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Value-added measures of educational progress have been used by education researchers and policy-

makers to assess the performance of teachers and schools, contributing to performance-related pay

and position in school league tables. They are designed to control for all underlying differences

between pupils and should therefore provide unbiased measures of school and teacher influence on

pupil progress, however, their effectiveness has been questioned. We exploit genetic data from a

UK birth cohort to investigate how successfully value-added measures control for genetic differ-

ences between pupils. We use raw value-added, contextual value-added (which additionally con-

trols for background characteristics) and teacher-reported value-added measures built from data at

ages 11, 14 and 16. Sample sizes for analyses range from 4,600 to 6,518. Our findings demonstrate

that genetic differences between pupils explain little variation in raw value-added measures but

explain up to 20% of the variation in contextual value-added measures (95% CI = 6.06% to

35.71%). Value-added measures built from teacher-rated ability have a greater proportion of var-

iance explained by genetic differences between pupils, with 36.3% of their cross-sectional variation

being statistically accounted for by genetics (95% CI = 22.8% to 49.8%). By contrast, a far greater

proportion of variance is explained by genetic differences for raw test scores at each age of at least

47.3% (95% CI: 35.9 to 58.7). These findings provide evidence that value-added measures of edu-

cational progress can be influenced by genetic differences between pupils, and therefore may pro-

vide a biased measure of school and teacher performance. We include a glossary of genetic terms for

educational researchers interested in the use of genetic data in educational research.
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Introduction

Value-added (VA) measures are frequently used by education researchers and policy-

makers to assess the performance of teachers and schools, and therefore impact upon

performance-related pay, position in school league tables and school accountability

(Leckie & Goldstein, 2009; Ray et al., 2009). Because VA measures compare a
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student’s academic performance to their performance at an earlier stage, they are

designed to present a measure of progress in performance that controls for between-

individual time-invariant differences such as a child’s underlying level of ability

(McCaffrey et al., 2004). They are therefore considered to provide a reliable measure

of educational progress independent of the selection of pupils, background character-

istics and innate ability (Chetty et al., 2014a). This makes them a fairer measure of

comparison for the effectiveness of teachers and schools than raw attainment scores,

which are confounded by earlier attainment and can unfairly assess the final grades of

schools with more disadvantaged student intakes (Leckie & Goldstein, 2009). Con-

textual value-added (CVA) measures have also been developed, which additionally

account for a range of additional time-invariant background factors beyond the tea-

cher’s or school’s control, such as gender, ethnicity, special educational needs and

month of birth. There has, however, been debate over which factors should be

adjusted for and the extent to which CVA measures adjust sufficiently for these

(Todd & Wolpin, 2003). Despite research demonstrating that children assigned to

high-VA teachers outperform children assigned to low-VA teachers (Chetty et al.,

2014b), and therefore that VA can correctly identify the most able teachers, there has

been criticism of the extent to which they successfully control for time-invariant fac-

tors (Taylor & Nguyen, 2006; Gorard et al., 2013).

What can genetic data offer educational research?

Because VA measures are designed to control for all time-invariant factors, they

should be robust to genetic differences between individuals. This is because the

genetic variants that we inherit are fixed at birth and cannot be altered by teacher or

school performance. Genetic data therefore offers a unique opportunity to investigate

educational performance in novel ways. Over the past decade there has been growing

interest in the contribution of genetics towards a range of human behavioural out-

comes, including educational attainment. A number of studies using molecular genet-

ics and twin approaches have provided strong evidence that genetics contribute

towards educational attainment (Deary et al., 2007; Branigan et al., 2013; Krapohl

et al., 2014; Davies et al., 2015; Selzam et al., 2016). Amongst samples of unrelated

individuals, genetic contribution is estimated using a narrow-sense heritability statis-

tic, which is defined as the proportion of the total variation in attainment that can be

explained by genetic variation. For an accessible review of methods for estimating

heritability and the drawbacks involved in such methods, see Tenesa and Haley

(2013). Heritability is therefore just a correlational statistic and does not imply that a

behaviour is immutable, nor does it provide any information on exactly how and why

particular genetic variants associate with outcomes. Furthermore, heritability is

dependent upon the trait in question, the population being studied and the spa-

tiotemporal circumstances surrounding the population (Plomin et al., 2008; Davey

Smith, 2011). Heritability estimates can therefore be expected to vary to a certain

degree across studies, but it remains ‘the most useful summary statistic for the genetic

contribution to. . . complex [traits]’ such as education (Tenesa & Haley, 2013, p.

140). Like social inequality, heritability is a useful measure even if the exact mecha-

nisms which generate it are not fully understood. A complete understanding of
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education is not possible without understanding the contribution of genetics (as well

as all other factors), and incorporating genetic evidence could profoundly affect our

understanding of education. Including genetic data in studies has the potential to

improve estimation of the influence of social factors by reducing residual variation

and genetic confounding in statistical models. However, despite increasing sample

sizes of genome-wide association studies (GWASs) used to identify genetic variants

that associate with educational attainment, we are still only able to account for a

minority of genetic effects. This approach to using data treats genetics not as an

unmalleable prognosis of educational attainment, but as a tool to more accurately

and reliably assess modifiable influences on educational attainment.

A large meta-analysis of studies estimated the heritability of educational attain-

ment at 40% (95% CI = 35% to 45%) (Branigan et al., 2013). There is consider-

able variation in heritability estimates between twin studies and molecular genetic

studies, to an extent due to the former analysing all genetic variance (i.e. including

dominance and epistasis), while the latter analyses only additive genetic variance.

Using data from the Twins Early Development Study (TEDS), narrow-sense heri-

tability of attainment at age 16 has been estimated at 31% (95% CI = 7.5% to

54.5%) (Krapohl & Plomin, 2016), half that of the broad-sense heritability estimate

in the same sample of 62% (95% CI = 58% to 67%) (Krapohl et al., 2014). While

this points to an important contribution of genetics towards educational attainment,

it also demonstrates that at least a third of the variation in educational attainment

between individuals in TEDS estimated using twin models is due to non-genetic

factors. When looking at international or temporal variations in educational out-

comes, social factors are likely to be more visible. For example, in the UK, atten-

dance at university has increased hugely over the last couple of generations, far

quicker than genetic changes across the population would be possible. Holding time

and place constant, genetic variation is likely to explain a greater amount of varia-

tion in educational outcomes. This reflects a general principle regarding what gen-

erates between-individual and between-group differences (Davey Smith, 2011;

Keyes & Galea, 2016).

Educational attainment is influenced by many thousands of genetic variants,

each of which have a very small effect size rather than a singular (or even small

number of) genetic variants which have large effect sizes. The largest GWAS of

educational attainment published to date identified only 74 genetic variants with a

discovery sample size of 293,723, with the single strongest variant estimated to

account for only 0.035% of the variation in educational attainment defined by

years of education (Okbay et al., 2016). These findings are consistent with a poly-

genic model in which it is the combination of small effects of many genetic variants

that influences a trait.

It is also, of course, important to realise that educational attainment is not a singular

construct that can be perfectly measured with a single score. If, in a particular society,

use of imagination was valued above focus on strictly following a set curriculum, then

what would be considered a good education would differ. There would very likely still

be genetic variants that contribute to some children being more imaginative than

others, but these would likely not be the same genetic variants that lead some children

to more diligently do their homework and revise for exams compared to others.
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Using genetic data to investigate the validity of VAmeasures

Despite this evidence, educational research has generally been slow to incorporate

genetic information (Plomin & Walker, 2003), though some developments have been

made (Jerrim et al., 2015). Harnessing genetic information offers novel opportunities

to investigate educational phenomena. For example, if the goal of VA measures is to

control out between-individual differences and provide a fair assessment of teachers

and schools, then they must account for genetic factors which directly influence

attainment. Recent genetic analyses applied to VA measures have suggested that they

are prone to genetic differences and therefore perform poorly at controlling for time-

invariant differences between children. In TEDS, the heritability of a value-added

measure was estimated at 52% (95% CI = 48% to 57%), similar to the heritability of

raw educational attainment (Haworth et al., 2011). This implies that VA measures

do not provide a fair assessment of teachers and schools but are instead genetically

biased. The study by Haworth and colleagues used teacher-reported ability instead of

the directly assessed attainment scores which are used to inform school league tables

and educational policy. This is important, because teacher-rated ability is likely to be

a less accurate measure of student achievement than National Curriculum test-

assessed point scores. It will be characterised by greater systematic error due to

confounding by teacher-reporting variation on the bias of traits such as ethnicity or

physical attractiveness (Burgess & Greaves, 2013; Gershenson et al., 2016; Hansen,

2016), and therefore may induce bias in heritability estimates. The heritability for VA

measures built from reading and maths test assessments in the same study was similar

though, suggesting that such bias may not be present. However, these assessments

used were completed online, differed between the two measurement occasions and

did not align with the National Curriculum assessments, and so are likely to contain

greater measurement error than official data. Further investigation into the ability of

VA measures to control for genetic differences between children is required to assess

their suitability for informing policy, assessing teacher performance or determining

school accountability.

In this study, we exploit molecular genetic data to first estimate the heritability of

educational attainment at three time points throughout the compulsory educational

lifecourse, and second investigate the ability of VA measures created from examina-

tion assessment data to control for time-invariant between-individual genetic

differences (one of their desirable properties). If VA measures are estimated to have

non-zero heritability, this suggests that they are susceptible to the influence of genet-

ics. Throughout this article, we use the term heritability to refer to a measure of heri-

tability calculated from a given set of genetic variants (SNPs, or single nucleotide

polymorphisms).

Methods andmaterials

Study sample

Participants were children from the Avon Longitudinal Study of Parents and Chil-

dren (ALSPAC). Pregnant women were eligible to enrol if they had an expected date
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of delivery between April 1991 and December 1992 and were resident in the (former)

Avon Health Authority area in South West England (for full details of the cohort pro-

file and study design, see Boyd et al. (2013) and Fraser et al. (2013)). The study web-

site contains details of all the data that are available through a fully searchable data

dictionary (ALSPAC data dictionary, available at http://www.bris.ac.uk/alspac/resea

rchers/data-access/data-dictionary/). The ALSPAC cohort is largely representative of

the UK population when compared with the 1991 Census data; however, there is

under-representation of some ethnic minorities, single-parent families and those liv-

ing in rented accommodation. Ethical approval for the study was obtained from the

ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

From the core sample of 14,775 children, 14,115 have data on at least one measure

of educational attainment. From these children, genetic data were available for 7,988

after quality control and removal of related individuals. We use the largest available

samples in each of our analyses to increase the precision of estimates, regardless of

whether a child contributed data to the other analyses.

Genetic data

In short, DNA of the ALSPAC children was extracted from blood, cell line and

mouthwash samples, then genotyped using reference panels and subjected to stan-

dard quality control approaches. In full, the children were genotyped using the Illu-

mina HumanHap550 quad chip genotyping platforms by 23andme subcontracting

the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory Corpora-

tion of America, Burlington, NC, USA. The resulting raw genome-wide data were

subjected to standard quality control methods. Individuals were excluded on the basis

of gender mismatches; minimal or excessive heterozygosity (where a genetic locus

contains two different alleles); disproportionate levels of individual missingness (>
3%) and insufficient sample replication (identity by descent (IBD) < 0.8). Popula-

tion stratification was assessed by multidimensional scaling analysis and compared

with Hapmap II (release 22) European descent (CEU), Han Chinese, Japanese and

Yoruba reference populations; all individuals with non-European ancestry were

removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence

for violations of Hardy–Weinberg equilibrium (HWE) (P < 5 9 10�7) were removed.

Cryptic relatedness (where two individuals in the sample are close relatives, but this is

unknown) was measured as proportion of IBD (> 0.1). Related subjects who passed

all other quality control thresholds were retained during subsequent phasing and

imputation. A total of 9,115 subjects and 500,527 SNPs passed these quality control

filters.

Children’s genotypes were jointly phased and imputed with the genotypes of the

ALSPAC mothers (Illumina human660W quad (mothers)), combining 477,482

SNP genotypes which were in common between the samples. SNPs with genotype

missingness above 1% were removed due to poor quality (11,396 SNPs removed)

and a further 321 subjects due to potential ID mismatches. This resulted in a dataset

of 17,842 subjects containing 6,305 duos and 465,740 SNPs (112 were removed dur-

ing liftover and 234 were out of HWE after combination). Haplotypes (a group of

alleles inherited together) were estimated using ShapeIT (v2.r644), which uses
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relatedness during phasing. We obtained a phased version of the 1,000 genomes ref-

erence panel (Phase 1, Version 3) from the Impute2 reference data repository (phased

using ShapeIt v2.r644, haplotype release date December 2013). Imputation of the

target data was performed using Impute V2.2.2 against the 1,000 genomes reference

panel (Phase 1, Version 3) (all polymorphic SNPs excluding singletons), using all

2,186 reference haplotypes (including non-Europeans). This gave 8,237 eligible chil-

dren with available genotype data after exclusion of related subjects using cryptic

relatedness measures.

Education data

Educational attainment

Our measures of educational attainment are average fine-graded point scores at each

of the major key stages (KS) of education in the UK: KS2 assessed at age 11; KS3

assessed at age 14; and KS4 assessed at age 16. Point scores were used to obtain a

richer measure of a child’s attainment than level bandings, with the distributions of

the raw scores presented in the supporting information Data S1 Section 2. Scores for

the ALSPAC cohort were obtained through data linkage to the UK National Pupil

Database (NPD), which represents the most accurate record of individual educa-

tional attainment available in the UK. We extracted all scores from the KS4 database

as this includes attainment at earlier key stages and provides a larger sample size than

the earlier databases.

Value-added measures

We use two sets of VA measures in our analyses. First, we calculated a raw VA

score as the difference between standardised point scores for each student at differ-

ent key stages. This VA measure can be considered the child’s cohort-specific VA

score as it is based upon the rank ordering of the child in the cohort at each occa-

sion. Second, CVA measures were extracted from the NPD linked to ALSPAC par-

ticipants. The CVA measures—using the example of a CVA score between ages 11

and 14—are calculated as the difference between a child’s given exam score (age

14) and the score that would be predicted from that child’s previous key stage exam

score (age 11). The models used to calculate CVA measures are estimated within a

multilevel framework whereby students are nested within schools and the intercept

is permitted to vary across schools. The CVA models also account for gender; spe-

cial educational needs; eligibility for free school meals (a proxy for low income);

first language; school mobility; ethnicity; month of birth; an indicator of whether a

child has been in care; and residential area level deprivation. We present results for

both the raw VA and CVA measures throughout our analyses. Raw and CVA mea-

sures are strongly related, with correlations of 0.95 at age 11–14, 0.80 at age 11–16
and 0.78 at age 14–16.
We also use a teacher-assessed value-added (TAVA) measure of the ability of chil-

dren. Teachers are required to grade their students at multiple time points in English,

Mathematics and Science on a scale of 1 to 8. These grades reflect the level at which a
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teacher deems a student to be working, with higher levels reflecting students working

at a more advanced stage. Because the levels run throughout a child’s educational

career, they can be compared at different time points to assess progress. The TAVA

measure we use was calculated as the difference between the mean level of English,

Mathematics and Science at ages 11 and 14, thus representing progress during these

years. Teacher-reported ability is not available in the NPD at age 16, meaning that

our TAVA measure only covers the one educational period. Correlations between the

TAVA measure and the VA and CVA measures are 0.333 and 0.405, respectively, far

lower than the correlation between the VA and CVA measures of 0.919. We return to

this in the discussion.

Educational attainment polygenic score

An educational attainment polygenic score was generated from genetic data based

upon the 74 independent SNPs identified at genome-wide significance

(p = 5 9 10�8) in the largest GWAS of education to date (Okbay et al., 2016). Each

genetic variant was weighted by the effect size of the variant in the replication cohort

of the meta-analysis, the UK Biobank, and these doses were summed using the allelic

scoring function in PLINK (version 1.9) (Purcell et al., 2007). The resulting poly-

genic score provides an estimate of the summed influence that all genetic variants

which are identified at GWAS significance have on educational attainment.

Statistical analysis

To estimate the proportion of variation in educational attainment and VA measures

that can be attributed to common genetic variation (SNP heritability), we run a series

of univariate analyses using generalised restricted maximum likelihood (GREML) in

the software package GCTA. GCTA uses measured SNP level variation to estimate

the genetic similarity between every pair of unrelated individuals in the sample and

compares this to their phenotypic similarity. Unrelated participants (less related than

second cousins) are determined using the ALSPAC Genetic Relatedness Matrices

(GRMs). Our univariate analyses are specified as follows:

y ¼ Xbþ g þ �

where y is the heritability of a phenotype, X is a series of covariates, g is a normally

distributed random effect with variance r2g and e is residual error with variance r2� .
Heritability is defined as the proportion of total phenotypic variance (genetic variance

plus residual variance) that can be attributed to common genetic variation:

h2SNP ¼ r2g
r2g þ r2�

If, across the sample, genetically similar pairs are more phenotypically similar than

genetically dissimilar pairs, then heritability estimates of the phenotype will be higher.

Population stratification can bias heritability estimates, and can occur if different
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subpopulations in the sample have systematic differences in allele frequencies due to

ancestral differences. To control for these population-specific variations in allele dis-

tributions, the first 20 principal components of inferred population structure are

included as covariates in analyses. All continuous variables were inverse normally

rank transformed to have a normal distribution, a requirement of GCTA. Power cal-

culations are presented in supporting information Data S1 Section 3, Table S2.

Briefly, we are suitably powered to detect heritability estimates greater than 0.15. All

code used to generate the results in this study are available from https://github.c

om/timtmorris/VA-heritability.

Results

Table 1 displays the number of study children who provide information for each of

the analyses and descriptive statistics for each of the variables used. Sample size is

higher for the raw attainment measures but reflects some data loss in the raw VA and

CVA measures due to missing attainment and background factors, respectively. The

CVA measures have higher standard deviations than the raw VA measures because

they are measured using differences between predicted point scores and realised point

scores, whereas the raw VA measures use differences in standardised score differ-

ences.

Educational attainment

The SNP heritabilities of educational attainment over time are presented in Figure 1.

Heritability rises with age from 47.3% (95% CI = 35.9% to 58.7%) at age 11 to

57.6% (95% CI = 43.9% to 71.3%) at age 14 and 61.1% (95% CI = 50.7% to

71.5%) at age 16. This suggests that in the ALSPAC sample genetic variation con-

tributes towards around half of the total variance in educational attainment using

fine-graded exam scores. These heritabilities are higher than would be expected given

the estimated heritability of 40.0% (95% CI = 35.3% to 44.7%) from a meta-analysis

of educational attainment (Branigan et al., 2013).

Table 1. Descriptive statistics for children included in the analyses

n Mean SD

Age 11 (KS2) points 6,132 28.04 3.85

Age 14 (KS3) points 4,960 35.97 6.19

Age 16 (KS4) points 6,518 39.89 9.48

Age 11–14 (KS2–3) VA score 4,904 0.06 0.42

Age 11–16 (KS2–4) VA score 6,088 �0.03 0.63

Age 14–16 (KS3–4) VA score 4,924 �0.07 0.49

Age 11–14 (KS2–3) CVA score 4,600 0.10 2.52

Age 11–16 (KS2–4) CVA score 6,028 0.98 56.33

Age 14–16 (KS3–4) CVA score 4,914 1.08 45.21

CVA, contextual value-added; SD, standard deviation; VA, raw value-added.
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Value-added measures

Figure 2 displays the heritability of VA measures, which would be zero if the VAmea-

sures control for all time-invariant genetic differences between children. There is little

evidence that common genetic variation can explain the raw VA measures, far smaller

than for the raw attainment scores at each key stage. The raw VA measures from ages

11–14, 11–16 and 14–16 show SNP heritabilities of < 0.1% (95% CI = �13.5% to

13.5%), 7.9% (95% CI = �3.3% to 19.0%) and 6.5% (95% CI = �7.6% to 20.6%),

respectively. The estimate of heritability for the KS2–3 raw VA score is constrained
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Figure 1. Heritability of key stage average point score attainment.

Sample sizes: KS2 = 6,132; KS3 = 4,960; KS4 = 6,518. See supporting information Data S1

Section 4 for full model results.
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Figure 2. Heritability of value-added measures.

KS, key stage; VA, raw value-added; CVA, contextual value-added. Children are aged 11 at KS2, 14

at KS3 and 16 at KS4. Sample sizes: KS2–3 VA = 4,904; KS2–4 VA = 6,088; KS3–4 VA = 4,924;

KS2–3 CVA = 4,600; KS2–4 CVA = 6,028; KS3–4 CVA = 4,914. See supporting informationData

S1 Section 4 for full model results. [Colour figure can be viewed at wileyonlinelibrary.com]
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to zero because the predicted heritability is�0.04, which is outside the bounds of zero

to one. The heritability estimates for the CVA measures though are consistently

higher than those for the corresponding raw VA measures. There is evidence that the

CVA scores are heritable for the period of age 11–14 (h2SNP = 20.09%; 95%

CI = 6.06% to 35.71%) and the period of age 11–16 (h2SNP = 15.77%; 95%

CI = 4.26% to 27.29%). Heritability estimates for the period of age 14–16 are lower,

with little strong evidence for a heritable component (h2SNP = 8.49%; 95%

CI = �5.52% to 22.51%). These results consistently suggest that relatively little of

the variation in raw VA measures—the unadjusted progress that students make from

one key stage to another—can be attributed to common genetic variation. However,

they also suggest that the variation in some CVA measures—those that adjust for

background factors—can in part be attributed to common genetic variation.

To explore this, we ran a series of simulations to determine scenarios in which

CVAmeasures may be more genetically biased than raw VAmeasures (see supporting

information Data S1 Section 1). The simulations demonstrate that CVA measures

overstate heritability more than raw VAmeasures, where the baseline input score con-

tains measurement error (VA h2SNP = 9.99%; CVA h2SNP = 16.66% given measurement

error of 0.25).

These results contrast with those from a previous study, which estimated heritabil-

ity of VA measures using teacher-assessed ability at 50% (Haworth et al., 2011). Tea-

cher-assessed ability is a good proxy for true student ability; the correlations between

teacher-assessed ability and point scores at KS2 and KS3 are 0.884 and 0.921,

respectively. However, teacher-assessed ability may be confounded by teacher-report

bias, which will not be present in directly assessed examination scores. If the baseline

measure of achievement is measured with error due to teacher-reported bias, then it

will not fully control for prior achievement. As our simulations demonstrate, this may

inflate the estimated heritability. Furthermore, because teacher-assessed ability is

measured using fewer bandings than the rich point scores used by exam assessments,

the variability of scores is lower, as children cannot be differentiated within bands.

Where the baseline measures are more constrained they will be less effective at con-

trolling for initial differences and may further lead to upward bias in heritability esti-

mates. It is therefore possible that the high heritability observed in the previous study

may be due in part to imprecision or teacher bias in the baseline measurement com-

pared to point scores that are traditionally used in educational research.

We investigated if the discrepancy between our results and those from the previous

study may have reflected genuine differences (a sample issue) or differences caused

by alternative methods of assessment (a measurement issue). A TAVA measure simi-

lar to that used in the previous study was created for the period of education from age

11 to age 14 (teacher-rated ability was unavailable at age 16). The ages that the tea-

cher assessments were made were similar to TEDS (ages 10 and 12). Figure 3 pre-

sents the GCTA heritability results of our TAVA measure compared to the raw VA

and CVA measures at this age. The results suggest a moderate amount of heritability

in the TAVA measure of 36.3% (95% CI = 22.8% to 49.8%). This exceeds the heri-

tability point estimates presented in Figures 1 and 2 and suggests that VA measures

using teacher-rated ability are likely to reflect both student progress and genetic dif-

ferences between students.
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Polygenic score results

The final stage of the analysis was to investigate the amount of variance in educational

attainment and VA measures that an educational attainment polygenic score (EA

PGS) predicts. The results (Figure 4) show that the EA PGS accounts for a small but

detectable proportion of variance in educational attainment at each key stage, varying

from 0.35% to 0.58%. The EA PGS accounts for negligible variation in the raw VA

measures (≤ 0.01%), providing further evidence that these successfully account for

time-invariant differences between children and are not influenced by genetic factors.

Consistent with the GCTA results, the EA PGS predicts a small but detectable

amount of variation in the CVA measures (0.07% to 0.21%), though this is far smal-

ler than the raw attainment scores. Again, this suggests that these adjusted CVA mea-

sures are more strongly associated with genetic differences than raw VA measures.

The EA PGS explains a greater amount of variation in the TAVA measure (0.25%)

than the raw VA (< 0.01%) and CVA (0.07%) measures for this period, closer to the

heritability of the age 11 and age 14 point scores themselves. Given that the EA PGS

only includes 74 variants, which each have a small effect size, this provides further

evidence that value-added measures based upon teacher-rated ability are likely to be

considerably biased by common genetic variation associated with educational

attainment.

Discussion

Attainment throughout the educational lifecourse

Our genome-wide heritability estimates using all common genetic variants provide

molecular genetic evidence for a substantial heritable component of educational
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Figure 3. Heritability of KS2–3 value-added measures.

KS, key stage; VA, raw value-added; CVA, contextual value-added; TAVA, teacher-assessed value-

added. Children are aged 11 at KS2, 14 at KS3 and 16 at KS4. Sample sizes: KS2–3 VA = 4,904;

KS2–3 CVA = 4,600; KS2–3 TAVA = 5,070. See supporting information Data S1 Section 4 for

full model results. [Colour figure can be viewed at wileyonlinelibrary.com]
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attainment in ALSPAC, conforming to previous findings from other samples. We

find that the heritability of educational attainment increases from 47% at age 11 to

61% at age 16, suggesting that genetics explains a greater proportion of the variation

in outcomes at age 16 than earlier ages. This is important, because the age 16 exams

play a large role in setting a child’s future chances in further education and the labour

market. The differences across ages are small and could be due to various factors. For

example, parents, teachers and others may work harder at later ages to make the envi-

ronment more homogenous than at earlier ages. Attitudinal behaviours may also be

partly responsible because older children have more freedom to choose their own

educational effort with less parental influence. It is also important to note that in

some subjects such as Mathematics, children are compelled to enter different tiers

based upon ability as assessed after the age 14 exams, which will have placed ceiling

and floor caps on the scores that they could attain in the age 16 examinations.

Our estimated heritability is higher than the 40.0% (95% CI = 35.3% to 44.7%)

estimated using meta-analyses (Branigan et al., 2013). Furthermore, it is more simi-

lar to the broad than narrow-sense heritability estimated in TEDS = 62% (95%

CI = 58% to 67%) and 31% (95% CI = 7.48% to 54.52%), respectively (Krapohl

et al., 2014; Krapohl & Plomin, 2016). It is possible that this may reflect a true differ-

ence whereby the heritability of point scores is higher than that of years of education

(as used in the meta-analysis) or grades (as used in TEDS). However, it must be

noted that this may also reflect the fact that the ALSPAC cohort is more spatiotempo-

rally homogenous than other cohorts used in the meta-analysis; all the children in

ALSPAC were born within 3 years in the same geographical location and they mostly

experienced the same school system, albeit in a very socially divided, largely urban

area. This means there may be a smaller set of environmental factors influencing our
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added. Children are aged 11 at KS2, 14 at KS3 and 16 at KS4. Sample sizes: KS2 score = 6,132;

KS3 score = 4,960; KS4 score = 6,518; KS2–3 VA = 4,904; KS2–4 VA = 6,088; KS3–4
VA = 4,924; KS2–3 CVA = 4,600; KS2–4 CVA = 6,028; KS3–4 CVA = 4,914; KS2–3

TAVA = 5,070. See supporting information Data S1 Section 4 for full model results. [Colour

figure can be viewed at wileyonlinelibrary.com]
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results, which could result in reduced environmental variation. This will in turn

increase the residual variation in the phenotype that can be attributed to common

genetic variation and the resulting heritability estimate.

Value-added measures

We found that very little of the variation in raw VA measures built from point score

data could be explained by common genetic variation. Surprisingly, we found that

these raw VA measures were less heritable than CVA measures, which additionally

control for background factors. Our results imply that raw VA measures may be less

prone to between-individual genomic differences than CVA measures and therefore

offer a more valid measure for the value added by schools or teachers to a child’s edu-

cation. CVA measures appear to be susceptible to genetic differences between chil-

dren and may therefore not offer fair assessments of the contribution that teachers

and schools make towards a child’s educational progress. Our simulations suggest

that the reduced performance of CVA measures could be due to measurement error

in the baseline scores. Because KS2 and KS3 point scores are determined from a

smaller range of subjects than KS4 point scores, they are likely to provide less precise

measures of overall academic ability, which results in a baseline measure containing

greater measurement error. This measurement error is then inflated when additional

contextual factors are accounted for, resulting in CVA measures being more biased

by genetic differences than raw VAmeasures.

It has been argued that adjusting for factors can increase bias where input measures

are broad or crude proxies, or related to parental choice (Todd &Wolpin, 2003), and

our results provide genetic evidence that supports this. Our simulations may also help

to explain why VA measures built from teacher-reported ability further overestimate

heritability. Teacher reports are likely to contain greater measurement error than

exam results, and therefore VA measures built from them may demonstrate higher

heritability. Careful consideration must therefore be taken when constructing VA

measures, and caution should be exercised when using them in educational research

or for policy purposes. While the raw measures in our sample appear to be largely

independent of genetic background and may provide an indication of the contribution

that teachers and schools make to a child’s educational progress, our findings demon-

strate that contextual measures will provide an unfair reflection of teachers and

schools and could unfairly penalise those depending upon the intake that they receive.

Our results only suggest that CVAmeasures are less effective at controlling for genetic

differences between children than raw VA measures. It is possible, however, that they

may be overall less biased and more effective at controlling for other between-indivi-

dual social and demographic factors.

The VA measures created from teacher-rated ability for the same children show

considerably higher heritability, of around 36%, suggesting that teacher-rated ability

may be more prone to between-individual genomic differences than official test point

scores data. However, it must be stressed that the error around the point estimates

only provides strong evidence for a difference between the raw and teacher-reported

VA measures. Several factors may account for this higher heritability estimate. For

example, there is evidence that teacher-rated ability may be influenced by heritable
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factors such as attractiveness, which could lead to confounding bias (Clifford & Wal-

ster, 1973; Talamas et al., 2016). Furthermore, teacher-rated ability is likely to be a

less precise measure of ability than end-of-key-stage point scores, due to its reduced

richness as a measure of attainment and therefore reduced imposed variability. As

with the CVA measures, if teacher-rated prior attainment is measured with error or

low precision, then heritability estimates may be upwardly biased. A policy implica-

tion of this is that baseline measurements need to be accurately measured to eliminate

bias, and given that teacher assessments are unlikely to be sufficiently precise, their

use as inputs for VA measures should be avoided. The difference in correlations

between the TAVA measure and the VA/CVA measures serves to highlight that while

teachers are generally adept at assessing their pupils’ overall ability, there is enough

error in their assessments that the value-added measures are biased, leading to a heri-

table component.

Our teacher-rated VA estimate contrasts with that from the only previous study

examining genetic influences on VA measures, which estimated heritability in

TEDS at 50% (Haworth et al., 2011). It is possible that this discrepancy arises

because the two cohorts represent different samples. However, the two cohorts are

drawn from the same country and the age of participants differs only by a maxi-

mum of 6 years. It is therefore unlikely that this leads to the observed differences

(assuming teachers of the geographically concentrated ALSPAC study were as

accurate at determining student ability as the general population of teachers). Sec-

ond, it is possible that the teacher-reported ability collected by TEDS may have

been measured with greater error, or been subject to greater bias, than that linked

from the UK NPD to the ALSPAC cohort. It is likely that a child’s level would

have been decided with more care in the official (and contractually required)

National Curriculum reports used by ALSPAC than the optional survey used by

TEDS. Third, the ALSPAC analytical sample is likely to be more genotypically

homogenous than the TEDS sample, because it is geographically concentrated

rather than national. Fourth, it is also possible that the discrepancy between the

TEDS and ALSPAC samples is due to the age at which teacher-reported ability

was measured. ALSPAC measures were taken at ages 11 and 14 (end of KS2 and

KS3), while the TEDS measures were taken at ages 10 and 12. It is important to

note that in the study by Haworth et al. (2011), VA measures built from test assess-

ments had similar heritability to those built from teacher-rated data, providing a

suggestion that teacher-rated measures may not underperform compared to test

data. However, the test data used were not drawn from NPD data but instead from

online assessments, used only reading and maths ability, differed between the two

measurement occasions and the timing did not align with National Curriculum key

stages. This is likely to have resulted in greater measurement error, which our simu-

lations demonstrated could lead to inflation in the resulting VA measures. Further-

more, twin studies may be more susceptible to teacher biases of appearance

(Hansen, 2016) than studies of unrelated individuals, because of the similarity of

appearance between twins. It is also possible that this discrepancy in findings is at

least in part due to differences between GCTA and twin models; however, the dis-

crepancy is likely too large to be fully accounted for by these model differences.

Ultimately, further work replicating the GCTA approach is required on other
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datasets such as TEDS to resolve these differences and determine if they are due to

differences in modelling approach or differences in the data measures used.

Polygenic scores

We found that the EA PGS explained between 0.35% and 0.58% of the variation in

educational attainment, depending on the stage of education. The EA PGS explains

far less variation in exam scores than the GCTA estimates, because it uses a set of

only 74 genetic variants that associate with education at genome-wide levels of signifi-

cance. This is a tiny proportion of the genome-wide variants used by GCTA, result-

ing in lower explanatory power. This is demonstrated by two recent studies using

TEDS data; a genome-wide score using 108,737 SNPs explained 9% of the variance

in age-16 grades (Selzam et al., 2016), whereas a score using only 5,733 SNPs

explained 1.5% of the variance in the same trait (Krapohl & Plomin, 2016). While

lowering the potential explanatory power of the score, using only the 74 genome-wide

significant variants ensures that our score contains only the variants that are robustly

associated with educational attainment. Regarding VA measures, the polygenic score

results corroborated with the GCTA results. The EA PGS explained negligible vari-

ance in the raw VA measures (≤ 0.01%) but a greater amount of variance in the CVA

measures (0.07% to 0.21%) and the teacher-rated VA measure (0.25%). These

results further demonstrate that value-added measures which adjust for background

variables—or those built from teacher-rated measures of ability—may be confounded

by genetics, even when only accounting for 74 variants which associate with educa-

tional attainment.

Limitations

Our results provide only estimates of the variance in educational attainment and

value-added measures across the lifecourse, and do not imply that common genetic

variants determine the educational attainment of an individual. The major limitation

with this work relates to the potential of GCTA to overestimate heritability, which

can occur where model assumptions, particularly that of even linkage disequilibrium

between SNPs, are violated (Speed et al., 2012). Furthermore, heritability estimates

from GCTA are sensitive to the sampling of participants, the accuracy of phenotypic

measurement and the structure of the genetic relatedness matrix underlying the data

(Krishna Kumar et al., 2016). These limitations, however, have been strongly refuted

by the authors of GCTA (Yang et al., 2016; Yang et al., 2017). Nevertheless, our

estimates are comparable to those previously conducted using twin designs, despite

SNP heritability typically being lower than that derived from twin studies, raising the

possibility that our high heritability estimates may suffer from overinflation. One fur-

ther issue that may lead to overestimation in GCTA heritability estimates is that of

dynastic effects, where the parental phenotype/genotype directly affects the off-

spring’s outcomes through the creation of specific types of environment. Such indi-

rect genetic effects, termed ‘genetic nurture’ or ‘environmental bias’, have recently

been demonstrated to upwardly bias GCTA heritability estimates of educational

attainment, because the methods used here are unable to distinguish between direct
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and indirect genetic effects (Kong et al., 2017; Young et al., 2017). Our heritability

estimates for educational attainment point scores will also be susceptible to bias by

assortative mating, whereby parents non-randomly select partners based upon level

of education, as demonstrated by previous work (Robinson et al., 2017). There may

also be unobserved differences between individuals (residual population structure)

biasing our results; we attempted to account for this by using the first 20 principle

components of population structure, however we cannot be certain that these will

correct for all differences. This limitation could be overcome with genotypic data on

mother–father–offspring trios and future studies should exploit the growing availabil-

ity of data to investigate this hypothesis. Given that data on teacher-reported ability

was only available for ages 11 and 14, we were unable to examine if the bias in VA

measures based upon teacher-reported ability was consistent between the ages of 11–
16 and 14–16. Future studies with teacher-reported ability at multiple time points

should examine any such variation by age. As with all measures based upon educa-

tional attainment, random measurement error at the individual level will exist within

the data (such as a child suffering illness at the time of examination). However, these

random changes will likely provide only a minimal amount of bias at the aggregate

level given our sample size. Conversely, teacher-rated measures could be susceptible

to longer-term factors that may impact a child’s educational performance, such as

parental illness. It is inevitable that our measure of value-added will still contain mea-

surement error. Random measurement error will not be related to genetic (or other)

underlying factors, and could therefore bias heritability estimates towards the null.

However, it is unlikely that our raw VA measure will suffer from heavy bias because

the NPD key stage examinations represent the most accurate objective assessment of

a child’s educational ability. Finally, selection bias may influence our findings due to

selective participation in the ALSPAC study (Munaf�o et al., 2017; Taylor et al.,

2018).

Concluding remarks

In conclusion, our results demonstrate that common genetic variation contributes

towards around half of the total variance in educational attainment measured by

exam scores throughout the compulsory educational lifecourse in the ALSPAC sam-

ple. Our results also suggest that raw value-added measures are robust to genomic dif-

ferences between children but that contextual value-added measures, which further

control for additional background factors and those built from teacher-reported abil-

ity, may be genetically biased. These value-added measures should therefore be used

with caution in educational research and policy, as they have the potential to provide

unfair assessment and accountability of teachers or schools, and they may bias perfor-

mance and position in school league tables.
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Glossary

Allele

Alleles are the different variant forms of genetic variation found at a specific point on

a chromosome. Specific alleles associate with different phenotypic traits (e.g. out-

comes such as educational attainment).
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Allele frequency

Allele frequency is the prevalence of a given allele at a genetic locus in the sample,

expressed as a decimal, fraction or percentage. The allele frequency is reported in

terms of the proportion of alleles that are the effect allele (e.g. the allele associated

with higher levels of education) or in terms of the number of minor, or less frequent,

alleles (termed minor allele frequency).

Assortative mating

Assortative mating refers to the non-random manner in which people sort into part-

nerships with partners who have more similar social and biological characteristics

such as height, education and personality than would be expected by chance alone.

This may be due to assortment based upon partner choice, convergence in character-

istics due to interaction with a partner over time or social homogamy (Robinson et al.,

2017). Rates of assortative mating may vary between populations and over time.

Common genetic variation

Common genetic variation refers to all genetic variants across the genome in which

the minor or rare allele occurs relatively frequently, that is, above 1%.

Dominance

Dominance refers to the phenomenon whereby the effect of one allele masks the

expression of another allele of a single gene.

Dynastic effects

Dynastic effects refer to the direct effects of parents’ phenotypes on their offspring.

An example of this in the education context would be highly educated parents creat-

ing a nourishing learning environment for their children via buying books and helping

their children learn to read. These effects are sometimes referred to as ‘genetic nur-

ture’ (Kong et al., 2018).

Epistasis

Epistasis refers to the phenomenon whereby the phenotype of one gene can be modi-

fied by others. An epistatic gene refers to the gene whose phenotype is expressed.

Gene

A stretch of DNA formed by a distinct sequence of nucleotides constituting a section

of a chromosome. Coding regions (exons) of the gene encode protein and are inter-

spersed with non-coding regions (introns). This is distinct from a genetic variant,

which can occur in a gene (intragenic) or outside a gene (intergenic).
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Genetic relatedness matrix

Identical twins share all their germline genome and have a genetic relatedness of one.

Siblings share half their genetic code and have a genetic relatedness of 0.5. If two

unrelated individuals drawn at random from the population are more genetically sim-

ilar than you would expect by chance, they will have a genetic relatedness of greater

than zero. If they are less alike than you would expect by chance, they will have a

genetic relatedness of less than zero. The genetic relatedness matrix stores the genetic

relatedness between every pair of individuals in a sample. It can be used to estimate

heritability using GCTA (see below).

Genome-wide association study (GWAS)

A genome-wide association study (GWAS) tests the associations of hundreds of thou-

sands of genetic variants and an outcome (the phenotype). Due to the number of

associations being tested simultaneously, and therefore issues of multiple hypothesis

testing, strict P-value thresholds (conventionally 5 9 10�8) are used to account for

multiple testing. The combination of these strict P-value thresholds and small SNP

effect sizes means that GWASs require very large samples. GWASs are typically sepa-

rated into two parts: an analysis is first performed in a discovery cohort to identify

nominally genome-wide significant SNPs; and second performed in an independent

validation cohort to validate these SNPs.

Genome-wide complex trait analysis (GCTA)

Genome-wide complex trait analysis (GCTA) is a statistical programme that uses a

genomic-relatedness-based generalised restricted maximum likelihood (GREML)

approach to estimate the proportion of variance in a phenotype that can be statisti-

cally accounted for by all common SNPs. GCTA compares the genetic similarity

between unrelated individuals and compares it to their similarity on phenotypic traits;

where pairs of unrelated individuals are genetically and phenotypically similar, this

provides evidence that phenotypic variation can be explained by genotypic variation.

GCTA studies typically require sample sizes in the many thousands.

Haplotypes

Haplotypes are a specific sequence of alleles that are inherited together from a parent,

leading to conserved sequences across generations.

Hardy–Weinberg equilibrium

Hardy–Weinberg equilibrium refers to the principle that genetic variation across a

population will remain constant (in equilibrium) over generations in the absence of

external disruptive or evolutionary factors. External factors that may disrupt Hardy–
Weinberg equilibrium include non-random mating, mutations, genetic drift and nat-

ural selection.
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Heritability

Heritability is the proportion of total phenotypic variance in a population that can be

explained by genetic variance, and therefore ranges from zero (no phenotypic vari-

ance explained) to one (all phenotypic variance explained). Broad-sense heritability

(H2) is defined as the total proportion of variance in a trait that is explained by all

genetic variation, inclusive of additive genetic variance, dominance and epistasis

(gene–gene interactions). Narrow-sense heritability (h2) is the proportion of total

variance in a trait that is explained by additive genetic variance. SNP heritability

hSNP2 is a measure of narrow-sense heritability calculated from a given set of genetic

variants (SNPs). Heritability is a population rather than an individual parameter, and

is specific to both the population and the environment under analysis.

Heterozygosity

Heterozygosity refers to the occurrence of two different alleles at a specific genetic

locus.

Homozygosity

Homozygosity refers to the occurrence of two of the same alleles at a specific genetic

locus.

Identity by descent

Where a segment of the genome shared by multiple people is due to inheritance from

a common ancestor.

Linkage disequilibrium

Linkage disequilibrium refers to the combination of alleles at two or more loci occur-

ring more frequently than would be expected by chance. This typically occurs for

variants in close proximity in the genome. This is in violation of Mendel’s second law

of inheritance, which states that the identity of an allele should provide no informa-

tion about alleles at other points in the genome.

Phenotype/phenotypic trait

A phenotype is the trait or characteristic of interest, for example: educational attain-

ment, cognition and socioeconomic position are all phenotypes.

Polygenic trait

Polygenic trait is the term used to refer to phenotypic traits that are influenced by

many SNPs, the majority of which can only explain a very small proportion of
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variance in a trait. Most human behavioural traits that are influenced by our DNA are

polygenic, being influenced to a small degree by hundreds or thousands of SNPs.

Polygenic score

A polygenic score (PGS, sometimes referred to as a polygenic risk score) is a summed

score of the number of alleles associated with a phenotypic trait. These scores are

often weighted by the genetic variant’s effect size on the phenotype as estimated from

a published GWAS. Polygenic scores can use genetic variants that were associated

with the phenotype at different P-value thresholds ranging from genome-wide signifi-

cance (p < 5 9 10�8) to liberal thresholds such as p < 0.5. Polygenic scores therefore

indicate the summed influence that all genetic variants identified at a given level of

GWAS significance have on a phenotypic trait. Because current GWASs are limited

in the number of SNPs they can identify, polygenic scores based on these GWAS

findings often omit many variants and therefore do not provide an estimate of the

total genetic impact on a trait.

Population stratification

Population stratification occurs when different subpopulations may have systematic

differences in allele frequencies due to ancestral differences, such as non-random

mating between subpopulations. These differences can occur because of geographical

separation. The association of genetic variants and phenotypes can be confounded by

population stratification. To control for population stratification, studies that esti-

mate heritability use principal components analysis (PCA) applied to the genome-

wide SNP data to infer population structure, then include the resultant principal

components as covariates in analysis to account for population-specific variations in

allele distributions.

Single nucleotide polymorphism (SNP)

A single nucleotide polymorphism (SNP) is a genetic variant of a single base pair at a

specific position in the genome.
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