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Live-imaging of Bioengineered 
Cartilage Tissue using Multimodal 
Non-linear Molecular Imaging
Catarina Costa Moura 1,2, Konstantinos N. Bourdakos1, Rahul S. Tare 2,3, Richard O. C. Oreffo   2 
& Sumeet Mahajan   1

Coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) are non-linear 
techniques that allow label-free, non-destructive and non-invasive imaging for cellular and tissue 
analysis. Although live-imaging studies have been performed previously, concerns that they do not 
cause any changes at the molecular level in sensitive biological samples have not been addressed. This 
is important especially for stem cell differentiation and tissue engineering, if CARS/SHG microscopy 
is to be used as a non-invasive, label-free tool for assessment of the developing neo-tissue. In this 
work, we monitored the differentiation of human fetal-femur derived skeletal cells into cartilage in 
three-dimensional cultures using CARS and SHG microscopy and demonstrate the live-imaging of the 
same developing neo-tissue over time. Our work conclusively establishes that non-linear label-free 
imaging does not alter the phenotype or the gene expression at the different stages of differentiation 
and has no adverse effect on human skeletal cell growth and behaviour. Additionally, we show that 
CARS microscopy allows imaging of different molecules of interest, including lipids, proteins and 
glycosaminoglycans, in the bioengineered neo-cartilage. These studies demonstrate the label-free and 
truly non-invasive nature of live CARS and SHG imaging and their value and translation potential in 
skeletal research, regeneration medicine and tissue engineering.

Tissue engineering has been described as the application of scientific methods to produce ‘spare parts’ of the 
body for replacement of damaged or lost organs1–3. Skeletal tissue engineering seeks to address the growing need 
for skeletal tissue augmentation or repair through the generation of functional skeletal tissue by the recapitula-
tion of stem cell developmental processes. A major challenge in Orthopaedics is the regeneration of articular 
cartilage and the application of cell-based restorative and reparative surgical techniques for articular cartilage 
repair4,5. Human skeletal cell populations offer significant potential as a cell source for tissue engineering appli-
cations, and in particular for skeletal tissue regeneration strategies6,7. The development of appropriate tools to 
non-invasively follow the development of skeletal cells and the formation of engineered neo-cartilage in real-time 
and non-destructively is crucial and remains, to date, an unmet goal.

Coherent anti-Stokes Raman scattering (CARS) combined with microscopy is a powerful chemical imaging 
technique that maps the distribution of molecules in biological systems in their native state, without the need for 
an external label (such as stains or fluorophores)8. The label-free nature of CARS microscopy, together with its 
inherent three-dimensional imaging capability9, presents an exciting imaging tool for biomedical and clinical 
applications. Given sample preparation and processing are not required, live-imaging using CARS microscopes 
has become a reality10–12. As with all optical techniques, power and exposure to light need to be within a thresh-
old to prevent any cell damage and phototoxic effects. However, with CARS microscopy, a number of ques-
tions remain as to whether: (i) live-imaging using CARS microscopy is fully non-invasive; (ii) cell development 
remains unaltered; and (iii) the cells remain viable and robust for further use in clinical applications following 
live-imaging with CARS microscopy. Studies have reported on thresholds of photo-induced cell damage by CARS 
microscopy, commonly by visualising direct cell morphological changes13, and detecting formation of apoptotic 
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membrane protrusions14, or by analysing and comparing nuclear staining between damaged and non-damaged 
cells after laser exposure15. The induced damage and changes are obvious at the levels of damage thresholds. 
Furthermore, simultaneously with CARS, second harmonic generation (SHG), a well-established technique 
that allows imaging of collagen fibres in tissues, can be carried out with appropriate laser sources16. For both 
non-linear techniques, CARS and SHG, given that relatively high peak powers are used, it is therefore necessary 
to establish that no subtle changes are induced that are detrimental to the biological system under study (even if 
the laser powers are within damage thresholds).

Previous studies have shown that Raman spectroscopy17,18 and CARS/SHG19–22 could be used for two- and 
three-dimensional cell cultures, but currently there are no known studies detailing live cell state or cell devel-
opment over time using non-linear imaging. Critically, there has been no investigation, to date, detailing the 
potential biological effects on using non-linear imaging techniques such as CARS and SHG on live tissue when 
the excitation powers are within damage thresholds. This is essential to establish CARS and related non-linear 
imaging techniques as mainstream analytical or assessment tools in biomedicine and, more specifically, in skeletal 
repair and regeneration strategies. The application of robust, real-time, temporal, non-invasive imaging is rele-
vant for tissue engineering, in particular, to ensure the absence of tissue and cell deterioration over time and to 
investigate appropriate tissue development at the molecular-level. The current study examines these issues with 
analysis of the development of human fetal femur-derived skeletal cells into cartilage, and sets out to conclusively 
establish, through gene expression analysis and concomitant imaging, that the non-linear imaging process itself 
does not have any observed effect during cell differentiation (carried out over 21 days). Furthermore, critical in 
longitudinal cell and tissue differentiation studies is the judicious selection of appropriate targets/markers. Lipids 
remain the molecule of choice in most studies for imaging using CARS, given the role of lipids in metabolism and 
their strong Raman signal due to CH-stretching vibrations23. More recently, the potential of CARS microscopy 
for imaging other relevant biological molecules such as phosphate in hydroxyapatite24,25, or nucleic acids and 
proteins25,26, has attracted significant interest. Here we demonstrate the ability of CARS microscopy to image 
relevant molecules, namely proteins and glycosaminoglycans, in the bioengineered cartilage tissue. Our work 
thus establishes the translation potential of label-free multimodal non-linear imaging approaches for biomedicine 
and paves the way for their application to cell-based therapies, human skeletal regeneration research and tissue 
engineering.

Results and Discussion
Human fetal femur-derived skeletal cells were differentiated into cartilage and analysed using live-CARS and 
SHG microscopy. The culture of human fetal skeletal cells was carried out in an in vitro three-dimensional pellet 
culture system for 21 days in chondrogenic medium to differentiate the skeletal cells into chondrocytes and to 
generate neo-cartilage (Fig. 1). Skeletal cell aggregation was carried out in chondrogenic media to form cartilag-
inous pellets. The initiation and formation of the extracellular matrix imbues the bioengineered construct with 
structural integrity. In order to establish that live-imaging by CARS and SHG does not affect the development 
of the bioengineered cartilage the following experiment was designed. Three different conditions using human 
skeletal cells derived from the same fetal sample were examined: (i) cells cultured over 21 days in absence of 
live-imaging (control); (ii) cells cultured over 21 days and live-imaging performed at day 7; and, (iii) cells cul-
tured over 21 days and live-imaging performed at day 7 and day 21 (Fig. 1). Although no differences are expected 

Figure 1.  Schematic diagram of the experimental design. Human fetal femur-derived skeletal cells were 
cultured in chondrogenic medium in an in vitro three-dimensional pellet culture system for 21 days. From 
the same fetal sample: (i) cells were cultured over 21 days in the absence of live-imaging (control); (ii) cells 
were cultured over 21 days and live-imaging performed at day 7; and (iii) cells were cultured over 21 days and 
live-imaging performed at day 7 and day 21. The expression of skeletal lineage-specific genes after 21 days in 
chondrogenic culture was analysed for all three conditions.
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between the two former conditions, fetal skeletal cells were imaged at day 21 under condition (iii) to confirm cell 
integrity. Fetal skeletal cells were imaged in real-time under identical culture and chondrogenic environment as 
the control. Skeletal lineage-specific gene expression was analysed in all three conditions.

Live-imaging of chondrogenic differentiation of skeletal cell populations was performed using a label-free, 
multimodal, non-linear imaging platform, combining CARS and SHG microscopy (Fig. 2a). A 2 picosecond 
pulsed laser system was used for simultaneous CARS and SHG imaging to get the benefit of high spectral resolu-
tion (~10 cm−1) and efficiency in CARS without compromising much on signal generation with SHG. The laser 
power required for the live-imaging procedure to be used in fetal femur-derived skeletal cells without damaging 
the pellet structure was found to be approximately 120 mW, after a thorough protocol optimisation. SHG enabled 
imaging of collagen fibres within the 3D cartilage pellet, providing a comprehensive structural information on the 
collagen fibre network without using labels. CARS microscopy allowed the visualisation of the lipid distribution 
during chondrogenesis. At different time-points, all samples were equivalent and presented comparable colla-
gen and lipid patterns. Quantification of the image analysis data sets (Fig. 2b) demonstrated that collagen fibres 
increase significantly in width, length and straightness, from day 7 to day 21 of chondrogenic culture. No statisti-
cally significant differences in cell size and cell number between the different days of culture, at the same field of 
view, were observed (Fig. 2c). Image analysis enabled measurement of the amount of collagen fibres present in the 
same region of interest, to quantify collagen and the number of cells during development of the neo-cartilage. An 
increase from day 7 to day 21 was observed signifying the net balance between the proliferation of fetal skeletal 
cells and the deposition of collagen (Fig. 2c).

Gene expression analysis using reverse transcription quantitative polymerase chain reaction (RT-qPCR) to 
compare the three different conditions is detailed in Fig. 3. The characteristic chondrogenic genes COL2A1 and 
ACAN were up-regulated. These encode the α-chain of hyaline cartilage-specific Type II collagen and the main 
proteoglycan in cartilage, respectively, in fetal skeletal cells following 21 days of chondrogenic culture (Fig. 3), 
as previously demonstrated27,28. COL10A1, which encodes the α-chain of Type X collagen expressed by hyper-
trophic chondrocytes, and SOX9, the chondrogenic transcription factor, were negligibly expressed after 21 days 
of culture (gene amplification only detected beyond 30 cycles). Furthermore, a down-regulation of characteristic 
osteogenic (ALPL) and adipogenic (PPARG and FABP4) genes was observed after 21 days of differentiation in 
chondrogenic culture (Supplementary Fig. 1).

Crucially, analysis across the three human fetal skeletal cell culture conditions (control, live-imaging at day 7, 
and live-imaging at day 7 and 21) indicated no significant difference in the expression levels for chondrogenic genes. 
Comparison against the control demonstrated that the live-imaging procedure with CARS and SHG microscopy, 
either imaged at one single early time-point (day 7) or two distinct time-points (day 7 and day 21), did not restrict or 
affect chondrogenic differentiation and development of the cartilage tissue at the molecular level.

The above results on molecular expression allow us to conclude that for the non-linear imaging techniques 
used here the lack of ‘morphological damage’ observed in the developing neo-cartilage tissue is correlated to 
the lack of ‘molecular damage’ and ‘growth impairment’ observed. We note that this may be due to the specific 
methodology and procedures we used: 120 mW of a single scan (pixel dwell time of ~14.3 µs and power density 
of <6 MW/cm2) as well as the fact that the tissue was always in sterile conditions and the culture media was 
immediately replenished after each scan. Our observation regarding the lack of morphological damage observed 
is consistent with findings of other groups, who observed photodamage after several tens of scans at such pow-
ers14,29. Thus, label-free multimodal imaging offers a singular non-invasive tool for stem cell biologists to study 
tissue repair and regeneration in a live and a non-destructive manner.

After monitoring the differentiation of skeletal cells into cartilage in three-dimensional cultures for 21 days, 
the potential of the multimodal label-free system to image other relevant molecules in the cartilage tissue was 
investigated. CARS microscopy is commonly applied to image molecules in the CH-stretch region of the Raman 
spectrum (2840–3000 cm−1), such as lipids and cell membranes, important in tissue and cellular analysis30. The 
Raman spectrum of the cartilage tissue in the CH-stretch region was acquired (Fig. 4a). Images from lipids in the 
cell pellets were captured by targeting the Raman CH stretching mode at 2845 cm1 (CH2 symmetric stretch)23,31, 
and the SHG signal was simultaneously acquired (Fig. 4b and c). The pump beam used for CARS imaging also 
served as the SHG excitation source (with a separate detection channel). Furthermore, label-free images of pro-
teins within the cartilage construct (Fig. 4c) were collected by targeting the vibrational modes at 2935 cm−1 (CH3 
symmetric stretch) and 3030 cm−1 (CH3 asymmetric stretch)31. This was performed sequentially by tuning the 
pump beam to target the corresponding vibrational frequencies. Similar structures can be observed by targeting 
different vibrational modes (Fig. 4). Although the 2935 cm−1 vibration mode is commonly assigned to proteins, 
lipids also have CH3 moieties that will be detected using CARS microscopy. As CARS provides the chemical 
distribution of a particular vibrational mode, different molecules at a particular frequency can be observed. 
Specifically, the multimodal imaging system used in this work has a spectral resolution of ~10 cm−1 and there is 
no ‘bleed-through’ in the different channels.

Although extensive work has been undertaken employing CARS imaging in the CH stretch region of the 
Raman spectrum, imaging on the spectral region between 800 cm−1 and 1800 cm−1 using CARS microscopes 
has received less attention. This spectral Raman region, the so-called ‘fingerprint’ region, is rich in biochem-
ical information including chemical functional groups related to tissue proteins, lipids, glycogen and nucleic 
acids (Fig. 5a). Articular cartilage consists primarily of extracellular matrix, such as collagens, proteoglycans and 
non-collagenous proteins, and a sparse population of chondrocytes. Proteoglycans have an important role in the 
cartilage matrix and are composed of a protein core and one or more glycosaminoglycan chains, which hold nega-
tively charged carboxylate or sulphate groups32. The Raman band at 1061 cm−1 is typical from glycosaminoglycans 
with sulphate groups (OSO3− symmetric stretch)33, and by targeting this vibrational mode glycosaminoglycans 
can be imaged using CARS microscopy (Fig. 5b). Additionally, the amide I band at 1668 cm−1 is mainly assigned 
to collagen33–35, and CARS signal from both fibrillar and non-fibrillar collagen can be observed in Fig. 5b. The 

https://doi.org/10.1038/s41598-019-41466-w


4Scientific Reports |          (2019) 9:5561  | https://doi.org/10.1038/s41598-019-41466-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Raman CH vibrational mode at 1450 cm1 (CH2/CH3) is related to collagen/proteins33–35, and although slightly 
different, one can observe the similarities between the 1450 cm1 and 1668 cm−1 signals. CARS images at different 
vibrational frequencies acquired from replicate samples are shown in Supplementary Fig. 2.

Figure 2.  (a) Label-free live-imaging at day 7 and day 21 of fetal (human) femur-derived skeletal cell pellets 
cultured in chondrogenic media for 21 days. SHG imaged fibres of collagen (green) and lipid droplets (red) 
within the pellet of the neo-cartilage were imaged by CARS. Scale bars correspond to 50 µm. (b) Quantification 
of the width, length and straightness of collagen fibres. CT-FIRE was used to extract these details from the SHG 
images of collagen fibres. (c) Fiji was used to analyse CARS images to quantity the number of cells and their 
sizes for each cartilage pellet. Quantification was carried out to evaluate the amount of collagen fibres found per 
number of cells in the neo-cartilage tissue using both CARS and SHG data. Average data from 3 independent 
samples is shown where error bars indicate the observed standard deviation. The Mann-Whitney test was used 
to calculate the level of significance at *p-value < 0.05.
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Interestingly, CARS imaging at the 1668 cm−1 Raman band displayed a distinct and different signal of collagen 
compared to SHG. In fact, while CARS is responsive to the molecular structure and chemical composition, in 
this case proteins that are predominantly collagens, SHG is sensitive to the supermolecular crystalline structure 
of collagen36,37. Cartilage predominantly is composed of collagen Type II, which is fibrillar and hence is imaged 
by SHG in this case. However, not all collagen types are fibrillar. Therefore, combined multimodal imaging could 
offer insight with regards to the distribution of fibrillar and non-fibrillar collagen and their respective types37–39. 
In this case, the home-built label-free multimodal system allowed acquisition of information on collagen by 

Figure 3.  Expression of COL2A1 and ACAN in skeletal cells derived from human fetal femurs chondrogenic 
culture at day 21, including control (cells cultured with no live-imaging), cells cultured over 21 days and live-
imaging performed at day 7, and cells cultured over 21 days and live-imaging performed at both days 7 and 21. 
Normalisation was carried out with respect to ACTB to obtain relative gene expression and the gene expression 
on day 0 was assigned a value of 1 (as indicated by the dotted line). Average data from 3 independent samples is 
shown where error bars indicate the observed standard deviation. The Mann-Whitney test was used to calculate 
the level of significance at *p-value < 0.05.

Figure 4.  Human fetal femur-derived skeletal cells were cultured as a three-dimensional pellet over 21 days 
in chondrogenic media to generate cartilage tissue. (a) Raman spectrum in the CH-stretch region. The three 
marked bands were targeted for CARS imaging. (b) SHG images fibres of collagen (green) in the bioengineered 
cartilage tissue. (c) CARS images of the bioengineered cartilage tissue at the CH-stretch region: 2845 cm−1 
(νs(CH2)), 2935 cm−1 (νs(CH3)), and 3030 cm−1 (νas(CH3)). Scale bars correspond to 50 µm.
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mapping the CARS signal at 1668 cm−1 band and on fibrillar collagen by analysing the SHG signal, highlighting 
the potential of a multimodal label-free imaging system equipped with non-linear techniques such as CARS and 
SHG as a powerful monitoring tool in tissue engineering (Fig. 6).

Conclusions
In summary, the current studies have investigated the use of label-free non-linear imaging techniques, namely 
CARS and SHG microscopy, in live human fetal femur-derived skeletal cells differentiated into chondrogenic 
cultures. 2 picosecond pulsed lasers were used to acquire CARS and SHG images. The results demonstrate that 
under damage thresholds, label-free live-imaging had a negligible effect on skeletal cell (human fetal) differentia-
tion and development into cartilage-tissue at the level of molecules, as confirmed by gene expression analysis. The 
live-imaging allowed monitoring of fetal femur-derived skeletal cells without compromising cell differentiation 
and cartilage development. Furthermore, these studies demonstrate that CARS microscopy allows imaging of 

Figure 5.  Human fetal femur-derived skeletal cells were cultured as a three-dimensional pellet over 21 days 
in chondrogenic media to generate cartilage tissue. (a) Raman spectrum in the ‘fingerprint’ region. The three 
marked bands were targeted for CARS imaging. (b) CARS images acquired at the ‘fingerprint’ vibrations of: 
1061 cm−1 (νs(OSO3

−)), 1450 cm−1 (δ(CH2)), and 1668 cm−1 (ν(C=O)). Scale bars correspond to 50 µm.

Figure 6.  Coherent anti-Stokes Raman scattering (CARS) signal at 1668 cm−1, mainly assigned to collagen, and 
SHG signal, revealing fibrillar collagen on the bioengineered cartilage tissue.

https://doi.org/10.1038/s41598-019-41466-w
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additional key molecules of interest such as lipids, proteins and glycosaminoglycans in bioengineered cartilage 
tissue. This study indicates that multimodal imaging with non-linear techniques such as CARS and SHG offer 
new approaches for clinical translation in assessment of regenerated skeletal tissues, and are ready for widespread 
implementation by biomedical scientists. Overall, our demonstration of live-imaging ability to dynamically follow 
the formation of neo-(regenerated)-tissues in real-time using non-invasive techniques paves the way for exciting 
opportunities in the design and development of innovative tissue engineering solutions for hard and soft tissues.

Methods
Fetal skeletal cell isolation and culture.  Human fetal tissue were obtained after termination of preg-
nancy procedure and with informed consent of patients following the guidelines issued by the Polkinghome 
Report as per the approval (LREC 296100) from the Southampton and South West Hampshire Local Research 
Ethics Committee. The fetal samples were at the end of Carnegie stage 23 (approximately 60 days post concep-
tion) and were isolated from the lower limbs. Surrounding skeletal muscle and connective tissue were removed. 
Segments were cut from each sample, treated and cultured as in our previous publications27. Briefly, cells were 
harvested at 85% confluence using 0.025% (w/v) trypsin/EDTA with 0.05% glucose for 5 minutes at 37 °C and 
cryopreserved in 10% (v/v) dimethyl sulfoxide (DMSO) in fetal calf serum (FCS). Fetal skeletal cells were thawed 
and cultured in α-MEM supplemented with 10% FCS, 100 U/mL penicillin and 100 mg/mL streptomycin before 
each experiment, as previously described27,40.

Chondrogenic differentiation.  Human fetal-femur derived skeletal cells were re-suspended in chondro-
genic media with no serum (α-MEM supplemented with 100 U/mL penicillin and 100 mg/mL streptomycin, 
100 μM ascorbate-2-phosphate, 10 ng/mL TGFβ3, 10 nM dexamethasone and 1x ITS liquid media supplement 
[10 µg/mL recombinant human insulin, 5.5 µg/mL human transferrin and 5 ng/mL sodium selenite]) at a cell 
density of 3 × 105 cells/mL, as previously described27. After a second centrifugation, the resulting cell pellet was 
maintained in a humidified chamber at 37 °C and 5% CO2 for 21 days. Chondrogenic media was restocked every 
2–3 days28.

Live imaging.  Human fetal-femur derived skeletal cell pellets cultured for 7 and 21 days were washed with 
phosphate buffered saline (PBS) and placed in a sterile coverslip cell chamber for live-imaging (Supplementary 
Fig. 3). Label-free multimodal imaging was performed using a home-built laser scanning system (Supplementary 
Fig. 4), which allows simultaneous image acquisition of CARS and SHG, using ScanImage 5.1 (Vidrio 
Technologies)41. For CARS imaging, a 2 picosecond APE laser system was used, as previously described27. The 
CH-stretch mode at 2845 cm−1 was targeted by tuning the OPO to 797.8 nm. The SHG signal was acquired using 
the same laser source at 797.8 nm. Each sample was imaged using a 20x/0.75 NA water immersion objective, with 
14.5 ms per line period for a 1024 × 1024-pixel image. The total incident power on the sample was approximately 
120 mW (80 mW from pump and 40 mW from Stokes). A single scan was taken at one area of the sample. The 
power density calculated is <6 MW/cm2 at the sample. After live-imaging, serum-free chondrogenic media was 
replenished, and human fetal-femur derived skeletal cell pellets were maintained in an incubator at 37 °C and 5% 
CO2 until ready for gene expression analysis.

Multispectral imaging with CARS.  For CARS imaging at different wavenumbers fixed human fetal-femur 
derived skeletal cell pellets were placed in a sterile coverslip cell chamber on the same setup as above. The differ-
ent vibrational modes, 1061 cm−1, 1450 cm−1, 1668 cm−1, 2845 cm−1, 2935 cm−1 and 3030 cm−1, were targeted by 
tuning the OPO to 930.2 nm, 897.7 nm, 880.4 nm, 797.8 nm, 792.1 nm, and 786.2 nm, respectively. Supplementary 
Table 1 shows the required modifications in the multimodal label-free imaging set up to acquire CARS images at 
different wavenumbers.

Gene expression analysis.  RNA extraction and cDNA synthesis.  Bioengineered cartilage tissue sam-
ples were disrupted and homogenised in a lysis buffer (lysis buffer TX from Bioline, England with 1% (v/v) 
β-mercaptoethanol) after 21 days of chondrogenic culture. The Bioline Isolate II RNA/DNA/Protein kit was used 
to isolate total RNA, following the manufacturer’s instructions. Dilutions were prepared to normalise the amount 
of RNA for each sample in the experiment. cDNA was synthesised using TaqMan™ Reverse Transcription 
Reagents from Applied Biosystems™, according to the manufacturer’s instructions.

Reverse transcription quantitative polymerase chain reaction (qPCR).  An ABI Prism 7500 detection system 
(Applied Biosystems) was used to quantify relative quantification of gene expression, as previously described27. 
Supplementary Table 2 shows the primers used for qPCR. The experiment was performed using 2 µL of cDNA, 
17.5 µL of GoTaq qPCR Master Mix (Promega, Madison, WI, USA) and 1.5 µL of each primer (5 µM). All reac-
tions were performed in triplicate and included a negative control (water in place of cDNA sample). All data were 
normalised to β-actin expression (ACTB) and compared to the expression values of each gene at day 0.

Raman spectroscopy.  Human fetal-femur derived skeletal cell pellets cultured for 21 days were fixed in 
4% (v/v) formaldehyde solution27. Raman spectra were obtained using a Renishaw® inVia Raman microscope in 
combination with WiRE 3.4 software, with a 633 nm laser and a 20x/0.5 NA water immersion objective. For each 
spectrum, 3 accumulations were collected using 6 mW laser power at the sample, an exposure time of 60 seconds 
and a 1200 lines per mm grating. Final spectra were pre-processed using IRootLab27,42.

https://doi.org/10.1038/s41598-019-41466-w
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Image processing and analysis.  Collagen fibres in SHG images were extracted and quantified using 
CT-FIRE27,43. All images were processed using Fiji. The size and number of cells, as well as the ratio between the 
amount of collagen fibres to number of cells per area of interest were quantified. CARS images were processed and 
analysed as previously described27.

Statistical analysis.  All experiments were performed using three different human fetal samples. GraphPad 
Prism 7 (San Diego, CA, USA) was used to prepare all graphs., and IBM® SPSS® Statistics version 21.0 (IBM 
Corporation, Armonk, NY, USA) to perform statistical analysis. The Mann-Whitney U-test was performed to 
compare two independent groups. Differences were considered to be statistically significant at  p-value ≤ 0.05.

References
	 1.	 Rose, F. R. & Oreffo, R. O. Bone tissue engineering: hope vs hype. Biochemical and biophysical research communications 292, 1–7, 

https://doi.org/10.1006/bbrc.2002.6519 (2002).
	 2.	 Bianco, P. & Robey, P. G. Stem cells in tissue engineering. Nature 414, 118–121, https://doi.org/10.1038/35102181 (2001).
	 3.	 Vacanti, J. P. & Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction 

and transplantation. The Lancet 354, S32–S34, https://doi.org/10.1016/S0140-6736(99)90247-7.
	 4.	 Shimomura, K. et al. Scaffold-free tissue engineering for injured joint surface restoration. Journal of experimental orthopaedics 5, 2, 

https://doi.org/10.1186/s40634-017-0118-0 (2018).
	 5.	 Yang, Y. et al. Mesenchymal Stem Cell-Derived Extracellular Matrix Enhances Chondrogenic Phenotype of and Cartilage Formation 

by Encapsulated Chondrocytes in vitro and in vivo. Acta biomaterialia. https://doi.org/10.1016/j.actbio.2017.12.043 (2018).
	 6.	 Cheung, K. S. et al. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating 

SMAD2 and SMAD3. PloS one 9, e98063, https://doi.org/10.1371/journal.pone.0098063 (2014).
	 7.	 Dawson, J. I., Kanczler, J., Tare, R., Kassem, M. & Oreffo, R. O. C. Concise Review: Bridging the Gap: Bone Regeneration Using 

Skeletal Stem Cell-Based Strategies—Where Are We Now. Stem Cells 32, 35–44, https://doi.org/10.1002/stem.1559 (2014).
	 8.	 Moura, C. C., Tare, R. S., Oreffo, R. O. C. & Mahajan, S. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: 

prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 13, https://doi.
org/10.1098/rsif.2016.0182 (2016).

	 9.	 Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. 
Physical Review Letters 82, 4142–4145 (1999).

	10.	 Khmaladze, A. et al. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering 
(CARS) microscopy with singular value decomposition (SVD) analysis. Applied spectroscopy 68, 1116–1122, https://doi.
org/10.1366/13-07183 (2014).

	11.	 Bradley, J. et al. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 
(Cambridge, England) 143, 2238–2247, https://doi.org/10.1242/dev.129908 (2016).

	12.	 Nan, X., Cheng, J. X. & Xie, X. S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman 
scattering microscopy. Journal of lipid research 44, 2202–2208, https://doi.org/10.1194/jlr.D300022-JLR200 (2003).

	13.	 Nan, X., Potma, E. O. & Xie, X. S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes 
Raman scattering microscopy. Biophysical journal 91, 728–735, https://doi.org/10.1529/biophysj.105.074534 (2006).

	14.	 Fu, Y., Wang, H., Shi, R. & Cheng, J. X. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. 
Optics express 14, 3942–3951 (2006).

	15.	 Minamikawa, T. et al. Photo-Induced Cell Damage Analysis for Single- and Multifocus Coherent Anti-Stokes Raman Scattering. 
Microscopy. Journal of Spectroscopy 2017, 8, https://doi.org/10.1155/2017/5725340 (2017).

	16.	 Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and 
organisms. Nature biotechnology 21, 1356–1360, https://doi.org/10.1038/nbt894 (2003).

	17.	 Kallepitis, C. et al. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nature Communications 8, 14843, 
https://doi.org/10.1038/ncomms14843 (2017).

	18.	 Smith, S. J., Emery, R., Pitsillides, A., Clarkin, C. E. & Mahajan, S. Detection of early osteogenic commitment in primary cells using 
Raman spectroscopy. Analyst 142, 1962–1973, https://doi.org/10.1039/C6AN02469F (2017).

	19.	 Mortati, L., Divieto, C. & Sassi, M. P. CARS and SHG microscopy to follow collagen production in living human corneal fibroblasts 
and mesenchymal stem cells in fibrin hydrogel 3D cultures. Journal of Raman Spectroscopy 43, 675–680, https://doi.org/10.1002/
jrs.3171 (2012).

	20.	 Hofemeier, A. D. et al. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem 
cells. Scientific reports 6, 26716, https://doi.org/10.1038/srep26716 (2016).

	21.	 Xu, X. et al. Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and 
desmoplastic tissues. Biomedical Optics Express 4, 2855–2868, https://doi.org/10.1364/BOE.4.002855 (2013).

	22.	 Lee, H. S. et al. Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. 
Tissue engineering 12, 2835–2841, https://doi.org/10.1089/ten.2006.12.2835 (2006).

	23.	 Smus, J. P. et al. Tracking adipogenic differentiation of skeletal stem cells by label-free chemically selective imaging. Chemical Science 
6, 7089–7096, https://doi.org/10.1039/C5SC02168E (2015).

	24.	 Pegoraro, A. F., Slepkov, A. D., Ridsdale, A., Moffatt, D. J. & Stolow, A. Hyperspectral multimodal CARS microscopy in the 
fingerprint region. Journal of biophotonics 7, 49–58, https://doi.org/10.1002/jbio.201200171 (2014).

	25.	 Downes, A., Mouras, R., Bagnaninchi, P. & Elfick, A. Raman spectroscopy and CARS microscopy of stem cells and their 
derivatives(). Journal of Raman spectroscopy: JRS 42, 1864–1870, https://doi.org/10.1002/jrs.2975 (2011).

	26.	 Camp, C. H. Jr. et al. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues. Nature photonics 8, 627–634, https://
doi.org/10.1038/nphoton.2014.145 (2014).

	27.	 Costa Moura, C. et al. Quantitative temporal interrogation in 3D of bioengineered human cartilage using multimodal label-free 
imaging. Integrative Biology 10, 635–645, https://doi.org/10.1039/C8IB00050F (2018).

	28.	 Tare, R. S., Howard, D., Pound, J. C., Roach, H. I. & Oreffo, R. O. Tissue engineering strategies for cartilage generation–micromass 
and three dimensional cultures using human chondrocytes and a continuous cell line. Biochemical and biophysical research 
communications 333, 609–621, https://doi.org/10.1016/j.bbrc.2005.05.117 (2005).

	29.	 Galli, R. et al. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PloS one 9, 
e110295–e110295, https://doi.org/10.1371/journal.pone.0110295 (2014).

	30.	 Parekh, S. H., Lee, Y. J., Aamer, K. A. & Cicerone, M. T. Label-Free Cellular Imaging by Broadband Coherent Anti-Stokes Raman 
Scattering Microscopy. Biophysical journal 99, 2695–2704, https://doi.org/10.1016/j.bpj.2010.08.009 (2010).

	31.	 Long, D. A. Infrared and Raman characteristic group frequencies. Tables and charts George Socrates John Wiley and Sons, Ltd, 
Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy 35, 905–905, https://doi.org/10.1002/jrs.1238 (2004).

	32.	 Buckwalter, J. A., Mankin, H. J. & Grodzinsky, A. J. Articular cartilage and osteoarthritis. Instructional course lectures 54, 465–480 
(2005).

https://doi.org/10.1038/s41598-019-41466-w
https://doi.org/10.1006/bbrc.2002.6519
https://doi.org/10.1038/35102181
https://doi.org/10.1016/S0140-6736(99)90247-7
https://doi.org/10.1186/s40634-017-0118-0
https://doi.org/10.1016/j.actbio.2017.12.043
https://doi.org/10.1371/journal.pone.0098063
https://doi.org/10.1002/stem.1559
https://doi.org/10.1098/rsif.2016.0182
https://doi.org/10.1098/rsif.2016.0182
https://doi.org/10.1366/13-07183
https://doi.org/10.1366/13-07183
https://doi.org/10.1242/dev.129908
https://doi.org/10.1194/jlr.D300022-JLR200
https://doi.org/10.1529/biophysj.105.074534
https://doi.org/10.1155/2017/5725340
https://doi.org/10.1038/nbt894
https://doi.org/10.1038/ncomms14843
https://doi.org/10.1039/C6AN02469F
https://doi.org/10.1002/jrs.3171
https://doi.org/10.1002/jrs.3171
https://doi.org/10.1038/srep26716
https://doi.org/10.1364/BOE.4.002855
https://doi.org/10.1089/ten.2006.12.2835
https://doi.org/10.1039/C5SC02168E
https://doi.org/10.1002/jbio.201200171
https://doi.org/10.1002/jrs.2975
https://doi.org/10.1038/nphoton.2014.145
https://doi.org/10.1038/nphoton.2014.145
https://doi.org/10.1039/C8IB00050F
https://doi.org/10.1016/j.bbrc.2005.05.117
https://doi.org/10.1371/journal.pone.0110295
https://doi.org/10.1016/j.bpj.2010.08.009
https://doi.org/10.1002/jrs.1238


9Scientific Reports |          (2019) 9:5561  | https://doi.org/10.1038/s41598-019-41466-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

	33.	 Bonifacio, A. et al. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate 
methods for data analysis. Analyst 135, 3193–3204, https://doi.org/10.1039/c0an00459f (2010).

	34.	 Gasior-Glogowska, M., Komorowska, M., Hanuza, J., Ptak, M. & Kobielarz, M. Structural alteration of collagen fibres–spectroscopic 
and mechanical studies. Acta of bioengineering and biomechanics 12, 55–62 (2010).

	35.	 Alebrahim, M. A., Krafft, C. & Popp, J. Raman imaging to study structural and chemical features of the dentin enamel junction. IOP 
Conference Series: Materials Science and Engineering 92, 012014 (2015).

	36.	 Camp, C. H. Jr. & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nature photonics 9, 295, https://
doi.org/10.1038/nphoton.2015.60 (2015).

	37.	 Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of 
collagen fibrillar structure. Nature Protocols 7, 654, https://doi.org/10.1038/nprot.2012.009 (2012).

	38.	 Su, P.-J. et al. The discrimination of type I and type II collagen and the label-free imaging of engineered cartilage tissue. Biomaterials 
31, 9415–9421, https://doi.org/10.1016/j.biomaterials.2010.08.055 (2010).

	39.	 Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15, 771–785, 
https://doi.org/10.1038/nrm3902 (2014).

	40.	 Mirmalek-Sani, S. H. et al. Characterization and multipotentiality of human fetal femur-derived cells: implications for skeletal tissue 
regeneration. Stem Cells 24, 1042–1053, https://doi.org/10.1634/stemcells.2005-0368 (2006).

	41.	 Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomedical 
engineering online 2, 13, https://doi.org/10.1186/1475-925x-2-13 (2003).

	42.	 Trevisan, J., Angelov, P. P., Scott, A. D., Carmichael, P. L. & Martin, F. L. IRootLab: a free and open-source MATLAB toolbox for 
vibrational biospectroscopy data analysis. Bioinformatics 29, 1095–1097, https://doi.org/10.1093/bioinformatics/btt084 (2013).

	43.	 Bredfeldt, J. S. et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. 
Journal of biomedical optics 19, 16007, https://doi.org/10.1117/1.jbo.19.1.016007 (2014).

Acknowledgements
The authors would like to acknowledge Dr S Lisgo, MRC-Wellcome Trust Human Developmental Biology 
Resource, University of Newcastle, UK for providing access to fetal tissues and Dr Emma Budd and Dr Janos 
Kanczler for helping with isolation of human fetal tissue. We thank Mr Jack Taylor for helping with the Raman 
spectra acquisition. This work was supported by grants from the Institute for Life Sciences, University of 
Southampton, ERC grant Nano-ChemBioVision 638258, Wessex Medical Research and BBSRC (BB/L021072/1). 
SM acknowledges APE Berlin Gmbh for their support with the laser system.

Author Contributions
C.C.M. performed cell culture, imaging, molecular lab work, Raman spectroscopy, data analysis, image 
processing and analysis, statistical analysis and participated in the design of the study. K.N.B. and S.M. designed 
the multimodal microscopy systems, and K.N.B. carried out the construction and set-up. R.S.T., R.O.C.O. and 
S.M. conceptualised, designed and coordinated the study. All authors contributed to the writing of the manuscript 
and gave final approval for publication.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41466-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-41466-w
https://doi.org/10.1039/c0an00459f
https://doi.org/10.1038/nphoton.2015.60
https://doi.org/10.1038/nphoton.2015.60
https://doi.org/10.1038/nprot.2012.009
https://doi.org/10.1016/j.biomaterials.2010.08.055
https://doi.org/10.1038/nrm3902
https://doi.org/10.1634/stemcells.2005-0368
https://doi.org/10.1186/1475-925x-2-13
https://doi.org/10.1093/bioinformatics/btt084
https://doi.org/10.1117/1.jbo.19.1.016007
https://doi.org/10.1038/s41598-019-41466-w
http://creativecommons.org/licenses/by/4.0/

	Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging

	Results and Discussion

	Conclusions

	Methods

	Fetal skeletal cell isolation and culture. 
	Chondrogenic differentiation. 
	Live imaging. 
	Multispectral imaging with CARS. 
	Gene expression analysis. 
	RNA extraction and cDNA synthesis. 
	Reverse transcription quantitative polymerase chain reaction (qPCR). 

	Raman spectroscopy. 
	Image processing and analysis. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Schematic diagram of the experimental design.
	Figure 2 (a) Label-free live-imaging at day 7 and day 21 of fetal (human) femur-derived skeletal cell pellets cultured in chondrogenic media for 21 days.
	Figure 3 Expression of COL2A1 and ACAN in skeletal cells derived from human fetal femurs chondrogenic culture at day 21, including control (cells cultured with no live-imaging), cells cultured over 21 days and live-imaging performed at day 7, and cells cu
	Figure 4 Human fetal femur-derived skeletal cells were cultured as a three-dimensional pellet over 21 days in chondrogenic media to generate cartilage tissue.
	Figure 5 Human fetal femur-derived skeletal cells were cultured as a three-dimensional pellet over 21 days in chondrogenic media to generate cartilage tissue.
	Figure 6 Coherent anti-Stokes Raman scattering (CARS) signal at 1668 cm−1, mainly assigned to collagen, and SHG signal, revealing fibrillar collagen on the bioengineered cartilage tissue.




