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Abstract

Background: Clinical text classification is an fundamental problem in medical natural language processing. Existing
studies have cocnventionally focused on rules or knowledge sources-based feature engineering, but only a limited
number of studies have exploited effective representation learning capability of deep learning methods.

Methods: In this study, we propose a new approach which combines rule-based features and knowledge-guided
deep learning models for effective disease classification. Critical Steps of our method include recognizing trigger
phrases, predicting classes with very few examples using trigger phrases and training a convolutional neural network
(CNN) with word embeddings and Unified Medical Language System (UMLS) entity embeddings.

Results: We evaluated our method on the 2008 Integrating Informatics with Biology and the Bedside (i2b2) obesity
challenge. The results demonstrate that our method outperforms the state-of-the-art methods.

Conclusion: We showed that CNN model is powerful for learning effective hidden features, and CUls embeddings
are helpful for building clinical text representations. This shows integrating domain knowledge into CNN models is

promising.
Keywords: Clinical text classification, Obesity challenge, Convolutional neural networks, Word embeddings, Entity
embeddings

Introduction methods have shown powerful feature learning capability

Clinical records are an important type of electronic health
record (EHR) data and often contain detailed and valuable
patient information and clinical experiences of doctors. As
a basic task of natural language processing, text classifica-
tion plays an critical role in clinical records retrieval and
organization, it can also support clinical decision making
and cohort identification [1, 2].

Existing clinical text classification studies often use dif-
ferent forms of knowledge sources or rules for feature
engineering [3-7]. But most of the studies could not
learn effective features automatically, while deep learning
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recently in the general domain [8].

In this study, we propose a new method which combines
rule-based feature engineering and knowledge-guided
deep learning techniques for disease classification. We
first identify trigger phrases using rules, then use these
trigger phrases to predict classes with very few exam-
ples, and finally train a convolutional neural network
(CNN) on the trigger phrases with word embeddings and
Unified Medical Language System (UMLS) [9] Concept
Unique Identifiers (CUIs) with entity embeddings. We
evaluated our method on the 2008 Integrating Informat-
ics with Biology and the Bedside (i2b2) obesity challenge
[10], a multilabel classification task focused on obesity
and its 15 most common comorbidities (diseases). The
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experimental results show that our method outperforms
state-of-the-art methods for the challenge.

Related Work
Clinical text classification
A systematic literature review of clinical coding and clas-
sification systems has been conducted by Stanfill et al.
[11]. Some challenge tasks in biomedical text mining also
focus on clinical text classification, e.g., Informatics for
Integrating Biology and the Bedside (i2b2) hosted text
classification tasks on determining smoking status [10],
and predicting obesity and its co-morbidities [12]. In this
work, we focus on the obesity challenge [12]. Among the
top ten systems of obesity challenge, most are rule-based
systems, and the top four systems are purely rule-based.
Many approaches for clinical text classification rely on
biomedical knowledge sources [3]. A common approach
is to first map narrative text to concepts from knowledge
sources like Unified Medical Language System (UMLS),
then train classifiers on document representations that
include UMLS Concept Unique Identifiers (CUIs) as fea-
tures [6]. More knowledge-intensive approaches enrich
the feature set with related concepts [4] for apply seman-
tic kernels that project documents that contain related
concepts closer together in a feature space [7]. Similarly,
Yao et al. [13] proposed to improve distributed document
representations with medical concept descriptions for tra-
ditional Chinese medicine clinical records classification.
On the other hand, some clinical text classification
studies use various types of information instead of knowl-
edge sources. For instance, effective classifiers have been
designed based on regular expression discovery [14] and
semi-supervised learning [15, 16]. Active learning [17] has
been applied in clinical domain, which leverages unla-
beled corpora to improve the classification of clinical text.
Although these methods used rules, knowledge sources
or different types of information in many ways. They
seldom use effective feature learning methods, while
deep learning methods are recently widely used for text
classification and have shown powerful feature learning
capabilities.

Deep learning for clinical data mining

Recently, deep learning methods have been success-
fully applied to clinical data mining. Two representative
deep models are convolutional neural networks (CNN)
[18, 19] and recurrent neural networks (RNN) [20, 21].
They achieve state of the art performances on a num-
ber of clinical data mining tasks. Beaulieu-Jones et al. [22]
designed a neural network approach to construct phe-
notypes for classifying patient disease status. The model
performed better than decision trees, random forests
and Support Vector Machines (SVM). They also showed
to successfully learn the structure of high-dimensional
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EHR data for phenotype stratification. Gehrmann et al.
[23] compared CNN to the traditional rule-based entity
extraction systems using the cTAKES and Logistic Regres-
sion (LR) with n-gram features. They tested ten differ-
ent phenotyping tasks on discharge summaries. CNN
outperformed other phenotyping algorithms on the pre-
diction of the ten phenotypes, and they concluded that
deep learning-based NLP methods improved the patient
phenotyping performance compared to other methods.
Luo et al. applied both CNN, RNN, and Graph Convo-
lutional Networks (GCN) to classify the semantic rela-
tions between medical concepts in discharge summaries
from the i2b2-VA challenge dataset [24] and showed
that CNN, RNN and GCN with only word embedding
features can obtain similar or better performances com-
pared to state-of-the-art systems by challenge participants
with heavy feature engineering [25-27]. Wu et al. [28]
applied CNN using pre-trained embeddings on clinical
text for named entity recognization. They showed that
their models outperformed the conditional random fields
(CRF) baseline. Geraci et al. [29] applied deep learning
models to identify youth depression in unstructured text
notes. They obtained a sensitivity of 93.5% and a speci-
ficity of 68%. Jagannatha et al. [30, 31] experimented with
RNN, long short-term memory (LSTM), gated recurrent
units (GRU), bidirectional LSTM, combinations of LSTM
with CREF, to extract clinical concepts from texts. They
demonstrated that all RNN variants outperformed the
CREF baseline. Lipton et al. [32] evaluated LSTM in phe-
notype prediction using multivariate time series clinical
measurements. They showed that their model outper-
formed multi-layer perceptron (MLP) and LR. They also
concluded that combining MLP and LSTM leads to the
best performance. Che et al. [33] also applied deep neural
networks to model time series in ICU data. They intro-
duced a Laplacian regularization process on the sigmoid
layer based on medical knowledge bases and other struc-
tured knowledge. In addition, they designed an incremen-
tal training procedure to iteratively add neurons to the
hidden layer. They then used causal inference to analyze
and interpret hidden layer representations. They showed
that their method improved the performance of pheno-
type identification, the model also converges faster and
has better interpretation.

Although deep learning techniques have been well stud-
ied in clinical data mining, most of these works do not
focus on long clinical text classification (e.g., an entire
clinical note) or utilize knowledge sources, while we pro-
pose a novel knowledge-guided deep learning method for
clinical text classification.

Obesity challenge
The objective of the i2b2 2008 obesity challenge [12]
is to assess text classification methods for determining
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patient disease status with respect to obesity and 15
of its comorbidities: Diabetes mellitus (DM), Hyperc-

holesterolemia, Hypertriglyceridemia, Hypertension,
atherosclerotic cardiovascular disease (CAD), Heart
failure (CHF), Peripheral vascular disease (PVD),

Venous insufficiency, Osteoarthritis (OA), Obstruc-
tive sleep apnea (OSA), Asthma, Gastroesophageal
reflux disease (GERD), Gallstones, Depression, and
Gout. Our goal is to label each document as either
Present (Y), Absent (N), Questionable (Q) or Unmen-
tioned (U) for each disease. Macro F; score is the
primary metric for evaluating and ranking classification
methods.

The challenge consists of two tasks, namely textual
task and intuitive task. The textual task is to identify
explicit evidences of the diseases, while the intuitive task
focused on the prediction of the disease status when the
evidence is not explicitly mentioned. Thus, the Unmen-
tioned (U) class label was excluded from the intuitive
task. The classes are distributed very unevenly: there
are only few N and Q examples in textual task data
set and few Q examples in intuitive task data set, as
shown in Table 1. There exist classes even without train-
ing example. For instance, there is no training exam-
ple with Q and N label for Depression in textual task,
and there is no training example with Q label for Gall-
stones in intuitive task. The details of the datasets can be
found in [12].

Method

Our method contains three steps: (1). identifying trigger
phrases; (2). predicting classes with very few examples
using trigger phrases; (3). learning a knowledge-guided
CNN for more populated classes. Our implementation
is available at https://github.com/yao8839836/obesity. We
use Solt’s system [5] to recognize trigger phrases and pre-
dict classes with very few examples. Solt’s system is a
very powerful rule-based system. It ranked the first in
the intuitive task and the second in the textual task and
overall the first in the obesity challenge. Solt’s system can
identify very informative trigger phrases with different
contexts (positive, negative or uncertain). We use the Perl
implementation: https://github.com/yao8839836/obesity/

Table 1 The class distribution in the obesity challenge datasets

Training Set Test Set
Label
Textual Intuitive Textual Intuitive
Y 3208 3267 2192 2285
N 87 7362 65 5100
Q 39 26 17 14
u 8296 0 5770 0
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tree/master/perl_classifier of Solt’s system provided by
the authors.

Trigger phrases identification

We recognize trigger phrases following Solt’s system [5].
We first conduct the same preprocessing like abbrevi-
ation resolution and family history removing. We then
use the disease names (class names), their directly asso-
ciated terms and negative/uncertain words to recog-
nize trigger phrases. The trigger phrases are disease
names (e.g., Gallstones) and their alternative names
(e.g., Cholelithiasis) with/without negative or uncertain
words.

Predicting classes with very few examples using trigger
phrases

As the classes in obesity challenge are very unbalanced,
and some classes even don’t have training examples,
we could not make prediction for these classes using
machine learning methods and resort to rules defined
in Solt’s system [5]. We exclude classes with very few
examples in training set of each disease. Specifically, we
remove examples with Q label in intuitive task and remove
examples with Q or N label for textual task. Then for
examples in test set, we use trigger phrases to predict
their labels. As Solt’s system [5], we assume positive
trigger phrases (disease names and alternatives without
uncertain or negative words) are prior to negative trig-
ger phrases, and negative trigger phrases are prior to
uncertain trigger phrases. Therefore, if a clinical record
contains uncertain trigger phrases and dosen’t contain
positive or negative trigger phrases, we label it as Q. Sim-
ilarly, if a clinical record contains negative trigger phrases
and dosen’t contain positive trigger phrases, we label
itas N.

Knowledge-guided convolutional neural networks

After excluding classes with very few examples, only two
classes remain in the training set of each disease (Y and
N for intuitive task, Y and U for textual task). We learn a
CNN on positive trigger phrases and UMLS CUIs in train-
ing records, then classify test examples using the trained
CNN model. CNN is a powerful deep learning model for
text classification, and it performs better than recurrent
neural networks in our preliminary experiment. The test
phase of our method is given in Fig. 1. If a record in test set
is labeled Q or N by Solt’s system, we trust Solt’s system.
Otherwise, we use the CNN to predict the label of the
record.

For each disease, we feed its positive trigger phrases
with word2vec [34] word embeddings to CNN. We
employed the 200 dimensional pre-trained word embed-
dings learned from MIMIC-III [35] clinical notes.
We experimented with 100, 200, 300, 400, 500 and
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Solt’s system Trigger phrases

Clinical notes

MetaMap
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Fig. 1 The test phase of our method
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Intuitive task

600 dimensional word embeddings, and found using
200 dimensional word embeddings achieves the best
performance.

We also utilize medical knowledge base to enrich the
CNN model input. We link the full clinical text to CUIs in
UMLS [9] via MetaMap [36]. Each clinical record is rep-
resented as a bag of CUIs after entity linking. We feed
13 types of CUIs which are closely connected to dis-
eases as the input entities of CNN: Body Part, Organ,
or Organ Component (T023), Finding (T033), Labora-
tory or Test Result (T034), Disease or Syndrome (T047),
Mental or Behavioral Dysfunction (T048), Cell or Molec-
ular Dysfunction (T049), Laboratory Procedure (T059),
Diagnostic Procedure (T060), Therapeutic or Preven-
tive Procedure (T061), Pharmacologic Substance (T121),
Biomedical or Dental Material (T122), Biologically Active
Substance (T123) and Sign or Symptom (T184). We list
these CUIs types with type unique identifier (TUI) in
Table 2. We found using the subset of CUIs achieves
better performances than using all CUIs. We employ pre-
trained CUIs embeddings made by [37] as the input entity
representations of CNN.

Our CNN architecture is given in Fig. 2. The input layer
looks up word embeddings of positive trigger phrases and
entity embeddings of selected CUIs in each clinical record.
Wo, W1, Wa, ..., W, are words in positive trigger phrases
and eg, e1,€3,...,e, are CUIs in a record. A one dimen-
sional convolution layer is built on the word embeddings
and entity embeddings. We use max pooling to select the
most prominent feature with the highest value in the con-
volutional feature map, then concatenate the max pooling
results of word embeddings and entity embeddings. The
concatenated hidden representations are fed into a fully-
connected layer, then a dropout and a ReLU activation
layer. Lastly, a fully-connected layer is fed to a softmax
layer, whose output is the multinomial distribution over
labels.

We implement our knowledge-guided CNN model
using TensorFlow [38], a popular deep learning frame-
work. We set the following parameters for our CNN
model: the convolution kernel size: 5, the number of
convolution filters: 256, the dimension of hidden layer
in the fully connected layer: 128, dropout keep prob-
ability: 0.8, the number of learning epochs: 30, batch
size: 64, learning rate: 0.001. We also experimented with
other settings of the parameters but didn’t find much dif-
ference. We use softmax cross entropy loss and Adam
optimizer [39].

Results

Tables 3 and 4 show Macro F; scores and Micro F;
scores of our method and Solt’s system. We report results
of both the Solt’s paper [5] and the Perl implementa-
tion because we base our method on the Perl imple-
mentation and we found there are some differences
between the paper’s results and Perl implementation’s
results. This is likely due to further feature engineer-
ing that are not reflected when Solt et al. submitted
classification output to the challenge. For complete-
ness of the results, we show the performances from
both Solt’s paper and code. We also report the results
of our method when using only word embeddings as
CNN input.

From the two tables, we can note that the Perl imple-
mentation performs slightly better than the paper, the
authors might not submit their best results to the obesity
challenge. We can also see that CNN model with word
embeddings only performs better than the Per]l implemen-
tation in intuitive task, which means using a deep learning
model can learn effective features for better classification.
The input trigger phrases for CNN are the same as the
trigger phrases for Y/U (textual task) or Y/N (intuitive
task) labeling in the Perl code. The results in the tex-
tual task are not improved when using word embeddings
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Table 2 The types of CUls we used

TUI Semantic type description

T023 Body Part, Organ, or Organ Component
T033 Finding

T034 Laboratory or Test Result

1047 Disease or Syndrome

T048 Mental or Behavioral Dysfunction
T049 Cell or Molecular Dysfunctions

T059 Laboratory Procedure

T060 Diagnostic Procedure

TO61 Therapeutic or Preventive Procedure
T121 Pharmacologic Substance

T122 Biomedical or Dental Material

T123 Biologically Active Substance

T184 Sign or Symptom
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only, because the textual task needs explicit evidences to
label the records, and the positive trigger phrases contain
enough information, therefore CNN with word embed-
dings only may not be particularly helpful. Nevertheless,
after adding CUIs embeddings as additional input, more
scores for different diseases are improved, and the over-
all F; scores are higher than Solt’s system in the two tasks.
This is likely due to the fact that the disambiguated CUIs
are closely connected to diseases and their embeddings
have more semantic information, which is beneficial for
disease classification. To the best of our knowledge, we
have achieved the highest overall F; scores in intuitive task
so far.

Note that the F; scores of Solt’s paper and Perl imple-
mentation remain the same, while our model produces
slightly different F; scores in different runs. We run our
model 10 times and observed that the overall Macro F;
scores and Micro F; scores are significantly higher than
Solt’s paper and implementation (p value <0.05 based on

® - O
Fully connected layer
T and softmax output
T Dropout and RelLU
00 - 0 00
Fully connected layer
' Y B - . P . . .
Max pooling layer
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¢ ( ¢ o O |0
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Word embeddings I I I I I I I CUls embeddings
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Fig. 2 Our knowledge-guided convolutional neural network architecture
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Table 3 Macro F; scores and Micro £y scores of Solt's system [5] (paper) and our method with word and entity embeddings

Solt's paper [5] Our method with word & entity embeddings
Disease Textual Intuitive Textual Intuitive

Macro 4 Micro F; Macro F; Micro F; Macro Fq Micro F Macro F; Micro F
Asthma 0.9434 0.9921 0.9784 0.9894 0.9434 0.9921 0.9784 0.9894
CAD 0.8561 0.9256 06122 09192 0.8551 0.9235 0.6233 0.9345
CHF 0.7939 0.9355 0.6236 0.9315 0.7939 0.9355 0.6236 0.9315
Depression 0.9716 0.9842 0.9346 0.9539 09716 0.9842 0.9602 0.9727
DM 0.9032 0.9761 0.9682 0.9729 0.9056 0.9801 09731 0.9770
Gallstones 0.8141 0.9822 0.9729 0.9857 0.8141 0.9822 0.9689 0.9837
GERD 0.4880 0.9881 0.5768 09131 0.4880 0.9881 0.5768 09131
Gout 0.9733 0.9881 09771 0.9900 0.9733 0.9881 0.9771 0.9900
Hypercholesterolemia 0.7922 0.9721 0.9053 0.9072 0.7922 0.9721 0.9113 09118
Hypertension 0.8378 0.9621 0.8851 0.9283 0.8378 0.9621 0.9240 0.9484
Hypertriglyceridemia 0.9732 0.9980 0.7981 09712 0.9434 0.9961 0.7092 0.9630
OA 0.9594 0.9761 0.6286 0.9589 0.9626 0.9781 0.6307 0.9610
Obesity 04879 0.9675 0.9724 09732 0.4885 0.9696 0.9747 0.9754
OSA 0.8781 0.9920 0.8805 0.9939 0.8781 0.9920 0.8805 0.9939
PVD 0.9682 0.9862 0.6348 0.9763 0.9682 0.9862 0.6314 0.9742
Venous insufficiency 0.8403 0.9822 0.8083 0.9625 0.8816 0.9882 0.8083 0.9625
Overall 0.8000 0.9756 0.6745 0.9590 0.8016 0.9763 0.6768 0.9624

Scores in bold font means they are higher than the corresponding scores of the paper and Perl implementation

Table 4 Macro Fy scores and Micro Fy scores of Solt's system [5] (code) and our method with word embeddings only

Solt's code Our method with word embeddings only
Disease Textual Intuitive Textual Intuitive

Macro F4 Micro F Macro F Micro F Macro Fq Micro Fq Macro F4 Micro Fy
Asthma 0.9434 0.9921 0.9784 0.98%4 0.9434 0.9921 0.9784 0.98%4
CAD 0.8551 0.9235 0.6122 0.9192 0.8551 0.9235 0.6122 09192
CHF 0.7939 0.9355 0.6236 0.9315 0.7939 0.9355 0.6236 0.9315
Depression 09716 0.9842 0.9346 0.9539 09716 0.9842 0.9602 0.9767
DM 0.9056 0.9801 0.9731 0.9770 0.9056 0.9801 09731 0.9770
Gallstones 0.8141 0.9822 0.9729 0.9857 0.8141 0.9822 0.9729 0.9857
GERD 0.4880 0.9881 0.5768 09131 0.4880 0.9881 0.5768 0.9131
Gout 09733 0.9881 0.9771 0.9900 0.9733 0.9881 09771 0.9900
Hypercholesterolemia 0.7922 0.9721 0.9101 09118 0.7922 0.9721 0.9042 0.9049
Hypertension 0.8378 0.9621 0.8861 0.9283 0.8378 0.9621 0.9240 0.9484
Hypertriglyceridemia 09732 0.9980 0.7092 0.9630 09732 0.9980 0.7092 0.9630
OA 0.9626 0.9781 0.6307 0.9610 0.9626 0.9781 0.6307 0.9610
Obesity 0.4885 0.9696 0.9747 0.9754 0.4885 0.9696 0.9747 0.9754
OSA 0.8781 0.9920 0.8805 0.9939 0.8781 0.9920 0.8805 0.9939
PVD 0.9682 0.9862 0.6314 0.9742 0.9682 0.9862 0.6314 0.9742
Venous insufficiency 0.8403 0.9822 0.8083 0.9625 0.8403 0.9822 0.8083 0.9625
Overall 0.8014 0.9760 0.6745 0.9592 0.8014 0.9760 0.6760 0.9612

Scores in bold font means they are higher than the corresponding scores of the paper and Perl implementation
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student ¢ test). We checked the cases our method failed
to predict correctly. and found the most error cases are
caused by using Solt’s positive trigger phrases. For many
error cases, our method predicted N or U when no posi-
tive trigger phrases are identified, but the real labels are Y.
For some other cases, our method predicted Y when posi-
tive trigger phrases are identified, but the real labels are N
or U. For some diseases, our proposed method and Solt’s
system achieved a very high Micro F; but a low Macro Fj.
This is due to the fact that there are only a few Q or N
records for these diseases (i.e., imbalanced class ratio), and
we could not identify effective negative/uncertain trigger
phrases using Solt’s rules. The regular expressions in Solt’s
system can be further enriched so that we can identify
trigger phrases more accurately.

We also compared our method with two commonly
used classifiers: Logistic Regression and linear kernel sup-
port Vector Machine (SVM). We use LogisticRegression
and LinearSVC class in scikit-learn as our implementa-
tions. For fair comparison, we use the same training set
as knowledge-guided CNN. We represent a record as a
binary vector, each dimension means whether an unique
word is in its positive trigger phrases. For test exam-
ples, we also use Solt’s system to predict Q and N. If
a test example is not labeled Q or N by Solt’s system,
we use Logistic Regression or SVM to predict the label.
Table 5 shows the results, we can observe that the results
are similar to our method with word embeddings only,
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which means positive trigger phrases themselves are infor-
mative enough, while word embeddings could not help
to improve the performances. Nevertheless, we run our
model 10 times and observed that the overall Macro F;
scores and Micro F; scores are significantly higher than
SVM and Logistic Regression (p value <0.05 based on
student ¢ test), which verifies the effectiveness of CUIs
embeddings again.

Discussion

We note that the knowledge features part does not
improve much. In fact, we think MetaMap will indeed
introduce some noisy and unrelated CUIs, as previous
studies also showed. To remedy this, following Weng et al.
[40], we only kept CUIs from selected semantic types that
are considered most relevant to clinical tasks. We found
that filtering CUIs based on semantic types did lead to
moderate performance improvement over using all CUIs.
In another related computational phenotyping study [41],
we found that manually curated CUI set resulted in signif-
icant performance improvement. We believe that improv-
ing entity recognition and integrating word/entity sense
disambiguation will improve the performance, and plan to
explore such directions in future work.

Conclusion
In this work, we propose a novel clinical text classification
method which combines rule-based feature engineering

Table 5 Macro F; scores and Micro Fy scores of Logistic Regression and SVM

Logistic Regression SVM
Disease Textual Intuitive Textual Intuitive
Macro F Micro F Macro F Micro Fq Macro F4 Micro Fq Macro F4 Micro F

Asthma 0.9434 0.9921 0.9784 0.9894 0.9434 0.9921 09784 0.98%4
CAD 0.8551 0.9235 0.6204 0.9301 0.8551 0.9235 0.6122 09192
CHF 0.7939 0.9355 0.6236 0.9315 0.7939 0.9355 0.6236 09315
Depression 09716 0.9842 0.9573 0.9706 0.9716 0.9842 0.9573 0.9706
DM 0.9056 0.9801 0.9731 0.9770 0.9056 0.9801 0.9731 0.9770
Gallstones 0.8141 0.9822 0.9729 0.9857 0.8141 0.9822 0.9729 0.9857
GERD 0.4880 0.9881 0.5768 09131 0.4880 0.9881 0.5768 09131
Gout 09733 0.9881 0.9771 0.9900 09733 0.9881 09771 0.99
Hypercholesterolemia 0.7922 0.9721 0.9043 0.9049 0.7922 0.9721 09134 09142
Hypertension 0.8378 0.9621 0.9271 0.9507 0.8378 0.9621 0.9271 0.9507
Hypertriglyceridemia 0.9732 0.9980 0.7092 0.9630 0.9732 0.9980 0.7092 0.9630
OA 0.9626 0.9781 0.6307 0.961 0.9626 0.9781 0.6307 0.9610
Obesity 0.4885 0.9696 0.9747 0.9754 0.4885 0.9696 0.9747 0.9754
OSA 0.8781 0.992 0.8805 0.9939 0.8781 0.9920 0.8805 0.9939
PVD 0.9682 0.9862 06314 0.9742 0.9682 0.9862 06314 0.9742
Venous insufficiency 0.8403 0.9822 0.8083 0.9625 0.8403 0.9822 0.8083 0.9625
Overall 0.8014 0.9760 0.6764 0.9619 0.8014 0.9760 0.6764 0.9618

Classes with very few examples are labeled by Solt's system
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and knowledge-guided deep learning. Specifically, we use
rules to identify trigger phrases which contain diseases
names, their alternative names and negative or uncertain
words, then use these trigger phrases to predict classes
with very limited examples, and finally train a knowledge-
guided CNN model with word embeddings and UMLS
CUIs entity embeddings. The evaluation results on the
obesity challenge demonstrate that our method outper-
forms state-of-the-art methods for the challenge. We
showed that CNN model is powerful for learning effec-
tive hidden features, and CUIs embeddings are helpful for
building clinical text representations. This shows integrat-
ing domain knowledge into CNN models is promising.
In our future work, We plan to design more principled
methods and evaluate our methods on more clinical text
datasets.
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