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Abstract. Disruption of the endothelial barrier is essential for 
vascular complications associated with diabetes mellitus, and 
damage to the endothelial glycocalyx has been demonstrated 
to participate in this process. Ginsenoside Rg1 (Rg1), the major 
active component isolated from Panax notoginseng, is widely 
applied for the protection against vascular injury. The present 
study aimed to analyze the effect of high glucose on endothelial 
barrier function and its association with endothelial glyco-
calyx in human umbilical vein endothelial cells (HUVECs), 
and explore the potential benefits of Rg1 in protecting endo-
thelial barrier function from high glucose‑induced injury. 
The results indicated that high glucose induced a disorder of 
the endothelial glycocalyx and increased heparanase mRNA 
expression in HUVECs, which was reversed by Rg1 treatment. 
In addition, Rg1 treatment reduced transendothelial elec-
trical resistance and transendothelial albumin passage after 
high‑glucose stimulation. The present study suggested that 
high glucose caused a disruption in the endothelial glycocalyx 

and increased heparanase expression, which finally resulted 
in endothelial barrier dysfunction in HUVECs. Of note, Rg1 
has a protective effect on high glucose‑induced endothelial 
barrier dysfunction by attenuating the associated increase in 
heparanase expression.

Introduction

Diabetes, also known as diabetes mellitus (DM), has an 
increased morbidity and mortality and represents a serious 
public health issue worldwide (1,2). Vascular complications 
are involved in pathological changes of DM (3,4) and are the 
leading cause of mortality in this population. The endothe-
lium, covering the luminal surface of all blood vessels, has 
a key role in the maintenance of vascular homeostasis (5,6). 
Endothelial dysfunction initiates vascular pathogenesis and 
may finally lead to diabetic vasculopathy (7). The luminal 
surface of endothelial cells is covered by a thick layer of 
glycocalyx, which is composed of proteoglycans (PGs) and 
glycoproteins (8,9). Therefore, dysfunction of glycocalyx may 
promote the development of diabetic vasculopathy.

It has been demonstrated that endothelial glycocalyx has 
a significant impact on factors including vascular perme-
ability  (10), inf lammation  (11), coagulation  (12) and 
mechanotransduction (13). It was observed that the thickness 
of the glycocalyx was altered and its integrity was disrupted 
in a streptozocin‑induced animal model of diabetes  (14). 
Diabetic patients are characterized by endothelial glycocalyx 
damage, the severity of which is associated with vascular 
damage (15,16). An in vitro study also observed that hypergly-
cemia induced glycocalyx dysfunction in either microvascular 
or macrovascular endothelial cells (17,18). It has been reported 
that the loss of glycocalyx leads to a reduction in endothelial 
surface charge and accelerates atherosclerosis in patients with 
type 2 diabetes (19). Taken together, these studies indicate 
that glycocalyx dyfunction drives the development of vascular 
complications in diabetes.
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Panax notoginseng is one of the most commonly used 
Chinese herbal medicines due to its efficacy in promoting blood 
circulation and removing blood stasis (20). It is frequently used 
in the management of diabetes in Asian countries (21) and also 
possesses cardiovascular protection effects by preserving 
endothelial cell function and inhibiting thermogenesis (22). 
Ginsenoside Rg1 (Rg1; Fig. 1), the major active component 
isolated from Panax notoginseng, appears to be account-
able for its extensive pharmacological actions, including 
anti‑oxidant, anti‑inflammatory and anti‑cancer effects (23). 
Rg1 has been demonstrated to have cardiovascular protection 
effects, and may be of potential preventive and therapeutic 
value for cardiovascular injury in diabetic patients (24,25). 
In addition, Rg1 has been demonstrated to be potent in 
improving renal function and attenuating diabetes‑induced 
renal damage (26,27). However, the underlying mechanisms 
remain to be elucidated.

Based on the above, the presents study hypothesized that 
Rg1 may attenuate diabetes‑induced vascular dysfunction 
via restoring the loss of endothelial glycocalyx. To test this 
hypothesis, the effect of high glucose on the endothelial 
glycocalyx and endothelial barrier function, and the potential 
benefits of Rg1 in protecting endothelial barrier function from 
high glucose‑induced endothelial cell injury were investigated.

Materials and methods

Cell culture. Human umbilical vein endothelial cells 
(HUVECs) were purchased from the American Type Culture 
Collection (Manassas, VA, USA). The cells were cultured in 
low‑glucose Dulbecco's modified Eagle's medium (DMEM; 
Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
containing 5.5  mmol/l D‑glucose, supplemented with 
L‑glutamine, 10% fetal bovine serum (FBS; Gibco; Thermo 
Fisher Scientific, Inc.), 100 U/ml penicillin and 100 µg/ml 
streptomycin at 37˚C in an incubator containing 5% CO2. 
Cells were seeded into cell culture dishes and cultured until 
confluent.

Treatment. For control and high‑glucose treatment, HUVECs 
were cultured with DMEM containing 5.5 and 30 mmol/l 
D‑glucose, respectively. For drug treatment, the cells were 
incubated with high‑glucose DMEM, and at the same time, 
Rg1 (>98% pure; DiDa Kexiang Biological Co., Ltd., Guizhou, 
China) was added to the culture at concentrations ranging 
from 10‑8 to 10‑5 mol/l for 1 or 3 days.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was extracted from HUVECs using 
TRIzol reagent (Thermo Fisher Scientific, Inc.). RNA was 
reverse‑transcribed into complementary (c)DNA using the 
RevertAid First Strand cDNA Synthesis kit (Thermo Fisher 
Scientific, Inc.). The mRNA levels of heparanase (HPSE) 
were quantified with an RT‑qPCR system (Mastercycler real-
plex2; Eppendorf, Hamburg, Germany), using SYBR Green 
SuperMix (Roche Diagnostics, Mannheim, Germany) with 
appropriate primers pairs. Sequences of primers used in the 
present study were as follows: HPSE forward, 5'‑CCA​AAG​
TTG​CTG​CTT​GCA​TC‑3' and reverse, 5'‑AGT​GTC​CCA​GTG​
TCT​CTC​AA‑3'; GAPDH forward, 5'‑CTG​GGC​TAC​ACT​

GAG​CAC​C‑3' and reverse, 5'‑AAG​TGG​TCG​TTG​AGG​GCA​
ATG​‑3'. The reaction was started by pre‑incubation at 95˚C 
for 10 min, followed by 40 cycles of amplification (95˚C for 
15 sec, 65˚C for 15 sec and 72˚C for 20 sec). Gene expression 
levels of HPSE were normalized to those of the reference gene 
GAPDH measured in the same sample and the results were 
analyzed by the 2‑∆∆Cq method (28).

Western blot analysis. Total proteins were prepared using 
the lysis buffer (20 mmol/l Tris, pH 7.4, 150 mmol/l NaCl, 
1  mmol/l EDTA, 1  mmol/lEGTA, 1% Triton X‑100, 
2.5 mmol/l deoxycholic acid, 1 mmol/l β‑glycerophosphate 
and 1 mmol/l Na3VO4), supplemented with protease inhibitors. 
Protein concentration was determined using a BCA protein 
assay kit (Beyotime Institute of Biotechnology, Haimen, 
China) according to the manufacturer's protocol. The protein 
of each sample (25 µg) was separated using 10% SDS‑PAGE 
and then transferred to polyvinylidene difluoride membranes 
(EMD Millipore, Billerica, MA, USA). After blocking with 
5% fat‑free milk for 1 h at room temperature, the membranes 
were incubated with the following respective primary anti-
bodies: Syndecan‑1 monoclonal antibody (1:1,000 dilution; 
cat. no. ab128936; Abcam, Cambridge, MA, USA), glypican‑1 
polyclonal antibody (1:1,000 dilution; cat. no. NBP1‑33197; 
Novus Biologicals LLC, Littleton, CO, USA) and GAPDH 
monoclonal antibody (1:1,000 dilution; cat. no. sc32233; Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA) at 4˚C overnight. 
The membranes were then gently washed for three times (5 min 
each) and incubated with horseradish peroxide‑conjugated 
goat anti‑rabbit secondary antibody (1:3,000 dilution; cat. 
no. ZB2301; Zhongshan Goldenbridge Bio, Beijing, China) at 
room temperature for 1.5 h. After washing, the protein bands 
were visualized with chemiluminescent substrate (EMD 
Millipore) for 1 min, and capturing of images and densito-
metric analysis were performed using an imaging station 
(Bio‑Rad Laboratoris, Inc., Hercules, CA, USA). The relative 
protein expression levels were normalized to GAPDH and the 
ratio was compared with that of the control group.

Detection of endothelial surface glycocalyx. Wheat germ 
agglutinin (WGA) from Triticum vulgaris binds to sugar 
moieties of glycocalyx present on the cell surface, the majority 
of which are likely to be PG constituents of glycocalyx. 
Therefore, endothelial surface glycocalyx was labeled by 
fluorescein isothiocyanate (FITC)‑conjugated WGA lectin as 
previously reported (29). Cells were grown to confluence on 
glass coverslips and fixed in 4% paraformaldehyde for 10 min. 
After being washed for three times, the cells were incubated 
with FITC‑WGA lectin (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) at 2 µg/ml for 30 min. Coverslips were 
mounted and visualized using a fluorescence microscope 
(Leica Microsystems, Wetzlar, Germany).

Transendothelial electrical resistance (TEER) measurement. 
Cells were seeded onto microporous polyester membranes 
(0.4‑µm pore size) of Transwell filter inserts (Corning Inc., 
Corning, NY, USA). The cells were grown onto the upper 
chamber of the Transwell until confluent. The HUVECs were 
stimulated with vehicle, 30 mmol/l high glucose or Rg1 for 
24 h as indicated. The TEER of the monolayer of HUVECS 
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was measured using a Millicell ERS‑2 Volt‑Ohm meter (EMD 
Millipore) according to the protocol of a previous study (30). 
After subtraction of the value determined using a blank, 
cell‑free filter, the mean value of the TEER was expressed 
in common units (Ωcm2). TEER values of a vehicle‑treated 
monolayer of endothelial cells were designated as baseline 
values. The percentage of TEER relative to baseline value 
was calculated via the following formula: TEER%=(TEER 
of experimental wells/baseline TEER of experimental wells) 
x100%.

Transendothelial albumin passage. The transendothelial 
passage of albumin was analyzed by measuring the passage 
of FITC‑labeled bovine serum albumin (BSA; Sigma‑Aldrich; 
Merck KGaA) across the monolayer as described previ-
ously (31). In brief, cells were seeded onto the upper chambers 
of Transwells and allowed to grow to confluence as described 
above. The medium in the insert was replaced with serum‑free 
medium (SFM) containing 0.5 mg/ml FITC‑labelled BSA and 
the medium in the well was replaced by SFM only. After 1, 
2 and 3 h of incubation, the medium was collected from each 
well, and the fluorescence of the aliquots was measured on a 
fluorometer with excitation at 495 nm and emission at 520 nm. 
The amount of albumin passing the endothelial cell monolayer 
was calculated with a standard curve generated from a set of 
FITC‑labeled BSA dilutions.

Statistical analyses. All data were analyzed using SPSS soft-
ware (version 17.0; SPSS, Inc., Chicago, IL, USA). Values are 
expressed as the mean ± standard deviation. The independent 

Student's t‑test and one‑way analysis of variance (ANOVA) 
with a least significant difference (LSD) post hoc test, were 
used for comparison between groups. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Effect of Rg1 on the PG core proteins in high glucose‑induced 
HUVECs. PG core proteins are important constituents of 
glycocalyx on the cell surface. Expression of PG core proteins 
syndecan‑1 and glypican‑1 was analyzed by western blot 
analysis after exposure to high glucose for different durations 
(Fig. 2). It was demonstrated that syndecan‑1 was gradually 
decreased in HUVECs incubated with high glucose from 
1‑4 days. Over the same duration, the expression of glypican‑1 
was also decreased by high‑glucose stimulation, with the 
changes being significant at 3 and 4 days (Fig. 2A). HUVECs 
under high‑glucose stimulation were then treated with 
different concentrations of Rg1 for 3 days. It was observed that 
treatment with Rg1 increased PG core proteins in HUVECs at 
concentrations ranging from 10‑8 to 10‑5 mol/l and a significant 
difference was identified at 10‑5 mol/l (Fig. 2B).

High glucose‑induced HPSE expression is attenuated by Rg1 
treatment in HUVECs. To assess the effects of high glucose 
and Rg1 treatment on HPSE expression, HUVECs were incu-
bated with 30 mmol/l glucose and different concentrations 
of Rg1 as indicated. The expression of HPSE mRNA was 
detected by RT‑qPCR. It was observed that HPSE mRNA 
expression in high glucose‑treated cells was rapidly increased 
and reached a peak at 1 day, and then it returned to baseline 
levels at 3 and 4 days (Fig. 3A). To observe the effect of Rg1, 
HUVECs were first incubated with high glucose, followed by 
different concentrations of Rg1 for 1 day. It was indicated that 
HPSE expression in HUVECs was reduced by treatment with 
Rg1 at concentrations ranging from 10‑8 to 10‑5 mol/l, and a 
significant difference was observed at 10‑7 mol (Fig. 3B).

Rg1 prevents the disruption of the glycocalyx induced by high 
glucose. WGA‑FITC, which binds to sugar residues on cell 
surface, was used to quantify the expression of glycocalyx 
in HUVECs. A marked reduction in WGA‑FITC binding 
was observed in high glucose‑induced cells compared with 
untreated controls, suggesting the disruption of endothe-
lial glycocalyx. As expected, the expression of glycocalyx 
was increased by treatment with Rg1, indicating that Rg1 
prevented the loss of glycocalyx and attenuated the disrup-
tion of the glycocalyx in HUVECs incubated with 30 mmol/l 
glucose (Fig. 4).

Rg1 treatment increases TEER in the presence of high 
glucose. TEER is associated with the integrity of cell mono-
layers. Its decline represents an increase in the passage of 
water and small molecules across the cell monolayer and an 
impaired cell barrier function. To study the effects of Rg1 
treatment on TEER, HUVECs were stimulated with high 
glucose in the presence or absence of Rg1. High glucose 
caused a modest reduction in the mean TEER by up to 20% 
relative to that in the controls, which was inhibited in the 
presence of Rg1 (Fig. 5A).

Figure 1. Chemical structure of ginsenoside Rg1.
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Figure 2. Expression of proteoglycan core proteins in high glucose‑induced HUVECs. (A) HUVECs were incubated with 30 mmol/l glucose for 1, 2, 3 and 
4 days. (B) HUVECs were treated with 30 mmol/l glucose and various concentrations of Rg1 for 3 days. Specific antibody was used to detect syndecan‑1, 
glypican‑1 by western blotting. Quantified values are expressed as the mean ± standard deviation (n=3). *P<0.05 vs. normal glucose; #P<0.05 vs. high glucose 
group. HUVECS, human umbilical vein endothelial cells; Rg1, ginsenoside Rg1.

Figure 3. High glucose‑induced heparanase expression in human umbilical vein endothelial cells. (A) Heparanase mRNA expression was increased by treat-
ment with 30 mmol/l glucose for 1 and 2 days, and (B) reduced by treatment with Rg1. Values are expressed as the mean ± standard deviation (n=3). *P<0.05 
vs. normal glucose; #P<0.05 vs. high glucose group. Rg1, ginsenoside Rg1.
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High glucose leads to increased transendothelial albumin 
passage that is attenuated by treatment with Rg1. Since 
30  mmol/l high glucose leads to decreased TEER, it was 

examined whether Rg1 was able to preserve the permeability of 
cultured HUVEC monolayers. The permeability was assessed 
by measuring the passage of FITC‑labeled BSA across the 

Figure 4. Expression of WGA in HG‑induced HUVECs. Fluorescence microscopy after labeling the glycocalyx of HUVECs with WGA‑FITC lectin 
(magnification, x200). The binding of WGA‑FITC lectin was reduced by treatment with HG, while this effect was attenuated by Rg1. WGA, wheat germ 
agglutinin; FITC, fluorescein isothiocyanate; HUVECS, human umbilical vein endothelial cells; Rg1, ginsenoside Rg1; HG, high glucose; NG, normal glucose.

Figure 5. Influence of HG and Rg1 on endothelial barrier function in HUVECs. (A) HG decreased the TEER of HUVECs, which was inhibited by Rg1. (B) HG 
increased transendothelial albumin passage of HUVECs. Cumulative passage of fluorescein isothiocyanate‑labeled albumin across the HUVECs monolayer 
was determined over time. Values are expressed as the mean ± standard deviation (n=3). *P<0.05 HG vs. NG; #P<0.05 HG+Rg1(10‑7 mol/l) vs. HG group. Rg1, 
ginsenoside Rg1; HUVECS, human umbilical vein endothelial cells; TEER, transendothelial electrical resistance; HG, high glucose; NG, normal glucose.
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monolayer, i.e., the transendothelial albumin passage. As 
presented in Fig. 5B, stimulation with 30 mmol/l high glucose 
significantly increased transendothelial albumin passage across 
HUVECs, while this effect was inhibited in the presence of Rg1.

Discussion

A pivotal role of the endothelium is to serve as a regulated 
barrier to partially separate the contents of the blood from the 
extravascular space (32). The endothelial glycocalyx covers 
the luminal surface of the vascular endothelium (33,34), and is 
responsible for endothelial barrier function. Widespread loss of 
the endothelial surface glycocalyx leads to damage of vascular 
function and an elevation in the microvascular permeability 
to water as well as albumin, and results in systemic vascular 
dysfunction in proteinuric kidney disease (35). The results 
of the present study indicated a marked decrease in the PG 
core proteins syndecan‑1 and glypican‑1 on HUVECs after 
exposure to high glucose, while treatment with Rg1 increased 
the formation of PG core proteins. This was further confirmed 
in an assay using WGA‑FITC lectin, in which WGA‑FITC 
lectin binding was markedly reduced after high‑glucose treat-
ment, while this reduction was inhibited by Rg1 treatment. 
These results suggested that treatment with Rg1 increased the 
formation of PG and enhanced the integrity of the endothelial 
cell monolayer, which is beneficial for preserving endothelial 
barrier function under a high‑glucose conditions.

In response to persistent activators of the endothelium, i.e., 
in diabetes mellitus, hypertension and systemic inflamma-
tion, endothelial cells undergo pathological changes (36,37), 
including the induction of the expression of certain enzymes, 
including HPSE. HPSE, a degrading enzyme of the endothe-
lial cell glycocalyx, is the only known mammalian enzyme 
to cleave PGs (38). It has been reported that increased HPSE 
expression causes damage to the glycocalyx of mouse glomer-
ular endothelial cells and increases the trans‑endothelial 
albumin passage of the cell monolayer (39). The present study 
indicated that high glucose increased HPSE mRNA expres-
sion on HUVECs at the early stage of high‑glucose treatment, 
whereas Rg1 reduced the increase of HPSE induced by high 
glucose. The results indicated that Rg1 inhibited the produc-
tion of HPSE to ameliorate endothelial glycocalyx disorders.

Endothelial glycocalyx is located between the blood stream 
and the endothelium, provides a barrier for certain molecules, 
and has an important role in endothelial permeability and 
endothelial functions  (40,41). A significant degradation of 
the glomerular glycocalyx has been reported in the setting of 
diabetes in that loss of glycocalyx increases vascular perme-
ability (16). In, TEER is used as an indicator of the passage of 
water and small molecules across a cell layer. TEER is regarded 
as a measure of the resistance to the passage of ions across 
a confluent cell monolayer. In the present study, the passage 
of albumin across cell monolayers was tested to evaluate the 
permeability of the endothelial cell monolayer, and the results 
indicated that Rg1 attenuated the damage of endothelial 
barrier function by enhancing TEER and decreasing the cell 
transendothelial albumin passage.

In conclusion, the present study demonstrated that Rg1 
inhibited the loss of endothelial glycocalyx and HPSE mRNA 
expression, and increased TEER, while decreasing endothelial 

cell monolayer permeability and protecting endothelial barrier 
function. The present results may provide a novel mechanism 
of action of Rg1 in the treatment of diabetic vasculopathy.
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