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Abstract

Background: Survival endpoint is frequently used in early phase clinical trials as the primary endpoint to assess the
activity of a new treatment. Existing two-stage optimal designs with survival endpoint either over estimate the sample
size or compute power outside the alternative hypothesis space.
Methods: We propose a new single-arm two-stage optimal design with survival endpoint by using the one-sample
log rank test based on exact variance estimates. This proposed design with survival endpoint is analogous to Simon’s
two-stage design with binary endpoint, having restricted follow-up.
Results: We compare the proposed design with the existing two-stage designs, including the two-stage design with
survival endpoint based on the nonparametric Nelson-Aalen estimate, and Simon’s two-stage designs with or without
interim accrual. The new design always performs better than these competitors with regards to the expected total
study length, and requires a smaller expected sample size than Simon’s design with interim accrual.

Conclusions: The proposed two-stage minimax and optimal designs with survival endpoint are recommended for
use in practice to shorten the study length of clinical trials.

Keywords: Clinical trials, Exact variance, One-sample log-rank test, Restricted follow-up, Simon’s two-stage design

Background
A multiple-stage design is often preferable in early phase
clinical trials to investigate the activity of a new treatment.
Such design is able to protect patients better as compared
to the traditional one-stage design by allowing a trial to
be stopped earlier when the new treatment is indeed inef-
fective. For this reason, early stopping for futility is always
allowed in these trials. Among multiple-stage designs, a
two-stage design is widely used in phase II clinical trials
whose sample size is relatively smaller than that in the fol-
lowing phase III trial to confirm the effectiveness of the
new treatment(s).
When the outcome is binary (e.g., response VS

non-response), Simon’s two-stage minimax and optimal
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designs are widely used in practice [1–8]. When the
required number of patients in the first stage are enrolled,
a trial generally has to be suspended temporally to allow
these patients completing the treatment schedule. After
that, data analysis is performed to make the decision
whether a trial proceeds to the second stage or not, based
on the result from the first stage. This suspension dur-
ing the clinical trial could lead to a longer study time
as compared to the modified Simon’s two-stage design
with interim accrual [9]. Recently, adaptive version of
Simon’s two-stage design has been proposed to improve
the flexibility of trials [3, 4, 10–12]. In such trials, the sec-
ond stage sample size depends on the outcome from the
first stage.
In some other trials (e.g., cytostatic therapies), a sur-

vival endpoint is served as the primary outcome to mea-
sure the activity of a new treatment. Feldman et al. [13]
reviewed seven single-arm phase II trials for patients with
refractory germ cell tumors, and recommended a 12-week
progression-free survival as compared to the commonly
used response rate, to test the activity of novel agents. For
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such trials, a multiple-stage design with survival endpoint
would be appropriate for use in practice. Lin et al. [14]
proposed group sequential designs for a trial with survival
endpoint by deriving the asymptotic joint distribution of
the Nelson-Aalen estimates at different time points. Base
on Lin et al.’s work, Case andMorgan [9] developed a two-
stage optimal design evaluating survival probabilities with
restricted follow-up. They proposed two-stage optimal
designs with the smallest expected duration of accrual or
the smallest expected total study length. Later, Kwak and
Jung [15] proposed a new two-stage optimal design based
on the one-sample log-rank test without follow-up restric-
tion. Power of their proposed design was computed under
the average of the cumulative hazard function under the
null hypothesis and that under the alternative hypothe-
sis. In addition, the asymptotic variance estimate of the
one-sample log-rank test was used in type I error rate and
power calculation. Recently, Belin et al. [16] proposed a
two-stage design based on the design setting as in Kwak
and Jung [15], but having restricted follow-up as in Case
and Morgan [9].
For a trial with a survival endpoint as the primary out-

come, the survival probability at the clinically meaningful
follow-up time is often the parameter of interest, (e.g., the
survival probability at 1 year). We develop a new single-
arm two-stage optimal design by using the one-sample
log-rank test with exact mean and variance estimates
[17, 18]. A trial is allowed to be stopped in the first
stage due to futility to protect patients when the treat-
ment under investigation is indeed ineffective. Although
exact mean and variance estimates of the one-sample log-
rank test are used for sample size calculation, the joint
distribution of the test statistic for the first stage and
that for the two stages combined is assumed to asymp-
totically follow a bivariate normal distribution. For this
reason, the actual power of the identified study designmay
not be guaranteed [19]. We propose adjusting the nom-
inal power level in design search to guarantee that the
new designs meet the power requirement. The proposed
two-stage minimax and optimal designs with survival
endpoint are compared with the design by Belin et al. [16]
and Simon’s two-stage designs with or without interim
accrual.
The rest of this article is organized as follows. In

Section Methods, we present the type I error rate and
power calculation for a two-stage design with survival
endpoint by using the one-sample log-rank test, and pro-
vide a detailed search method for two-stage minimax and
optimal designs. In Section Results, we compare the per-
formance of the new proposed two-stage designs with
the existing Belin’s design with survival endpoint and
Simon’s two-stage design with binary endpoint. At the
end of that section, we revisit two trials to illustrate
the application of the proposed two-stage designs with

survival endpoint. Lastly, we provide some comments in
Section Discussion.

Methods
Suppose S(t) is the survival function of the survival time
T. In a single-arm study, the survival probability of a
new treatment at the clinically meaningful follow-up time
tc, S(tc), is compared to the estimated historical survival
probability, S0(tc). Then the hypotheses are presented as

H0 : S(tc) ≤ S0(tc) against H1 : S(tc) > S0(tc). (1)

In this article, the survival function S(t) is assumed to fol-
low the Weibull distribution with the shape parameter k
and the scale parameter λ, specifically,

S(t) = exp−(t/λ)k ,

where k > 0 and λ > 0. The widely used exponential
distribution is a special case of the Weibull distribution
when k = 1.
Under the Weibull distribution for survival outcome,

suppose the failure rate under the null hypothesis is the
same as that under the alternative hypothesis (the same
shape parameter k), but scale parameters are different
with λ0 and λ1 under the null hypothesis and the alterna-
tive hypothesis, respectively. Then, � = (λ0/λ1)k is the
hazard ratio (HR), which is always less than 1 under the
alternative. The hypotheses in Eq. (1) can be specifically
rewritten as

H0 : � ≥ 1 against H1 : � < 1. (2)

When a new study is assumed to have a different fail-
ure rate as historical data, the HR is then calculated as
� = λ

k0
0

λ
k1
1

× k1tk1−1

k0tk0−1 , where k0 and k1 are the shape parameter

under the null hypothesis and that under the alternative
hypothesis, respectively.

Simon’s two-stage designs with binary endpoint
In Simon’s two-stage optimal designs, a trial is allowed
to be stopped in the first stage when the number of
responses is insufficient. Suppose X1 and X are the num-
ber of responses out of n1 and n participants from the
first stage and the two stages combined, respectively. The
sample size in the second stage is n2 = n − n1. The
null hypothesis is rejected when X1 > r1 and X >

r, where r1 and r are the critical values for the num-
ber of responses from the first stage and both stages,
respectively.
In a pancreatic cancer trial with a combination of Gem-

citabine and external beam radiation as the new treatment
[9], the clinically meaningful follow-time is 1 year, tc = 1.
The unacceptable one-year survival rate is S0(1) = 35%,
and the new treatment is considered as promising for fur-
ther investigation when S1(1) = 50% or more. To attain
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90% power of the study at the significance level of 10%,
Simon’s two-stage minimax design [1] is calculated as:

(n1, r1, n, r) = (43, 14, 72, 30),

with the expected sample size under the null hypothesis
ESS0 = n1+ (1−PET)n2 = 59.3, where PET is the proba-
bility of early termination under the null hypothesis which
is defined as PET = p(X1 ≤ r1|S0(1) = 35%) = 43.65%.
Suppose this is a 3 year study with the patient accrual rate
of θ = 24 patients per year. Then the enrollment time for
the first stage and the second stage is calculated t1 = n1/θ
and t2 = n2/θ , respectively. The expected total study
length (ETSL) under the null hypothesis is calculated as

ETSL0 = (t1 + tc) + (1 − PET)(t2 + tc) = 4.0 years

The two-stage optimal design needs ESS0 = 53.2 and
ETSL0 = 3.6 years (see Table 1). The maximum possible
sample size for Simon’s optimal design n = 81 is much
larger than n = 72 for Simon’s minimax design.
When Simon’s two-stage design allows interim accrual

at the end of the first stage, the expected sample size under
the null hypothesis is calculated as

ESS0 = n1 + θ tc + (1 − PET)(n2 − θ tc),

and the expected total study length under the null
hypothesis is

ETSL0 = (t1 + tc) + (1 − PET) [(t2 − tc) + tc]
= (t1 + tc) + (1 − PET)t2

The results of Simon’s two-stage designs with interim
accrual are presented in Table 1. As compared to the tra-
ditional Simon’s two-stage design without interim accrual,
the modified design with interim accrual requires a
shorter ETSL0 but a larger ESS0.

Two-stage optimal designs with survival endpoint when
the follow-up time is limited
In a two-stage design with sample sizes of n1 in the first
stage and n2 in the second stage, the maximum possible
sample size in the study is n = n1 + n2. Given the patient
accrual rate of θ , the accrual time for the first stage is t1 =
n1/θ . When the trial goes to the second stage, the total
accrual time of the study is ta = n/θ , and the total study
time for all patients to complete the study is t = ta + tc.

We assume that patients are uniformly enrolled in the
study, with the entering times of τ1, τ2, · · · , τn. They have
the survival times of T1,T2, · · · ,Tn and the censoring
times of C1,C2, · · · ,Cn. At the end of the first stage t1, the
observed time for the i-th patient is the smallest of the fol-
lowing three measurements: (1) event time; (2) censoring
time; and (3) time that this patient is followed so far in the
study, specifically,

Oi = min(Ti,Ci, max(0, t1 − τi)).

By using the observed time and the censoring information
of the first n1 patients, the one-sample log-rank test can
be calculated as

Z1 = W1
σ̂1

,

whereW1 is a function of the difference between observed
number of events and the expected number of events,
and σ̂1 is its standard deviation estimate. Please find the
detailed formula of Z1 under the null hypothesis and the
alternative hypothesis in Appendix.
The null hypothesis is rejected when a small test statistic

is observed. Suppose the critical value for Z1 is c1. When
the calculated Z1 is larger than or equal to c1, the trial
is stopped for futility and no further investigation is war-
ranted. Otherwise, the trial goes to the second stage with
additional n2 = n − n1 patients treated by the new treat-
ment. At the end of study when all n patients complete the
study, the one-sample log-rank test is calculated as

Z = W
σ̂
.

It can be seen that Z1 and Z are not independent from
each other since the data of the first n1 patients is used in
both Z1 and Z. The type I error (TIE) rate of the study is
calculated as

TIE = P(Z1 ≤ c1,Z ≤ c|H0),

where c is the critical value for Z.
Following Kwak and Jung [15], the joint distribution of

(Z1,Z) is a bivariate normal distribution asymptotically.
Then, the TIE can be specifically written as

Table 1 The resectable pancreatic cancer clinical trial with S0(tc = 1) = 35%, and S1(tc = 1) = 50% to attain 90% power at the
significance level of 10%

Survival endpoint Simon’s design, interim accrual

The proposed method Belin No Yes

n1 n c1 c ESS0 ETSL0 ESS0 n ESS0 ETSL0 n ESS0 ETSL0

Minimax 44 73 0.240 -1.281 61.3 3.1 59.3 4.0 72 69.8 3.5

Optimal 41 79 -0.085 -1.279 58.7 2.9 59.1 69 53.2 3.6 81 67.4 3.2

The survival function follows an exponential distribution
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TIE =
∫ c

−∞
φ(t)�

⎛
⎜⎝ c1 − ρ0t√

1 − ρ2
0

⎞
⎟⎠ dt, (3)

where φ and � are the probability density function and
the cumulative distribution function of the standard nor-
mal distribution, and ρ0 is the correlation coefficient
estimate between Z1 and Z under the null hypothesis,
see Appendix for the detailed formula for ρ0. The actual
power of the study can be computed similarly with ρ0
being replaced by the ρ estimate under the alternative
hypothesis.

Optimal design search
Similar to the search for Simon’s two-stage design, the
two-stage optimal design with survival endpoint has to
be searched over all the possible sample sizes (n1 and n)
and critical values (c1 and c), given the design parameters
(α,β , tc, S0(tc), S1(tc), θ).
Although the exact variances of Z1 and Z are available

for use in sample size determination, the exact joint dis-
tribution of Z1 and Z is not that straightforward. For this
reason, we utilize the limiting distribution of (Z1,Z) in
searching for the two-stage optimal design for a study with
the design parameters (α,β , tc, S0(tc), S1(tc), θ), then use a
simulation study to calculate the actual TIE and power of
the optimal design. The following three steps are used to
search for the two-stage minimax and optimal designs.
Step 1: Given the total sample size n, the range of the

first stage sample size n1 is from 1 to n − 1. The critical
value c1 from -0.3 to 1.6 with an increment of 0.005 is used
in the design search. Similar to Kwak and Jung [15], the
range of c1 is chosen based on the simulation studies for
all the configurations studied in this article. The range of
c1 is modifiable in the software program for design search.
For each combination of n1 and c1, the critical value

c can be determined as the largest c value such that
TIE(c) ≤ α from Eq. (3). Power of the study is then com-
puted by using Eq. (4) in Appendix. If power is above

the nominal level, this set of sample sizes and critical val-
ues, (n1, c1, n, c), is saved as a candidate for the optimal
two-stage design. Among all the sets satisfying the power
requirement, the one with the smallest ESS0 is the optimal
two-stage design when the total sample size is n, and it
is denoted as B(n) = (n1, c1, n, c) whose expected sample
size is ESS0(n).
Step 2: The design search starts with a relatively small

n (e.g., 5) with an increment of 1, and B(n) could be a
empty set when n is small. The two-stage minimax design
is the one with the smallest n, nminimax such that B(n) is
not empty. The optimal two-stage design is the one with
the smallest ESS0. The search may be stopped at nu when
its ESS0(nu) is 10% more than the smallest ESS0 from
the identified optimal designs with n from nminimax to nu:
ESS0(nu) ≥ 110% × min{ESS0(n) : nminimax ≤ n ≤ nu}.
Step 3: Once the minimax and optimal two-stage

designs are identified from Step 1 and Step 2, we use a sim-
ulation study to calculate the actual TIE and power based
on 100,000 simulations. We find that the actual TIE of
the optimal design B(n) = (n1, c1, n, c) is always guaran-
teed, while power may not be preserved in some cases. If
the simulated power of the two designs meet the nominal
levels, they are the final two-stage minimax and optimal
designs. Otherwise, we search for the designs again with
the power nominal level being increased by 1%, (α,β−1%)
in Step 1 and Step 2 again. This process is stopped when
both minimax and optimal two-stage designs meet the
power requirement.

Results
We first compare the proposed two-stage minimax and
optimal designs with survival endpoint when the follow-
up time is restricted, with the designs developed by Belin
et al. [16] (referred to as Belin’s design). They developed a
two-stage optimal design as a modification of the design
by Kwak and Jung [15] by adding restricted follow-up in
the study design [9]. In Belin’s design, power of the study
is computed at the average of the cumulative hazard func-
tions under the null and the alternative, that is less than

Table 2 Comparison between the proposed two-stage minimax and optimal designs with survival endpoint and Belin’s two-stage
optimal design with survival endpoint, when the follow-up time is restricted to the clinically meaningful follow-up time tc = 1 year

Minimax design Optimal design Belin

Power θ n1 n c1 c ESS0 n1 n c1 c ESS0 n ESS0

90% 15 28 52 -0.10 -1.64 39.1 26 56 -0.30 -1.64 37.5 53 42.3

95% 15 36 65 -0.09 -1.64 49.5 33 70 -0.29 -1.64 47.3 65 52.6

90% 30 30 52 0.30 -1.64 43.6 30 55 -0.04 -1.64 42.2 53 44.6

95% 30 40 65 0.19 -1.64 54.3 40 69 -0.20 -1.64 52.2 65 54.8

90% 50 34 52 0.51 -1.64 46.5 32 54 0.32 -1.63 45.7 52 47.0

95% 50 44 65 0.46 -1.64 58.2 42 68 0.17 -1.64 56.7 64 57.5

The null survival probability at 1 year is S0(tc) = 50%, and the hazard ratio is 2. Patient accrual rate θ is set as 15, 30, or 50 per year
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Table 3 Simulated TIE and power of the proposed two-stage minimax and optimal designs in Table 2

Minimax design Optimal design

Power θ TIE Power TIE Power

90% 15 0.040 (0.036,0.044) 0.907 (0.901,0.913) 0.037 (0.033,0.041) 0.903 (0.898,0.909)

95% 15 0.041 (0.037,0.045) 0.957 (0.953,0.961) 0.038 (0.035,0.042) 0.955 (0.951,0.959)

90% 30 0.040 (0.037,0.044) 0.911 (0.905,0.916) 0.039 (0.035,0.043) 0.910 (0.904,0.916)

95% 30 0.042 (0.038,0.046) 0.959 (0.955,0.963) 0.040 (0.036,0.044) 0.958 (0.954,0.962)

90% 50 0.041 (0.037,0.045) 0.911 (0.905,0.916) 0.040 (0.037,0.044) 0.909 (0.903,0.914)

95% 50 0.042 (0.038,0.046) 0.960 (0.956,0.963) 0.041 (0.037,0.045) 0.959 (0.955,0.963)

The 95% confidence intervals for the parameters of interest are computed using 1000 simulations where 10,000 designs are simulated in each simulation

the cumulative hazard functions under the alternative at
which value the actual power should be computed. This
leads to an decreased effect size in sample size calculation;
thus, the computed sample size may be over-estimated.
As a result of the over-estimated sample size, the actual
power is often above the nominal level.
Table 2 shows the comparison between the proposed

designs with Belin’s design, when the survival distribution
follows an exponential distribution. Belin et al. [16] inves-
tigated the performance of two-stage optimal designs with
restricted follow-up under exponential distributions only
(the shape parameter k = 1 in the Weibull distribution).
The clinically meaningful follow-up time tc is assumed to
be 1 year. Under the null hypothesis, the survival rate at
tc = 1 is S0(tc) = 50% (λ0 = 1.44) as studied in Table 2.
The hazard ratio is assumed to be 0.5, which is � =
λ0/λ1 = 0.5. Then the scale parameter under the alterna-
tive is λ1 = 2.88. The nominal power level is set as either
90% or 95%. The accrual rate θ is 15, 30, or 50. The ESS0
of the proposed minimax or optimal designs is often less
than that of the Belin’s design, that may be due to the fact

that power of Belin’s design is computed outside the alter-
native hypothesis space. The simulated TIE and power of
the developed two-stage minimax and optimal designs are
shown in Table 3. In Table 3, we also report the 95% con-
fidence interval for the TIE and power based on 1,000
simulated TIE and power values, where each simulated
TIE and power are computed using 10,000 simulations.
It can be seen that the proposed designs control for TIE
and power.
We further compare the proposed two-stage minimax

and optimal designs with survival endpoint, with Simon’s
two-stage designs with or without interim accrual for a
trial with binary endpoint, see Table 4 when the sur-
vival distribution follows the Weibull distribution with
a common shape parameter of k = 0.5. The signifi-
cance level is set as 5%, and the nominal power level
is 80%. The null survival probability at the clinically
meaningful follow-up time tc = 1, S0(tc) = 10% and
60% are studied in Table 4. We consider a medium to
large effect size as S1(tc) − S0(tc) = 10%, 15%, and
20%. For each configuration of S0(tc) and S1(tc), the

Table 4 Comparison between the proposed two-stage minimax design with survival endpoint and Simon’s two-stage minimax
design with binary endpoint with or without interim accrual, when α = 5%, β = 20%, and the shape parameter k = 0.5 in the Weibull
distribution

Simon’s two-stage minimax designs

Survival endpoint No interim accrual Interim accrual

S0(tc) S1(tc) n1 n ESS0 ETSL0 n1 n ESS0(%) ETSL0(%) ESS0(%) ETSL0(%)

0.1 0.2 37 63 50.5 2.5 45 78 60.6 (17%) 3.8 (35%) 74.3 (32%) 3.3 (26%)

0.1 0.25 19 33 26.2 2.5 22 40 28.8 (9%) 3.5 (30%) 37.5 (30%) 3.1 (21%)

0.1 0.3 11 21 15.6 2.3 15 25 19.5 (20%) 3.8 (39%) 24.5 (36%) 3.3 (30%)

0.6 0.7 87 162 126.6 3.2 139 142 139.2 (9%) 4.0 (20%) 184.5 (31%) 3.9 (19%)

0.6 0.75 33 70 49.4 2.8 30 62 43.8 (-13%) 3.6 (20%) 55.7 (11%) 3.1 (9%)

0.6 0.8 17 39 26.0 2.6 13 35 20.8 (-25%) 3.1 (16%) 28.5 (9%) 2.8 (5%)

% is for the ESS0 or the ETSL0 percentage saving of the new proposed two-stage design as compared to Simon’s two-stage design, which is computed as
(Simon-New)/Simon. When the percentage saving is positive, the new design requires a smaller ESS0 or a shorter ETSL0 as compared to the existing Simon’s design
The patient accrual rate θ is determined by the sample size from Simon’s minimax design with no interim accrual as θ = nminimax/3
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scale parameters λ0 and λ1 in the Weibull distribution
can be calculated, the ESS0 and ETSL0 of the proposed
minimax design and Simon’s minimax design are com-
puted. Patient accrual rate θ is calculated by assuming
it is a 3 year study when Simon’s two-stage minimax
design is used. In the table, percentage (%) is for the
ESS0 or the ETSL0 percentage saving of the proposed
two-stage design with survival endpoint as compared to
Simon’s two-stage design, which is computed as (Simon-
New)/Simon. When the percentage saving is positive, the
new design requires a smaller ESS0 or a shorter ETSL0 as
compared to the existing Simon’s design. When the null
survival probability S0(tc) is low, say 10%, the proposed
two-stage design with survival endpoint saves sample size
as compared to Simon’s two-stage minimax design. This
trend is reversed when S0(tc) = 60%. In Table 4, we
also present the results of Simon’s two-stage minimax
design with interim accrual. It can be seen that the new
design always requires a smaller ESS0 than Simon’s design
with interim accrual. The new design always saves the
ETSL0 as compared to Simon’s design with or without
interim accrual. The saving becomes smaller as the null
survival probability goes up from 10% to 60%. Similar
results are observed in Table 5 for the two-stage optimal
designs.
We further compare the new two-stage minimax design

with Simon’s two-stage minimax design with the shape
parameter k from 0.25 to 2 in Fig. 1 for a trial to attain
90% power at the significance level of 5%. When S0(tc)
is low, the new design needs a smaller expected sam-
ple size than Simon’s minimax design, and this trend is
reversed when S0(tc) is high, e.g., 40%, and 75%. The
saving of the new design often decreases as k goes
up. The new design always requires a shorter expected
total study length than Simon’s minimax design. Similar

results are observed in Fig. 2 where the new two-
stage optimal design is compared with Simon’s optimal
design. We also compare the new design with Simon’s
two-stage minimax and optimal designs with interim
accrual in Fig. 3 and Fig. 4, respectively. The results indi-
cate that the new design performs better than Simon’s
design with interim accrual with regards to both ESS0
and ETSL0.

Examples
We revisit the cancer trial discussed by Case and Morgan
[9] in “Simon’s two-stage designs with binary endpoint”
subsection to investigate the effectiveness of a combi-
nation of Gemcitabine and external beam radiation for
patients with resectable pancreatic cancer. The clinically
meaningful follow-up time is assumed to be 1 year, tc = 1.
The survival probability under the null and the alterna-
tive are S0(1) = 35%, and S1(1) = 50%, respectively.
The survival function follows an exponential distribu-
tion. This trial is designed to attain 90% power at the
significance level of 10%. We compute the detailed two-
stage designs with survival endpoint, including sample
sizes and critical values for each stage in Table 1. The
ESS0 of the new design is slightly larger than that of
Simon’s design, but much smaller than that of Simon’s
design with interim accrual. The ETSL0 of the new design
is always shorter than that of Simon’s designs with or
without interim accrual, and the study time saving is
substantial.
We also consider a second clinical trial evaluating the

activity of a combination of irinotecan and cisplatin for
patients with refractory or recurrent non-small cell lung
cancer [20]. The response rates are 10% and 25% under
the null and the alternative hypotheses. Suppose the clin-
ically meaningful follow-up time is 1 year. For Simon’s

Table 5 Comparison between the proposed two-stage optimal design with survival endpoint and Simon’s two-stage optimal design
with binary endpoint with or without interim accrual, when α = 5%, β = 20%, and the shape parameter k = 0.5 in the Weibull
distribution

Simon’s two-stage optimal designs

Survival endpoint No interim accrual Interim accrual

S0(tc) S1(tc) n1 n ESS0 ETSL0 n1 n ESS0(%) ETSL0(%) ESS0(%) ETSL0(%)

0.1 0.2 26 72 45.1 2.2 30 89 50.8 (11%) 3.3 (35%) 67.6 (33%) 3.0 (27%)

0.1 0.25 15 37 24.0 2.2 18 43 24.7 (3%) 3.1 (29%) 34.9 (31%) 2.8 (22%)

0.1 0.3 10 23 15.0 2.2 10 29 15.0 (0%) 3.1 (29%) 21.6 (30%) 2.8 (21%)

0.6 0.7 66 179 109.2 2.7 53 173 91.4 (-20%) 3.3 (18%) 124.0 (12%) 2.9 (9%)

0.6 0.75 27 76 46.1 2.6 27 67 39.4 (-17%) 3.2 (18%) 53.9 (14%) 2.9 (10%)

0.6 0.8 15 41 25.1 2.5 11 43 20.5 (-23%) 3.1 (17%) 28.9 (13%) 2.8 (7%)

% is for the ESS0 or the ETSL0 percentage saving of the new proposed two-stage design as compared to Simon’s two-stage design, which is computed as
(Simon-New)/Simon. When the percentage saving is positive, the new design requires a smaller ESS0 or a shorter ETSL0 as compared to the existing Simon’s design
The patient accrual rate θ is determined by the sample size from Simon’s minimax design with no interim accrual as θ = nminimax/3
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Fig. 1 The ESS or ETSL saving of the proposed two-stage minimax design with survival endpoint as compared to Simon’s two-stage minimax
design with binary endpoint when α = 5% and β = 10%

two-stage optimal design when α = 5% and β = 20%, the
maximum possible sample size is n = 43 and the expected
sample size under the null hypothesis is ESS0 = 24.7, see
Table 5 for the case with S0(tc) = 10% and S1(tc) = 25%.
The proposed new two-stage optimal design with survival
endpoint needs a slightly smaller ESS0 as 24.0, and can

save the expected total study length by almost 1 year (2.2
VS 3.1 from Simon’s design). A 95% two-sided confidence
interval of the response rate was reported in the original
research article by Takiguchi et al. [20]. The hypothesis is
one sided in both Simon’s design and the proposed design.
Therefore, a 90% two-sided confidence interval for the
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Fig. 2 The ESS or ETSL saving of the proposed two-stage optimal design with survival endpoint as compared to Simon’s two-stage optimal design
with binary endpoint when α = 5% and β = 10%

response rate or the survival rate should be reported when
α = 5%.

Discussion
In the design search process, we search for the minimax
and optimal designs when both designs have power above

the nominal level. In practice, when one type of design is
of interest (e.g., the two-stage minimax design), we would
suggest searching for the design such that power of this
particular type design is above the nominal level. The
written R program computes the designs to have both the
minimax design and the optimal design meet the nominal
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Fig. 3 The ESS or ETSL saving of the proposed two-stage minimax design with survival endpoint as compared to Simon’s two-stage minimax
design with interim accrual with binary endpoint when α = 5% and β = 10%

power level, which is available upon request from the first
author.

Conclusions
The commonly used Simon’s two-stage design has to
suspend the enrollment temporally after n1 patients
enrolled in the first stage [5, 11, 21–28]. The research

team has to wait a while (tc) until all n1 patients com-
plete the study. The calculated test statistic from the
first stage is then compared to the pre-determined crit-
ical value to make a go or no-go decision to the sec-
ond stage. Meanwhile, the proposed two-stage designs
with survival endpoint do not have to suspend the trial,
thus the comparison between the proposed design with
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Fig. 4 The ESS or ETSL saving of the proposed two-stage optimal design with survival endpoint as compared to Simon’s two-stage optimal design
with interim accrual with binary endpoint when α = 5% and β = 10%

Simon’s two-stage design with no interim accrual is not
very appropriate. Due to the popularity of Simon’s two-
stage design, we include this design as reference. Simon’s
two-stage design with interim accrual is a reasonable com-
petitor for the proposed two-stage design with survival
endpoint.

Appendix
Test statistics of Z1 and Z
At the end of the first stage t1, the observed time for the
i-th patient is Oi = min(Ti,Ci, max(0, t1 − τi)), where
Ci = tc with restricted follow-up, and i = 1, 2, · · · , n1.
Let Ni(t) = I(Ti ≤ min(Ci, max(0, t − τi)))I(Ti ≤ t) and



Shan and Zhang BMCMedical ResearchMethodology           (2019) 19:74 Page 11 of 12

Yi(t) = I(Ti ≥ t,Ti ≥ tc) be the event process and the at-
risk process, respectively. The one-sample log-rank test at
the end of the first stage is expressed as:

Z1 = O − E√
E

,

where O = ∑n
i=1

∫ ∞
0 dNi(t) are E =∑n

i=1
∫ ∞
0 Yi(t)d�0(t) are the observed number of events

and the expected number of events, respectively. The
one-sample log-rank test can be alternatively written as

Z1 = W1
σ̂1

,

where W1 = (O − E)/
√
n and σ̂ = E/n, and σ̂ 2

1 is the
variance estimate of W1. The one-sample log-rank test
Z at the end fo the study can be derived similarly by
replacing Ni(t) with Ni(t) = I(Ti ≤ Ci)I(Ti ≤ t).

Mean and variance estimates ofW1 andW under
the null hypothesis
The mean of W1 or W under the null hypothesis is 0.
The clinically meaningful follow-up time tc is the upper
bound follow-up time for each patient, then the censoring
distribution is G(t) = I(t ≤ tc). The censoring distribu-
tion for the first stage is G1(t) = U(0, t1)I(t ≤ tc) due to a
possible short follow-up time at the data analysis time t1.
Then, the variances ofW1 andW are estimated as

σ 2
01 = Var(W1) = −

∫ tc

0
G1(t)dS0(t) and

σ 2
02 = Var(W ) = −

∫ tc

0
G(t)dS0(t).

It follows that the correlation between W1 and W under
H0 is ρ0 = σ01/σ02. The TIE in Eq. (3) can then be com-
puted after the correlation coefficient ρ0 being estimated.

Mean and variance estimates ofW1 andW under
the alternative hypothesis
Under the alternative hypothesis, the mean values of W1
andW are

E(W1) = √
n1ω1 and E(W ) = √

nω

where ω = p1 − p0, p1 = ∫ tc
0 G(t)S1(t)d�1(t),

p0 = ∫ tc
0 G(t)S1(t)d�0(t), and ω1 = p1f − p0f ,

p1f = ∫ tc
0 G1(t)S1(t)d�1(t), p0f = ∫ tc

0 G1(t)S1(t)d�0(t).
Recently, Wu [17] derived the exact variance of W under
the alternative hypothesis as

σ 2
12 = Var(W ) = p1 − p21 − p20 + 2p0p1 + 2p00 − 2p01,

where p00 = ∫ tc
0 G(t)S1(t)�0(t)d�0(t) and p01 =∫ tc

0 G(t)S1(t)�0(t)d�1(t). The exact variance of W1,
σ 2
11 = Var(W1), can be derived similarly. It follows that

the correlation between W1 and W under H1 is ρ1 =
σ11/σ12, and power of a two-stage design is

Power =
∫ c̃

−∞
φ(t)�

⎛
⎜⎝ c̃1 − ρ1t√

1 − ρ2
1

⎞
⎟⎠ dt, (4)

where c̃1 = σ01
σ11

(
c1 − ω1

√n1
σ01

)
, and c̃ = σ02

σ12

(
c − ω2

√n2
σ02

)
.
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