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Abstract
Clinical success of immunotherapy is driving the need for new prognostic and predictive assays to inform patient selection and
stratification. This requirement can be met by a combination of computational pathology and artificial intelligence. Here, we
critically assess computational approaches supporting the development of a standardized methodology in the assessment of
immune-oncology biomarkers, such as PD-L1 and immune cell infiltrates.We examine immunoprofiling through spatial analysis
of tumor-immune cell interactions and multiplexing technologies as a predictor of patient response to cancer treatment. Further,
we discuss how integrated bioinformatics can enable the amalgamation of complex morphological phenotypes with the
multiomics datasets that drive precision medicine. We provide an outline to machine learning (ML) and artificial intelligence
tools and illustrate fields of application in immune-oncology, such as pattern-recognition in large and complex datasets and deep
learning approaches for survival analysis. Synergies of surgical pathology and computational analyses are expected to improve
patient stratification in immuno-oncology. We propose that future clinical demands will be best met by (1) dedicated research at
the interface of pathology and bioinformatics, supported by professional societies, and (2) the integration of data sciences and
digital image analysis in the professional education of pathologists.
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Artificial intelligence

Introduction

A picture is worth a thousand words. This is the essence of
the technological transition from macropathology to

micropathology as captured in Virchow’s core principle
Bomnis cellula et cellulae^ first popularized in 1858 [81].
One hundred sixty years later, pathologists are in a techno-
logical transition phase of similar importance [61]: We are
beginning to recognize that images of cells contain more
information than what can be extracted by the human eye
[20, 67, 83]. Computer-aided image analysis has the poten-
tial to make complex morphological information more ac-
cessible in daily diagnostic practice, improving prognostic
and predictive patient stratification. Artificial intelligence
has already been successfully employed in the setting of
computational pathology to categorize diseases based on
their molecular features [15, 21, 59]. In combination, it
seems likely that image-based digital pathology in combi-
nation with artificial intelligence will become part of a pa-
thologist’s tool repertoire in the near future.

Immuno-oncology requires a detailed understanding of the
tumor microenvironment, including the identification and
quantification of different immune cell subsets, their spatial
context, and the expression of immune checkpoint markers.
Changes in immune cell infiltration and biomarker expression
before and after therapeutic intervention are critical parame-
ters for clinical development [80]. Image analysis tools can
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carry out complex and repetitive biomarker analyses with high
precision and excellent reproducibility and can thus greatly
assist pathologists in their key role to integrate clinical, mor-
phologic, and molecular information for personalized treat-
ment [20, 83, 84]. Actively engaging in image analysis
methods is therefore becoming increasingly important for pa-
thologists to maintain their role as leaders in precision medi-
cine and diagnostics.

In recent decades, electronic data processing has trans-
formed medical radiology, molecular diagnostics, and genetic
testing. At the same time, the practice of pathology which
forms a crucial link between these clinical disciplines has
not changed significantly. The current convergence of new
imaging technologies with tissue-based multiplexed immuno-
histochemistry (IHC) (reviewed in BMultiplexing^) and mo-
lecular phenotyping, our ability to digitize and process large
collections of histology slides, and the promise of supporting
human interpretation through automated analysis and artificial
intelligence will have a dramatic impact on the field [15, 59].

While traditional medical device companies, such as
Philips, GE, and Leica advance new platforms for digital
pathology and commercialize new imaging technologies,
the major IT companies, including Google, IBM, and
Microsoft, as well as numerous start-up companies (e.g.,
PathAI) enter the space by applying their expertise in big
data science and artificial intelligence to data analysis and
integrated decision making. Pharmaceutical companies
have also recognized the importance of advanced pathology
to their own work. Roche has already received FDA clear-
ance for the VENTANAMMR IHC Panel for patients diag-
nosed with colorectal cancer (CRC) [2]. Developing and
maintaining an understanding of digital imaging and data
mining will therefore be beneficial skills for pathologists
practicing in the twenty-first century [67, 83].

This paper provides a comprehensive outline of image
analysis and machine learning (ML) applications for preci-
sion immunoprofiling. We will demonstrate how digital
tools can facilitate pathology workflows in the assessment
of established immune biomarkers and enable the deep
characterization of the tumor microenvironment through
spatial analysis and multiplexing. Further, we will identify
computational methods driving morpho-molecular integra-
tion and deep learning methodologies for the discovery of
novel therapeutic targets.

Computational pathology to assist in the assessment
of established biomarkers

Immuno-oncology has been revolutionized by the introduc-
tion of immune checkpoint inhibitors (ICI). ICI are monoclo-
nal antibodies targeting immuno-regulatory molecules on the
surface of T cells, antigen-presenting cells, and neoplastic cell
populations [39]. Clinical success of reagents blocking the

CTLA-4 (cytotoxic T lymphocyte-associated protein 4,
CD152) and PD-1/PD-L1 checkpoints (programmed cell
death protein 1, CD279; programmed death-ligand 1,
CD274) has driven rapid regulatory approval for treatment
of patients with both solid and hematologic malignancies
[33]. Assessment of PD-L1 expression by IHC has emerged
as an important predictive biomarker for patients with non-
small cell lung cancer (NSCLC) [12, 13], urothelial carcinoma
[34], and renal cell cancer [60]. However, assessment of PD-
L1 is inherently difficult due to expression in both neoplastic
and non-neoplastic cell populations, considerable marker het-
erogeneity and non-intuitive cutoffs. To complicate matters,
PD-L1 positivity thresholds vary [80]. Inter-observer variabil-
ity of PD-L1 assessment by pathologists is a known problem
[17, 77]. This may contribute to inaccurate patient stratifica-
tion and the misinterpretation of the impact of PD-L1 expres-
sion on clinical outcome: Subjective decisions can lead to
radically different therapeutic stratification when scoring
around cutoffs.

Digital scoring of PD-L1 can assist the pathologist to over-
come these barriers by providing standardized metrics for bio-
marker assessment at single cell resolution across whole tissue
sections [38, 44, 55] (Fig. 1a, b). A single tumor section can
contain up to 106–107 cells, which can be rapidly and repro-
ducibly scored using purpose-built image analysis algorithms
[55]. Assessment of full tissue sections is a robust approach to
account for tissue heterogeneity and to reliably measure PD-
L1 expression at low levels [44, 55]. Fine-scale differences in
biomarker compartmentalization can be captured at single cell
resolution. ML technologies are beginning to be utilized in
digital image analysis [40]. Pathologist input is critical for
the creation of homogenous artificial intelligence training
datasets that incorporate a sufficiently large number of true
positive and negative staining examples as well as cases with
unspecific staining and common technical artifacts. Expertly
designed ML applications then have the potential to aid the
human observer in assigning biomarker scores to defined cell
populations based onmorphological criteria and staining char-
acteristics. For PD-L1 scoring, this approach can be particu-
larly helpful to include or exclude PD-L1 expression in tumor
infiltrating immune cells and tumor regions with non-specific,
e.g., cytoplasmic staining (Fig. 1c–f)[44].

Standardized biomarker assessment protocols are essential
to accelerate clinical development of immuno-oncology ther-
apeutics [27]. Co-development of purpose-built computation-
al pathology solutions in parallel to clinical trials may help to
harmonize immunotherapy companion diagnostics, since im-
age analysis algorithms can be easily shared and standardized
across diagnostic labs. Alternatively, standardized biomarker
testing may be conducted via telepathology at a central loca-
tion. In addition, computational pathology applications can
also increase the quality of biomarker assessment within an
institution by using standardized tissue blocks and scanning
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procedures. While computational pathology will become a
crucial tool in extracting quantitative information from digi-
tized slides, digitization will also enable new applications. It
will be possible to compare current cases with annotated phe-
notype libraries, hence effectively integrating a vast amount of
knowledge into clinical decision-making [52]. Taken together,
computational pathology methods are likely to become impor-
tant tools for making the assessment of immune biomarkers
more reproducible, robust, and reliable.

Spatial analysis of tumor immune cell infiltration

The identification, localization, and spatial relationships of
specific immune cells—before, during, or after therapy—
have significant prognostic and predictive potential [10].
Both commercial and freely available open-source image
analysis solutions are available to perform area-based quanti-
fication of immune cells by IHC or immunofluorescence (IF)
for prognostic and predictive analyses [6, 25, 54]. This in-
cludes the enumeration of peri- and intratumoral CD3+ and
CD8+ T cell populations per mm2 of tumor tissue to form the
Immunoscore® (IS) as marketed by HalioDx [63]. This

approach has shown independent prognostic value in CRC
beyond usual risk factors and has strong potential to aid pa-
tient stratification in other solid tumors [41]. A worldwide
consortium-based validation study in stage I–III CRC reported
significantly longer recurrence free intervals in patients with
high numbers of tumor-infiltrating T cells [63]. Recent data
from stage III and stage IV CRC patients treated with adjuvant
chemotherapy also indicate that the quantification of IS
markers by image analysis has the potential to guide decisions
on treatment duration and follow-up in advanced disease [57].
However, the predictive potential of the Immunoscore® for
immunotherapy response beyond well-known predictors,
such as DNA mismatch-repair (MMR) deficiency remains to
be investigated [62].

Assessing immune cell infiltration is an important compo-
nent of the BCancer Immunogram^ for patient stratification in
future immunotherapy trials [10]. Initial studies have identi-
fied a broad association of Tcell location at the tumor invasive
margin and in nodal metastasis with response to ICI in mela-
noma patients [19, 79]. Modern digital image analysis tech-
niques will enable a more detailed analysis: The exact coding
of the x-y location of each individual marker positive cell on a

Fig. 1 Assessment of PD-L1 expression by computational image analy-
sis. a Malignant melanoma of the superficial spreading type stained for
PD-L1 by IHC. Digital annotation of the tumor tissue is shown in yellow.
Substantial marker heterogeneity and expression of PD-L1 in tumor-
infiltrating inflammatory cells complicates conventional histopathologi-
cal assessment of PD-L1 positivity. b Digital scoring of PD-L1 imple-
mented on the HALO™ platform (Indica labs, Corrales, NM, USA). A
total of 34.882 cells were detected by nuclear segmentation using the
hematoxylin counterstain for nuclear seeding followed by cell/nuclear
boundary detection and postprocessing according to pathologist-
controlled cellular parameters, such as nuclear size, roundness, and opti-
cal density. Membranous reactivity for 3,3′-diaminobenzidine (DAB) is

detected and analyzed according to pathologist-set positivity thresholds.
PD-L1 negative stromal cells and normal squamous epithelium serve as
on-slide negative controls. In this case, 11.802 PD-L1 positive cells were
detected for a total of 33.8% positive cells within the annotation region.
c–d PD-L1 reactivity in infiltrating immune cells can skew the assess-
ment of PD-L1 expression in solid tumors with intrinsically low expres-
sion levels of PD-L1. e–f Machine learning algorithms trained on large
sample sets to differentiate PD-L1 positive immune cells (green) from
tumor cell populations (red) represent a powerful approach for tissue
classification. Tissue classification is followed by cell-level analysis of
DAB expression for the precise assessment of PD-L1 expression in tumor
cells only
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histological slide for precise nearest neighbor and infiltration
analyses is already feasible (Fig. 2a–c). This will allow to
better understand the pathophysiology of tumor-host interac-
tion, checkpoint molecule expression, and therapy effects in

archival samples and preclinical models [8, 31]. Using these
modern digital tools to record immune cell infiltrates over the
course of therapy will empower data mining with patient char-
acteristics, clinical response profiles, and genomic markers to
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build novel predictive indicators. Spatial profiling and com-
partmentalization studies can also be used to monitor and
better understand immunotherapy associated adverse events
which are commonly observed with ICI therapy [47].

Multiplexing

To empower more accurate patient stratification for immuno-
therapy, histological analysis should aim for a simultaneous
characterization of both immune and tumor-related pathways
in a single tissue sample [10, 29, 73]. Multiplexed
immunoprofiling is key to generate comprehensive biomarker
datasets for correlation with clinical parameters [11, 80].
Digital image analysis is an effective tool to extract compre-
hensive information on biomarker expression levels, co-local-
ization, and compartmentalization. Technical approaches in-
clude virtual multistaining by computational methods, simul-
taneous multimarker staining of single slides, and sequential
staining and quenching protocols.

Image registration is a powerful approach to generate vir-
tual multistains from serial sections using computational
methods: Following sectioning, staining, and scanning, serial
sections can be computationally aligned by automated or user
guided approaches [82]. Digital image analysis is carried out
and the results are used to generate virtual multimarker pro-
files. Standard manual or automated staining procedures can
be used for visualization. Virtual multistaining also offers the
unique opportunity of combining distinct histological
methods, such as RNA in situ hybridization and IHC for
multiparametric tissue profiling. This approach has been re-
cently used to spatially correlate the expression of specific
microRNAs, interferon-stimulated target genes, T cell infiltra-
tion, and the expression of cytotoxic effector molecules in the
microenvironment of CRC [45]. Limitations include the re-
quirement for multiple tissue sections, inevitable sectioning

artifacts, and the need to perform complex image transforma-
tion procedures for precise image alignment.

Highly optimized multistaining panels in combination with
purpose-built digital image analysis software can overcome
these drawbacks. However, substantial investment into a mul-
timodal staining platform and analysis software is required to
tap into this technology. Examples of this approach include the
Vectra® Polaris™ Automated Quantitative Pathology Imaging
System introduced by PerkinElmer [35]. Using a single slide,
this workflow allows to generate highly multiplexed IF panels
to investigate six or more antigens in a strictly quantitative
manner. Standardization is facilitated by commercially avail-
able marker panels, which may assist future clinical applica-
tions. A recent study by Mezheyeuski and colleagues elegantly
illustrates the combination of the Vectra® approach with tissue
microarray technology for a high-throughput profiling of the
immune-environment in NSCLC samples [56]. By combining
a tumor-specific marker with a panel of immune-cell associated
antigens, the authors analyze both quantitative and spatial in-
formation of specific lymphocyte subpopulations with RNA-
expression levels and prognosis.

Interesting alternatives to simultaneous multiplexed IF are
sequential workflows consistent of staining, digitalization, in-
activation of fluorescent dyes, and re-staining. Profiling of up
to 100 IF biomarkers on a single tissue section is technically
feasible [29, 70]. Exemplary applications include multiplexed
fluorescence microscopy method (MxIF) [29, 73] and
multiepitope-ligand cartography (MELC) [70]. Similar ap-
proaches have been tested and successfully applied for IHC
protocols [66, 78]. The single channel outputs from each stain-
ing cycle can be easily merged into comprehensive expression
maps for characterization of the tumor microenvironment
using computational methods [78]. However, individual opti-
mization of the staining protocols, tissue degradation with
iterative staining cycles, process time, and standardization
may be hurdles in applying this technology to large clinical
trial sample sets.

CO-Detection by indEXing (CODEX) is among the most
recent and innovative approaches for high-dimensional imag-
ing of antibody-tagged epitopes in FFPE tissue [30]. CODEX
staining uses antibodies labeled with unique DNA barcodes
that are iteratively detected by in-situ polymerization with
fluorescently labeled dNTP analogues. Tissue slides are
stained in a single incubation step, followed by imaging cycles
for the spatially resolved visualization of all antibody binding
events. Pilot studies for have demonstrated the technical fea-
sibility and power of this approach for deep profiling of im-
mune tissue architecture [30]. Application to immunoprofiling
of cancer tissues is a logical next step for detailed analysis of
the microenvironment in correlation with clinical and molec-
ular parameters. A decisive advantage of this approach is the
possibility to image CODEX-labels on a standard three-color
fluorescence microscope or scanner.

�Fig. 2 Spatial analysis of tumor immune cell infiltration. a Colorectal
adenocarcinoma tissue microarray (TMA) spot stained for cytokeratin
(Fast Red) and CD8+ T cells (DAB) with hematoxylin as a nuclear coun-
terstain (left). Computational color deconvolution is performed for sepa-
rate detection of cell nuclei, Fast Red, and DAB reaction products (mid-
dle), followed by nuclear segmentation and scoring of all cell populations
(tumor cells: red; CD-8+ T cells: brown; marker negative cell nuclei:
blue). A total of 1.623 cells were detected in this sample including 867
tumor cells, 330 CD8+ T cells, and 644 marker-negative cells. b Spatial
plotting implemented on the HALO™ platform showing the localization
of 867 cytokeratin positive tumor cells and 330 CD8+ Tcells in this TMA
spot. This allows to extract precise data on the relative distribution of T
cells to the intraepithelial and stromal compartment in the tumor micro-
environment. In this sample, 112 CD8+ Tcells (or 33.9%) are localized to
the intraepithelial compartment, while 218 CD8+ T cells (or 66.1%) lo-
calize to the tumor stroma. cRecording of the x-y coordinates in the tissue
sample allows to define cell-cell relations by spatial analysis, such as the
definition of nearest neighbor relationships between the tumor and CD8+
cell population (left) as well as the extraction of precise cell-cell distance
measures (right)
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Combining spatial imaging approaches with mass spec-
trometry may serve to reach yet another dimension in preci-
sion profiling of the tumor microenvironment. Multiplexed
ion beam imaging (MIBI) uses antibodies labeled with isoto-
pically pure elemental metal reporters (mass tags) to simulta-
neously detect up to 100 targets on FFPE tissue sections [5].
Conventional histologic stains can be included in this panel,
allowing precise reconstruction of virtual histology images
with antibody expression data. Decisive technological advan-
tages of MIBI include the stability of mass tag labels, a sensi-
tivity exceeding chromogenic IHC by up to three log levels,
and no spectral overlap between individual labels [5]. Recent
studies have demonstrated the technical feasibility to integrate
RNAscope-based metal in situ hybridization with MIBI for
multiparametric profiling [71]. Purpose-built digital image
analysis methods are available to reconstruct virtual histology
images and explore cell phenotypes, spatial interaction, and
morphological structures [69]. Further technological advances
using dissociated tissue samples allow to perform single cell
proteomic analysis using a mass spectrometry-flow cytometry
hybrid device, the so-called BCyTOF^ [9]. However, substan-
tial investment and expertise in mass spectrometry are neces-
sary to access this technology.

Morpho-molecular integration

The recently proposed BCancer Immunogram^ suggests seven
categories including tumor foreignness, general immune sta-
tus, immune cell infiltration, absence of checkpoints, absence
of soluble inhibitors, absence of inhibitory tumor metabolism,
and tumor sensitivity to immune effectors as the most impor-
tant predictors of immunotherapy response [10]. As such, the
BCancer Immunogram^ is highly integrative and includes
both tumor- and immune-related parameters assessed with
both molecular and image-based methods for individualized
prediction of immunotherapy response. By providing contin-
uous data on tissue-based parameters, such as immune cell
infiltration and expression of immune checkpoints, computa-
tional pathology methods are ideally suited for data integra-
tion with molecular parameters.

Tumors with a high mutational load frequently exhibit an
immunologically activated phenotype [4]. Recent study has
linked defects in DNA mismatch repair to high frequencies
of neoantigens and immunotherapy response in advanced sol-
id tumors [49, 62]. However, the correlation between genomic
parameters and immunogenicity is far from linear [53]. In
some solid tumors, such as melanoma, a lack of association
of neoantigen type and frequency with baseline immune acti-
vation has been elegantly demonstrated [74]. In these tumors,
strong regulatory T cell infiltration may curb the anti-tumoral
immune response [75]. Other known mechanisms that may
impact tumor antigenicity are defects in antigen-presentation
and overexpression of immunosuppressive molecules, such as

CD47, PD-L1, and indolamine-2,3-dioxygenase [42, 43, 75].
These image-based features can be reliably captured by com-
putational image analysis methods for in-depth profiling of the
tumor microenvironment.

Incorporating digital information on immune cell infiltra-
tion with molecular data is a powerful approach to inform the
BCancer Immunogram.^ Conde and colleagues recently pro-
vided a proof of principle for the association of specific ge-
netic alterations with defined immunophenotypes by combin-
ing digital assessment of CD8+ T cell infiltration in lung
squamous-cell carcinoma with manual scoring of PD-L1 and
targeted next generation sequencing [16]. Joining digital and
molecular pathology also facilitates the development of novel
assays to predict immunotherapy response. We have recently
developed and validated a computational pathology assay that
identifies specific PD1-positive subpopulations in NSCLC as
a powerful predictive indicator of response to ICI treatment
[76]. Methodologically, this assay was driven by morpho-
molecular integration of RNA sequencing data with tissue-
based methods. Computational image analysis was a key tool
in this process, driving the development of a standardized
algorithm for the detection of tumor-infiltrating lymphocyte
populations with uniquely high expression levels of PD1 pro-
tein (PD1T lymphocytes). PD1T cells were reproducibly de-
tected and quantified in pretreatment biopsies of lung cancer
patients and correlated strongly with treatment response to ICI
in two independent clinical cohorts. This translational ap-
proach highlights how digital image analysis can represent a
powerful companion diagnostic for cancer immunotherapy
applications.

Machine learning and artificial intelligence

ML will transform the field of immuno-oncology. We expect
that ML will drive a paradigm shift in the way data are col-
lected and analyzed to discover new prognostic markers or to
construct more rigorous risk classification to empower strati-
fied medicine. ML is essentially a set of computer algorithms
that learn generic rules to perform any given task directly from
data, without requirements of predefined knowledge or do-
main expertise. This, in many ways, is similar to how pathol-
ogists have previously gained knowledge and expertise
through continuous practice that has led to new diagnostic
classifications or prognostic factors in the clinical routine.

Since ML is heavily data-driven, it enables a means to
derive unbiased statistics from data. Accurate and continuous
variables are more informative and can provide more biolog-
ically relevant information than the semi-quantitative scores
presently implemented in diagnostic practice. Although sev-
eral classical regressionmodels exist to facilitate the discovery
process of predictive or prognostic factors, the power of ML
surpasses that of traditional tools when data is large and com-
plex. ML can crunch through a vast amount of data and learn

516 Virchows Arch (2019) 474:511–522



complex relationships between parameters and outcomes
without the need to prespecify the relationships as normally
required in traditional regression models. Nonetheless, data-
driven approaches have critical downsides if not used with
caution. ML can learn meaningless, biologically uninterpret-
able features that correlate to outcomes if the data has not been
carefully preprocessed to remove any spurious features.
Training datasets must have been generated in a highly stan-
dardized manner; otherwise, AI algorithms are likely to
Bmisinterpret^ sampling differences and artifacts between sets
as distinctive biological characteristics. This phenomenon is
known as Bgarbage in, garbage out.^ Expert pathologist input
in the training of image analysis algorithms is therefore of
critical importance. Furthermore, ML tends to Boverfit^ to
discovery data which results in an over-optimistic estimate
of the performance of a model, while, in fact, it cannot be
generalized well to new unseen datasets. It is, therefore, nec-
essary that ML models are rigorously validated on new
datasets that are independent of those used during the model
development. Originating from the field of computer vision,
deep convolutional neural network (DCNN) is aML approach
that is specialized in image analysis tasks [46, 50, 51]. In
recent years, DCNN has been successfully applied to key
applications in diagnostic pathology, including cell classifica-
tion [72], cell enumeration [85], tumor grading [23], cancer
diagnosis [22], and cancer prognostication [58].

Application of machine learning in immuno-oncology:
pattern recognition

In immuno-oncology, ML as a pattern recognition tool enables
an accurate and reproducible means for the unbiased assess-
ment of regularities in the expression of immunohistochemical
markers, tumor morphology, and the spatial distribution of tu-
mor infiltrating lymphocytes (TILs). The ability of ML tools to
detect key features in complex immunophenotypic datasets un-
derlines their potential importance for the development of novel
predictive models in cancer research. Initial studies underline
the potential of ML methods for clinical translation:

Yuan et al. computationally profiled cells of triple-negative
breast cancer cohorts on H&E-stained sections and were able
to uncover three categories of lymphocytes (intra-tumor, ad-
jacent-tumor, and distal-tumor) with an unsupervised cluster-
ing method based on the proximities of lymphocytes to tumor
cells [87]. Interestingly, the ratio between the total number of
intratumoural lymphocytes and the number of cancer cells
was strongly associated with disease-specific survival and
strongly correlated with the expression of CTLA-4, a known
immunotherapy target. Saltz et al. employed a DCNN model
to determine the probability of TIL infiltration for every small
region of H&E stained sections [68]. This resulted in a map
which indicates the degree of local lymphocyte infiltration.
Unsupervised clustering methods were employed to group

small TIL regions into spatially coherent structures [28]. The
resulting clustering patterns were characterized using param-
eters related to cluster size and shape. Importantly, the covar-
iates summarizing complex characteristics of clusters were
found to be associated with overall survival in various cancer
groups, illustrating the potential of MLmethodologies applied
to standard H&E slides for the development of biomarkers in
immuno-oncology.

Heindl et al. demonstrated that quantifying the number of
spatial clusters or hotspots of immune cells and cancer cells is
prognostic in ER+ breast cancer using a fully automated H&E
stained image analysis algorithm [32]. The spatial clustering is
identified as an area in which the number of cells of interest is
greater than expected by chance given the distribution of the
cells on the whole tissue section. The increased immune spa-
tial clustering is associated with poor prognosis and has a level
of prognostic significance on par with the IHC test [18] and
the OncotypeDX 21-gene recurrence score [64]. Interestingly,
immune scores which are related to the ratios of distinct cat-
egories of lymphocytes to the total number of cancer cells did
not provide prognostic information in this study. This illus-
trates the importance of ML tools to detect novel morphologic
features that provide prognostic information beyond
established classifications.

Application of machine learning in Immuno-oncology:
survival analysis

In medical research, survival analysis is a traditional means to
assess the prognostic significance of each candidate covariate.
The most widely used survival model is the Cox proportional
hazards model. It assumes that the risk of an event of interest
to occur (failure) is not time-dependent, is determined by a
linear combination of all covariates, and might also include
interaction terms between the covariates. This somewhat too
simplistic assumption may not be able to capture the precise
effects of the observed medical covariates on the risk of fail-
ure. This is particularly true in immuno-oncology where var-
iable effects of immune infiltrates and immune-related gene
signatures are observed depending on the tumor type and host
immune status [7]. DNN applied to survival analysis could
provide a better way tomodel complex nonlinear relationships
among prognostic factors that better fit to the survival data.

It has been shown that DNN performs better than the Cox
proportional hazard model in various medical applications
[24, 58, 86]. Katzman et al. investigated the risk associated
with treatment choices and demonstrated that their DeepSurv
system could provide treatment recommendations that in-
crease the median survival time of patients [37]. Yousefi
et al. used their SurvivalNet to analyze large-scale genomic
profiles obtained from the TCGA database [14, 86]. They
have demonstrated the robustness of the model across differ-
ent cancer types even if the number of input covariates is
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sometimes considerably larger than the sample size.
Moreover, the model also allows the interpretation of the
prognostic significance of individual covariates based on their
contributions to overall risk. The same model has been ex-
tended to allow integration between histology image and ge-
nomic data in a unified framework [58]. Likewise, specific
methylome signatures queried by ML were shown to be suit-
able for prediction of response to immune-checkpoint inhibi-
tors. In analogy to image analysis, this modality takes both
neoplastic and reactive cells into account [21]. These results
suggest the potential of deep learning as a discovery tool to
provide insight into the biology of immuno-oncology.

Challenges

Regulatory issues in the use of digital pathology devices have
been broadly recognized by national and international bodies.
Pioneering companies have recently received CE certification
for routine pathology applications in the European Union under
the In vitro diagnostic medical devices directive [1].
Comprehensive, non-binding recommendations have been is-
sued by the Food and Drug Administration (FDA) and the
College of American pathologists (CAP) [3, 65]. These guide-
lines highlight two important aspects of testing emerging bio-
markers for immunotherapy by computational pathology
methods: First, the quality and reliability of the imaging system
as recommended by the FDA and mandated by the CE certifica-
tion process, and second, the consistency of diagnoses made by
pathologists using digital systems as advised by the CAP [3, 65].
Both are of essential importance in the design of reliable compu-
tational pathology workflows to inform clinical decisionmaking.

Concerns have been raised that inaccurate study design,
statistical analysis, and reporting of research lead to a signif-
icant waste of research funding and inaccurate scientific con-
clusions [36]. A major challenge inherent to the use of digital
image analysis is the substantial expansion in the number of
variables. Although it may seem attractive from a scientific
perspective to extract as much information as possible from a
limited amount of tissue, it is important to recognize that big
data mining inherently increases the level of statistical noise.
Robust statistical considerations are required to avoid multiple
testing problems and misleading conclusions. As with any
diagnostic tool, digital image analysis is therefore critically
dependent on scientific rigor, reliable documentation, conse-
quent quality control, and adequate training of the pathology
workforce [48]. Unsolved problems also concern the stan-
dardization of the preanalytical steps before the imaging and
analysis of tissue slides. A perfect example is Ki-67 staining,
which has proven difficult to harmonize between labs despite
being one of the most frequently performed assay of its kind
[26]. The same applies to the majority of immunohistochem-
ical stains, in particular those where expression levels matter.

Conclusions

Advancedmultiparametric imaging applications andML have
the potential to translate our evolving understanding of tumor-
host interaction into better patient stratification and new treat-
ment strategies. Computational pathology will help to derive
complete, standardized, and reproducible datasets to
facilitate the individualized prediction of immunotherapy re-
sponse. Upskilling the pathology workforce through profes-
sional education and the recognition of computational pathol-
ogy by professional societies will be essential to meet future
clinical demands for optimal patient care.
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