loading of the spectral variation for each area onto the first principal axis (D). PC-1 captures 

67.5% of the total spectral variance (C).

(E and F) PCA results for the homogeneous (E) and heterogeneous (F) models and 

comparison to the empirical PC-1 map. Left: spatial topography of the model MEG PSD 

PC-1. Right, top: correlation between model and empirical PC-1 map topographies. Right, 

bottom: principal axis 1 (**,p < 10−2; ***, p < 10−3).

(G) Spearman correlation of the empirical MEG PSD PC-1 map with T1w/T2w, and model 

PSD PC-1 maps. The empirical MEG PSD PC-1 map is significantly correlated with 

T1w/T2w (rs = 0.631,p = 0.002, against 500 randomized surrogate maps). The correlation of 

the model PSD PC-1 map with the T1w/T2w map is higher for the heterogeneous model 

than the homogeneous model.
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Table 1.

Fixed Parameter Values for Synaptic and Hemodynamics Equations in the Model

Excitatory Populations Inhibitory Populations

Synaptic model parameters

Ib 0.382 nA -

J 0.15 nA -

γ 0.641 -

WE 1.0 -

τE 0.1 s -

aE 310 nC−1 -

bE 125 Hz -

dE 0.16 s -

WI - 0.7

τI - 0.01 s

aI - 615 nC−1

bI - 177 Hz

dI - 0.087 s

Hemodynamic model parameters

ρ 0.34 -

α 0.32 -

V0 0.02 -

γ 0.41 s−1 -

κ 0.65 s−1 -

k1 3.72 -

k2 0.53 -

k3 0.53 -
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Table 2.

Prior Distributions for hPMC Model Fitting

Parameter (θ) Homogeneous Heterogeneous

Wmin
EI U(0.001, 5.0) U(0.001, 2.0)

Wmin
EE U(0.001, 15.0) U(0.001, 5.0)

gI,gr U(0.001, 5.0) U(0.001, 2.0)

Wscale
EI - U(0, 2.5)

Wscale
EE - U(0, 15.0)

U(MIN, MAX) denotes a uniform probability distribution between the minimum (MIN) and maximum (MAX).
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Heterogeneous brain network 
model simulation and fitting 
software

This paper https://github.com/murraylab/hbnm

Connectome Workbench pipeline Connectome Coordination Facility https://www.humanconnectome.org/software/connectome-workbench

MEG Connectome pipeline Connectome Coordination Facility https://www.humanconnectome.org/software/hcp-meg-pipelines

FieldTrip Donders Institute for Brain, 
Cognition and Behaviour

http://www.fieldtriptoolbox.org

Neuron. Author manuscript; available in PMC 2020 March 20.

https://github.com/murraylab/hbnm
https://www.humanconnectome.org/software/connectome-workbench
https://www.humanconnectome.org/software/hcp-meg-pipelines
http://www.fieldtriptoolbox.org

	SUMMARY
	In Brief
	INTRODUCTION
	RESULTS
	T1w/T2w as a Hierarchical Heterogeneity Map
	Model Fitting
	Hierarchical Heterogeneity Improves Fit to FC
	T1w/T2w Map as Preferential Axis of Areal Specialization
	Model Fit across RSNs
	Global Brain Connectivity
	Inter-individual Variation
	Heterogeneity in Neural Dynamics across Multiple Timescales
	MEG PSD

	DISCUSSION
	STAR✰METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Multi-modal Neuroimaging Dataset

	METHOD DETAILS
	Resting-State Functional Connectivity
	Structural Connectivity
	T1w/T2w maps
	MEG Data Processing
	Resting-State Network Assignments
	Large-Scale Computational Model
	Synaptic Dynamical Equations
	Hemodynamic Equations
	Analytical Approximation of BOLD Functional Connectivity

	Theoretical Characterization of the Model
	Homogeneous and Heterogeneous Modeling Paradigms
	Optimization of Model Parameters
	Ornstein-Uhlenbeck and Simultaneous Autoregressive Models
	Ornstein-Uhlenbeck Process Model
	Simultaneous Autoregressive Model
	Surrogate Heterogeneity Map Generation
	Examination of Potential Confounding Variables
	Within-Network and Across-Network Fitting
	Global Brain Connectivity
	Inter-Individual Dissimilarity
	Spectral Characterization of the Model
	Principal Component Analysis of Empirical and Model Power Spectral Density
	Numerical Simulations

	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table T3

