
Advances in Data Analysis and Classification (2019) 13:33–64
https://doi.org/10.1007/s11634-018-0329-y

REGULAR ART ICLE

From here to infinity: sparse finite versus Dirichlet process
mixtures in model-based clustering

Sylvia Frühwirth-Schnatter1 · Gertraud Malsiner-Walli1

Received: 14 April 2017 / Revised: 23 May 2018 / Accepted: 5 July 2018 / Published online: 24 August 2018
© The Author(s) 2018

Abstract
In model-based clustering mixture models are used to group data points into clusters.
A useful concept introduced for Gaussian mixtures by Malsiner Walli et al. (Stat
Comput 26:303–324, 2016) are sparse finite mixtures, where the prior distribution
on the weight distribution of a mixture with K components is chosen in such a way
that a priori the number of clusters in the data is random and is allowed to be smaller
than K with high probability. The number of clusters is then inferred a posteriori
from the data. The present paper makes the following contributions in the context of
sparse finite mixture modelling. First, it is illustrated that the concept of sparse finite
mixture is very generic and easily extended to cluster various types of non-Gaussian
data, in particular discrete data and continuous multivariate data arising from non-
Gaussian clusters. Second, sparse finite mixtures are compared to Dirichlet process
mixtures with respect to their ability to identify the number of clusters. For both model
classes, a random hyper prior is considered for the parameters determining the weight
distribution. By suitable matching of these priors, it is shown that the choice of this
hyper prior is far more influential on the cluster solution than whether a sparse finite
mixture or a Dirichlet process mixture is taken into consideration.
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34 S. Frühwirth-Schnatter, G. Malsiner-Walli

1 Introduction

In the present paper, interest lies in the use of mixture models to cluster data points
into groups of similar objects; see Frühwirth-Schnatter et al. (2018) for a review of
mixture analysis. Following the pioneering papers of Banfield and Raftery (1993) and
Bensmail et al. (1997), model-based clustering using finite mixture models has found
numerous applications, see Grün (2018) for a comprehensive review.

For finite mixtures, the number K of components is an unknown, but fixed quantity
and the need to specifiy K in advance is considered one of the major drawbacks of
applying finite mixture models in a clustering context. Many methods have been sug-
gested to estimate K from the data such as BIC (Keribin 2000), marginal likelihoods
(Frühwirth-Schnatter 2004), or the integrated classification likelihood (Biernacki et al.
2000), but typically these methods require to fit several finite mixture models with
increasing K . Alternatively, one-sweep methods such as reversible jump MCMC
(Richardson and Green 1997; Dellaportas and Papageorgiou 2006) have been sug-
gested, but are challenging to implement.

As an alternative to finite mixtures, Dirichlet process mixtures (Ferguson 1983;
Escobar andWest 1995) were applied in a clustering context by Quintana and Iglesias
(2003) and Medvedovic et al. (2004), among many others. Using a Dirichlet process
prior (Ferguson 1973, 1974) for the parameters generating the data points, Dirich-
let process mixtures allow infinite components by construction. Posterior inference
focuses on the partitions and clusters induced by the Dirichlet process prior on the
data points. The number of non-empty clusters is random by construction and can be
inferred from the data using easily implementedMarkov chain Monte Carlo samplers,
see e.g. Müller and Mitra (2013).

Recently, the concept of sparse finite mixtures has been introduced within the
framework of Bayesian model-based clustering (Malsiner Walli et al. 2016, 2017) as
a bridge between standard finite mixture and Dirichlet process mixture models. Based
on theoretical results derived by Rousseau and Mengersen (2011), the sparse finite
mixture approach relies on specifying a sparse symmetric Dirichlet prior DK (e0) on
theweight distribution of an overfitting finitemixture distribution,where the number of
components is larger than the number of clusters in the data. By choosing small values
for the hyperpararmeter e0, the sparse Dirichlet prior is designed to favour weights
close to zero. Malsiner Walli et al. (2017) investigate the partitions induced by such
a sparse finite mixture model and show that the corresponding number of clusters
created in the data is not fixed a priori. Rather, as for Dirichlet process mixtures, it
is random by construction and can be inferred from the data using common Markov
chain Monte Carlo methods.

The present paper makes two contributions in the context of sparse finite mixture
modelling. As a first contribution, it is illustrated that the concept of sparse finite
mixtures, which was originally developed and investigated in the framework of Gaus-
sian mixtures, is very generic and can be easily extended to cluster a broad range of
non-Gaussian data, in particular discrete data and continuous multivariate data aris-
ing from non-Gaussian clusters, see also Malsiner-Walli et al. (2018). As mentioned
above, an advantage of sparse finite mixtures is that model selection with respect to the
number of clusters is possible within one-sweep samplers without the need to design

123



From here to infinity: sparse finite versus Dirichlet… 35

sophisticated proposals within trans-dimensional approaches such as reversible jump
MCMC. Performing model selection without computer-intensive methods is of par-
ticular interest for mixtures of non-Gaussian components where the calculation of the
marginal likelihood can be cumbersome and almost impossible for large K . A wide
range of applications, including sparse Poisson mixtures, sparse mixtures of gener-
alised linear models for count data, and sparse latent class models for multivariate
categorical data, demonstrate that sparse finite mixtures provide a useful method for
selecting the number of clusters for such data.

A second aim of the paper is to compare sparse finite mixtures to Dirichlet process
mixtures with respect to their ability to identify the number of clusters. As shown by
Green and Richardson (2001), a K component finite mixture model with symmetric
Dirichlet prior DK (α/K ) on the weights approximates a Dirichlet process mixture
with concentration parameter α as K increases. For α given, this sequence of finite
mixtures increasingly becomes sparse, as e0 = α/K decreases with increasing K and
the Dirichlet process mixture can be seen as the limiting case of a sparse finite mixture
with K = ∞. Both for sparse finite mixtures and Dirichlet process mixtures, the num-
ber of non-empty clusters is random a priori and can be estimated from the data. Since
Dirichlet process mixtures can be inconsistent with respect to the number of com-
ponents (Miller and Harrison 2013), sparse finite mixtures appear to be an attractive
alternative which shares many interesting features with Dirichlet process mixtures.

Finite mixture and Dirichlet process mixture models are generally considered to
be quite different approaches. Irrespectively of this, the aim of the paper is not to
discuss pros and cons of the two model classes. Rather, it will be shown that both
model classes yield similar inference with respect to the number of clusters, once the
hyper prior for α is matched to hyper priors on e0 that induces sparsity. Comparisons
between sparse finite mixtures and Dirichlet process mixtures in applications based
on Poisson mixtures, mixtures of generalised linear models, and latent class models
illustrate that the choice of the hyper prior on e0 and α is far more influential on the
cluster solution than which of the two model classes is taken into consideration.

The rest of the paper is organized as follows. Section 2 summarizes the concept of
sparse finite mixtures and investigates their relationship to Dirichlet process mixtures.
Section 3 reviews various finite mixture models with non-Gaussian components. Sec-
tion 4 contains an extensive simulation study where the performance of sparse finite
mixtures and Dirichlet process mixtures in regard to model selection and clustering
behavior is investigated in detail for latent class models. In Sect. 5, the sparse finite
mixture approach is illustrated and compared to Dirichlet process mixtures through
case studies for each type of non-Gaussian mixture model discussed in Sect. 3. Sec-
tion 6 concludes with a final discussion of the sparsity prior of the weight distribution
in sparse finite mixtures.

2 From here to infinity

2.1 From finite mixture distributions to sparse finite mixturemodels

The starting point of model-based clustering is a finite mixture distribution defined as:
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36 S. Frühwirth-Schnatter, G. Malsiner-Walli

p(y|θ1, . . . , θK , η) =
K∑

k=1

ηk fT (y|θk), (1)

where the component densities fT (y|θk) arise from the same distribution family T (θ),
each with weight ηk , and

∑K
k=1 ηk = 1. Data y generated from such a mixture dis-

tribution can be univariate or multivariate, continuous, discrete-valued or mixed-type,
outcomes of a regression model, or even time series data; see Frühwirth-Schnatter
(2006) for a comprehensive review of finite mixture distributions.

Clustering arises in a natural way for an i.i.d. sample from the finite mixture distri-
bution (1), since each observation yi can be associated with the component, indexed
by Si , that generated this data point:

Si |η ∼ MulNom (1; η1, . . . , ηK ) ,

yi |Si ∼ T (θ Si ). (2)

If N i.i.d. data points y1, . . . , yN are drawn from the finite mixture distribution (1),
then the sequence S = (S1, . . . , SN ) is the collection of all component indicators that
were used to generate the data. Obviously, S defines a partition P of the data. Let Nk

be the number of observations generated by component k, k = 1, . . . , K . Then (2)
implies that:

N1, . . . , NK |η ∼ MulNom (N ; η1, . . . , ηK ) . (3)

Depending on the weight distribution η = (η1, . . . , ηK ) appearing in (1), multinomial
sampling according to (3) may lead to partitions with Nk = 0. In this case, fewer than
K mixture components were used to generate the N data points which contain K+
data clusters, i.e.

K+ = K −
K∑

k=1

I {Nk = 0}. (4)

It is important to realize that in model-based clustering interest lies foremost in esti-
mating the number of clusters in the data, rather than the number of components of the
mixture distribution (1). Hence, in model-based clustering based on finite mixtures, it
is extremely important to distinguish between the order K of the underlying mixture
distribution and the number of (non-empty) clusters K+ in the N data points. For finite
mixtures this difference between K and K+ is rarely addressed explicitly, exceptions
being Nobile (2004) and, more recently, Miller and Harrison (2018) and Malsiner
Walli et al. (2017).

If finite mixtures are used to cluster data with the number of clusters K+ being
unknown, then it makes sense to choose a prior on the weight distribution η =
(η1, . . . , ηK ) that allows a priori that K+ < K with high probability. This is the very
idea of the sparse finite mixture approach introduced by Malsiner Walli et al. (2016)
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Fig. 1 Prior distribution p(K+|e0, K ) of the number of data clusters K+ for N = 100 with K = 10
(top row) and K = 20 (bottom row) and e0 = 4 (left-hand side), e0 = 0.05 (middle), and e0 = 0.005
(right-hand side)

for mixtures of univariate and multivariate Gaussian distributions. Sparse finite mix-
ture models make a clear distinction between K , the order of the mixture distribution,
and K+, the number of clusters in the data.

The sparse finite mixture approach pursues the following idea: if we choose a mix-
ture model that is overfitting, then K+ < K clusters will be present in the data. Then,
as an intrinsically Bayesian approach, for a given value of K a prior distribution on K+
is imposed which allows K+ to be a random variable a priori, taking values smaller
than K with high probability. This is achieved in an indirect way through choosing
an appropriate prior on the weight distribution η = (η1, . . . , ηK ), the commonly used
prior being the Dirichlet distribution η ∼ D (e1, . . . , eK ). Very often, a symmetric
Dirichlet prior is assumed with ek ≡ e0, k = 1, . . . , K ; such a prior will be denoted
by η ∼ DK (e0). If e0 is a small value, then many of the K weights will be small a
priori, implying that not all K components will generate a cluster of their own and,
according to (3), K+ < K with high probability. The prior of K+ depends on both e0
and K , as illustrated in Fig. 1, showing the prior distribution p(K+|e0, K ) for various
values of K and e0. For increasing K and e0 also the expected number of clusters K+
increases.

Given data y = (y1, . . . , yN ), the posterior distribution p(K+|y) of K+ is used
to estimate the number of data clusters. For each iteration m of MCMC sampling
(to be discussed in Sect. 2.4), a partition S(m) is sampled and given the corresponding
occupation numbers N (m)

1 , . . . , N (m)
K , the number of non-empty clusters K (m)

+ is deter-
mined using (4). Then, K̂+ is estimated by the most frequent number of non-empty
components: K̂+ = mode{p(K+|y)}.
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Fig. 2 Childrens’ Fear Data; trace plot of the number of clusters K+ during MCMC sampling (left-
hand side) and posterior distribution p(K+|y) after removing the burn-in (right-hand side)

To illustrate the practical procedure, a sparse latent class model with K = 10 and
e0 = 0.005 is fitted to the Childrens’ Fear Data which will be investigated in
Sect. 5.1. In Fig. 2, the corresponding trace plot of K (m)

+ is plotted for 8000 MCMC
iterations. Whereas observations are assigned to all 10 components at the very begin-
ning, most components become empty rather quickly and the chain switches between
2 and 5 nonempty components in its steady state. With the mode of the posterior
p(K+|y) being clearly equal to two, two data clusters are estimated for this data set.

2.2 From sparse finite mixture models to Dirichlet process mixtures

Sparse finite mixture models allow to estimate the number K+ clusters a posteriori,
given the data. A sparse finite mixture is “sparse” insofar, as it uses less than K
components of the underlying finite mixture distribution for clustering the data. In
this sense, the sparse finite mixture approach is related to Bayesian non-parametric
approaches such as Dirichlet process mixtures (DPM) based on the Dirichlet process
prior G ∼ DP (α,G0) with concentration parameter α and base measure G0.

Randomprobabilitymeasure priors like theDirichlet process prior lead to countably
infinite mixtures, which have a representation similar to (1), however with K = ∞:

p(y) =
∫

fT (y|θ)G(dθ) =
∞∑

k=1

ηk fT (y|θk),

where ηk are random weights such that
∑∞

k=1 ηk = 1 almost surely. With K being
infinite, the focus of DPM automatically lies on the partitions implied by the Dirich-
let process prior and the corresponding number of clusters K+. In this sense, DPM
implicitly make a distinction between K and K+.

If the base measure θk ∼ G0 of a DPM is the same as the prior p(θk) in a finite
mixture model, then the only difference between these two model classes lies in the
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From here to infinity: sparse finite versus Dirichlet… 39

prior on the weight distribution. A stick-breaking representation (Sethuraman 1994)
of the weights η1, η2, η3, . . . in terms of a sequence v1, v2, v3, . . . of independent
random variables, so-called sticks, allows to construct the weights iteratively for both
model classes:

η1 = v1, η2 = (1 − v1)v2, ηk = vk

k−1∏

j=1

(1 − v j ), νk ∼ B (ak, bk). (5)

However, the two model classes differ in the parameters ak and bk , as vk ∼
B (1, α) , k = 1, 2, . . ., for a DPM with precision parameter α and vk ∼
B (e0, (K − k)e0) , k = 1, . . . , K − 1, vK = 1 for a finite mixture model with param-
eter e0, see e.g. Frühwirth-Schnatter (2011a).

To understand the clustering behavior of both model classes, it is illuminating to
compare them in regard to the prior probability to create a newclusterwhen reallocating
an observation yi , given all remaining observations y−i . For a DPM this probability
is equal to (Lau and Green 2007):

α

N − 1 + α
, (6)

independently of the current number of non-empty clusters K−i+ implied by S−i , where
S−i denotes all indicators excluding Si . This leads to well-known issues with model-
based clustering based onDPM. Since the number of cluster K+ ∼ α log(N ) increases
with N , it is very likely that one big cluster is found, the sizes of further clusters are
geometrically decaying, and many singleton clusters are estimated (Müller and Mitra
2013).

In contrast, for sparse finite mixtures the probability that observation yi is assigned
to an empty cluster, given the indicators S−i for all remaining observations, reads (Lau
and Green 2007):

e0(K − K−i+ )

N − 1 + e0K
, (7)

i.e. the probability to create a new cluster goes to zero as the number of non-empty clus-
ters K−i+ increases. Based on (7), Malsiner Walli et al. (2017) argue that a sparse finite
mixture with fixed K provides a two-parameter alternative to DPM where K+ ≤ K
is finite, even if N goes to infinity. Hence, DPM are mainly useful if the modelling
assumption is that the number of data clusters increases with increasing data infor-
mation as is the case e.g in the text mining framework, where the number of topics
may increase, if more documents are considered. As opposed to that, sparse finite
mixtures are mainly useful for applications where the underlying assumption is that
the data arise from a moderate number of clusters, even if the number of data points
N increases. However, it should be remarked that these recommendations are based
on theoretical considerations. As we will see in the simulation study and the applica-
tions, the clustering performance of both model classes becomes comparable, if the
priors of the precision parameters α and e0 driving the stick-breaking representation
are appropriately matched, as explained in the following subsection.
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40 S. Frühwirth-Schnatter, G. Malsiner-Walli

2.3 The importance of hyper priors on the precision parameters

It is obvious from the probabilities to create a new cluster given in (6) and (7) that the
precision parameters e0 and α exercise considerable impact on the resulting clustering.
For DPM it is common to assume that α is unknown, typically following a Gamma
prior:

α ∼ G (aα, bα),

where E(α) = aα/bα . Choosing a large value bα is particularly relevant, because
it encourages clustering (Müller and Mitra 2013). Commonly, the following prior
suggested by Escobar and West (1995) is applied: α ∼ G (2, 4) with expectation
E(α) = 0.5.

For finite mixture models, it is less common to assume that e0 is an unknown
precision parameter to be estimated from the data - rather e0 is typicallyfixed.Choosing
e0 = 1, for instance, leads to a uniform prior over the unit simplex spanned by all
possible weight distributions η1, . . . , ηK . Frühwirth-Schnatter (2006) recommends
choosing e0 = 4. This implies that the number of clusters K+ is equal to the number
of components K with high probability, see again Fig. 1 which is sensible only if we
assume that the data actually contain K groups.

For sparse finite mixtures, where K+ is unknown a priori and typically smaller than
K , the precision parameter e0 heavily influences the probability to create a new cluster
given in (7), see also Fig. 1. Hence, Malsiner Walli et al. (2016) suggested to estimate
e0 from the data using the following Gamma prior:

e0 ∼ G (ae, be),

where E(e0) = ae/be is a small number. Malsiner Walli et al. (2016) compared the
clustering results obtained by putting a hyper prior on e0 with an analysis where
e0 is a fixed, small value such as e0 = 0.01 for sparse finite mixtures of Gaussian
distributions. The results indicated that it is important to choose values of ae and be
that imply strong prior shrinkage of e0 toward 0, see also van Havre et al. (2015). As
shown in the present paper, such a choice of ae and be is also crucial for more general
sparse finite mixture models in the context of clustering discrete data and data with
non-Gaussian clusters. A further discussion of this issue will be provided in Sect. 6.

As will be demonstrated in the applications in Sect. 5, sparse finite mixtures lead
to sensible estimates of the number of clusters and often coincide with the number
of components selected by marginal likelihoods based on e0 = 4. As opposed to that
DPM tend to overfit the number of clusters, as recently shown by Miller and Harrison
(2013). There is an asymptotic explanation for this behaviour, however, as will be
shown, for moderately sized data sets, this behaviour has to be mainly addressed to
the influence of the hyper prior on α.

Indeed, the asymptotic relationship e0 ≈ α/K between sparse finite mixtures with
K components and DPM can be exploited to match the priors to each others:

α ∼ G (ae, be/K ).
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From here to infinity: sparse finite versus Dirichlet… 41

A simulation study and various applications will demonstrate that this matching leads
to a “sparse” DPM that avoids overfitting the number of clusters. On the other hand, if
a sparse finite mixture is matched through e0 ∼ G (aα, Kbα) to a DPM with common
priors such as aα = 2, bα = 4, then it tends to lose its ability to find sensible cluster
solutions and overestimates the number of clusters as well.

2.4 Bayesian inference

Bayesian inference both for sparse finite mixture model as well as the DPM model
is summarized in Algorithm 1. It is assumed that the base measure G0 is equal to the
prior distribution p(θk). For both model classes, basically the same Gibbs sampling
scheme can be usedwithmodel-specific steps for sampling the precision parameters e0
and α. Bayesian estimation of a sparse finite mixture is a straightforward extension of
MCMC estimation of a standard finite mixture (Frühwirth-Schnatter 2006, Chapter 3)
and requires only one additional step to update e0 (MalsinerWalli et al. 2016).Bayesian
inference for the DPMmodel relies on full conditionalMCMC sampling as introduced
in Ishwaran and James (2001).

Algorithm 1 Choose an initial classification S and repeat the following steps:

(a) Sample from θk |S, y for all k = 1, . . . , K:

(a-1) for all non-empty components (i.e. Nk �= 0), sample θk from the complete-data
posterior p(θk |S, y);

(a-2) for all empty components (i.e. Nk = 0), sample θk from the prior p(θk).

(b) Define vK = 1 and sample the sticks v1, . . . , vK−1 independently from the fol-
lowing Beta distributions,

vk |S ∼ B
(
ak + Nk, bk +

K∑

l=k+1

Nl

)
, k = 1, . . . , K − 1.

Determine the weights from the sticks using the stick-breaking representation (5).
(c) Sample S|η, y by sampling each Si independently for i = 1, . . . , N:

(c-1) Sample ui |Si ∼ U
[
0, ξSi

]
;

(c-2) Sample Si from following discrete distribution:

Pr(Si = k|ui , θ1, . . . , θK , η, y) ∝ I {ui < ξk}
ξk

× ηk fT (yi |θk), k = 1, . . . , K .

(d) Sample the precision parameters using an MH step:

(d-1) For SFM, sample e0 from p(e0|P, K ) ∝ p(P|e0, K )p(e0) where

p(P|e0, K ) = K !
(K − K+)!

�(Ke0)

�(N + Ke0)

∏

k:Nk>0

�(Nk + e0)

�(e0)
.
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42 S. Frühwirth-Schnatter, G. Malsiner-Walli

(d-2) For DPM, sample α from p(α|P) ∝ p(P|α)p(α) where

p(P|α) = αK+ �(α)

�(N + α)

∏

k:Nk>0

�(Nk).

By exploiting the stick breaking representation (5), sampling the weight distribution in
Step (b) is unified for both model classes. For DPM models, classification in Step (c)
is performed using slice sampling (Kalli et al. 2011) with ξk = (1 − κ)κk−1, where
κ = 0.8, to achieve random truncation. The truncation level K is chosen such that
1 − ∑K

k=1 ηk < min(u1, . . . , uN ) (Papaspiliopoulos and Roberts 2008). For sparse
finite mixtures, ξk ≡ 1, and no truncation is performed, i.e. Step (c-1) is skipped and
Step (c-2) is equal to the standard classification step, since I {ui < ξk}/ξk = 1.

To sample e0 inStep (d-1),weuse anMH-algorithmwith a high level ofmarginaliza-
tion, where e0 is sampled from the conditional posterior p(e0|P, K ) given the partition
P rather than from p(e0|η) as in Malsiner Walli et al. (2016). Special care has to be
exercised for shrinkage priors on e0 and α, when implementing the MH-algorithm in
Step (d), since the acceptance rate often involves the evaluation of theGamma function
for very small values, which can lead to numerical problems. However, these problems
can be easily avoided by writing �(x) = �(1 + x)/x for arguments x close to 0.

The fitted models are identified in order to obtain a final partition of the data and
to characterize the data clusters. We employ the post-processing procedure suggested
by Frühwirth-Schnatter (2006) (see also Frühwirth-Schnatter 2011b) for finite mix-
tures and successfully applied in many papers, e.g. Malsiner Walli et al. (2016, 2017).
Roughly speaking, the procedure works as follows. First, the number of data clus-
ters K̂+ is estimated by the mode of the posterior p(K+|y). Then for all posterior
draws were K (m)

+ = K̂+, the component-specific parameters θk , or some (lower-
dimensional) functional ϕ(θk), are clustered in the point process representation into
K̂+ clusters using k-means clustering. A unique labeling of the draws is obtained and
used to reorder all draws, including the sampled allocations. The final partition is then
determined by the maximum a posteriori (MAP) estimate of the relabelled cluster
allocations.

This procedure is applied to the MCMC output of both finite and infinite mixture
models.An advantage of this procedure is that the final partition and the cluster-specific
parameters can be estimated at the same time.

3 Sparse finite mixturemodels for non-Gaussian data

Sparse finite mixture models were introduced in Malsiner Walli et al. (2016) in the
framework of Gaussian mixture distributions, however, the underlying concept is very
generic and can be easily applied to more or less any mixture distribution. In this
section, we consider various types of sparse finite mixture models for non-Gaussian
data, including sparse latent class models for multivariate categorical data (Sect. 3.1),
sparse Poisson mixtures for univariate discrete data (Sect. 3.2) and sparse mixtures of
generalised linear models (GLMs) for regression models with count data outcomes
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From here to infinity: sparse finite versus Dirichlet… 43

(Sect. 3.3). Finally, Sect. 3.4 considers clustering continuous data with non-Gaussian
clusters using mixtures of univariate and multivariate skew normal and skew-t dis-
tributions. For each of these classes of mixture models, case studies are provided in
Sect. 5 where sparse finite mixtures are compared to Dirichlet process mixtures of the
same type.

3.1 Sparse latent class models

First, we consider model-based clustering of multivariate binary or categorical data
{y1, . . . , yN }, where yi = (yi1, . . . , yir ) is the realization of an r -dimensional dis-
crete random variable Y = (Y1, . . . ,Yr ). Mixture models for multivariate discrete
data, usually called latent class models, or latent structure analysis, have long been
recognized as a useful tool in the behavioral and biomedical sciences, as exemplified
by Lazarsfeld and Henry (1968), Goodman (1974) and Clogg and Goodman (1984),
among many others; see also Frühwirth-Schnatter (2006, Section 9.5) for a review.
In Sect. 5.1 we will analyse the Childrens’ Fear Data (Stern et al. 1994) using a
sparse latent class model.

In latent structure analysis it is assumed that the entire dependence between the
elements Y1, . . . ,Yr of Y, which are the so-called manifest variables, is caused by a
discrete latent variable Si , the so-called latent class. Therefore, conditional on the latent
variable Si , the variables Y1, . . . ,Yr , are stochastically independent. Latent structure
analysis is closely related to multivariate mixture modeling, as marginally Y follows
a multivariate discrete mixture distribution:

p(yi |ϑ) =
K∑

k=1

ηk

r∏

j=1

p(yi j |πk, j ),

where πk, j is a parameter modeling the discrete probability distribution of Y j in class
k.

The basic latent class model results, if the data are a collection of multivariate
binary observations y1, . . . , yN , where each yi = (yi1, . . . , yir )′ is an r -dimensional
vector of 0s and 1s, assumed to be the realization of a binary multivariate random
variable Y = (Y1, . . . ,Yr ). The marginal distribution of Y is then equal to a mixture
of r independent Bernoulli distributions, with density:

p(yi |ϑ) =
K∑

k=1

ηk

r∏

j=1

π
yi j
k, j (1 − πk, j )

1−yi j ,

where πk, j = Pr(Y j = 1|Si = k) is the occurrence probability for each j = 1, . . . , r
in the different classes and the K components of the mixture distribution correspond
to the K latent classes.

Over the years, many variants and extensions of the basic latent class model have
been considered. One particularly useful extension deals with multivariate categorical
data y1, . . . , yN , where yi = (yi1, . . . , yir ) is the realization of an r -dimensional
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categorical random variable Y = (Y1, . . . ,Yr ) as above, however, with each element
Y j taking one value out of Dj categories {1, . . . , Dj }. Again, a multivariate mixture
distribution results:

p(yi |ϑ) =
K∑

k=1

ηk

r∏

j=1

Dj∏

l=1

π
I {yi j=l}
k, jl , (8)

where πk, jl = Pr(Y j = l|Si = k) is the probability of category l for feature Y j

in class k. Within a Bayesian framework, the Kr unknown probability distributions
πk, j = (πk, j1, . . . , πk, j D j ) of feature Y j in class k are equipped with a symmetric
Dirichlet prior πk, j ∼ DDj

(
g0, j

)
. In Step (a) of Algorithm 1, this leads to full

conditional posterior distributions πk, j |S, y arising from the Dirichlet distribution,
see Frühwirth-Schnatter (2006, Section 9.5) for further details.

If K is unknown, then the marginal likelihood p(y|K ) could be used to estimate
p̂(y|K ) over a range of different values of K , using e.g. bridge sampling (Frühwirth-
Schnatter 2004). A particularly stable estimator p̂(y|K ) of the marginal likelihood is
given by full permutation bridge sampling, where the importance density is derived
from all K ! possible permutations ρs of the group labels of a subsequence of poste-
rior draws S(l), l = 1, . . . , S0 of the unknown allocations, see Celeux et al. (2018,
Section 7.2.3.2) for more details. Sparse finite as well as DP mixtures of latent class
models are interesting alternatives to estimate the number of data clusters in model-
based clustering. This will be investigated through a simulation study in Sect. 4.

3.2 Sparse finite Poissonmixture models

A popular model for capturing unobserved heterogeneity and excess zeros in count
data is the Poisson mixture model, where the data y = (y1, . . . , yN ) are assumed to
be independent realizations of a random variable Y arising from a finite mixture of
Poisson distributions:

Y ∼ η1P (μ1) + · · · + ηKP (μK ) ,

with P (μk) being a Poisson distribution with mean μk . Based on a Gamma prior, the
full conditional posterior μk |S, y in Step (a) of Algorithm 1 arises from a Gamma dis-
tribution, see Frühwirth-Schnatter (2006, Section 9.2) for more details. An application
of a sparse mixture of Poisson distributions to the Eye Tracking Data (Escobar
and West 1998) will be considered in Sect. 5.2.

To select K , Frühwirth-Schnatter (2006) considers RJMCMC methods, follow-
ing Viallefont et al. (2002), as well as marginal likelihoods p(y|K ). Even for this
simple mixture with a univariate parameter μk , implementing RJMCMC required
carefully designed split and merge moves. Concerning marginal likelihoods, bridge
sampling with an importance density obtained from random permutation sampling
(see Frühwirth-Schnatter 2004, 2006, Section 5.4.2), turned out to be rather unstable
for larger values of K . An alternative estimator p̂(y|K ) of the marginal likelihood is
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given by full permutation bridge sampling, where the importance density is derived
from all K ! possible permutations ρs of the group labels of a subsequence of posterior
draws S(l), l = 1, . . . , S0 of the unknown allocations:

q(μ1, . . . , μK , η) = 1

S0K !
S0∑

l=1

K !∑

s=1

p(ρs(η)|S(l))

K∏

k=1

p(ρs(μk)|S(l), y). (9)

This leads to stable estimators for the marginal likelihood even for larger values of K .
However, since the number of functional evaluations increases with K ! this method is
rather computer-intensive, and sparse finite Poisson mixture as well as DPM appear
to be an attractive alternative.

3.3 Sparse finite mixtures of GLMs for count data

Finite mixtures of generalized linear models (GLMs) based on the Poisson, the bino-
mial, the negative binomial, or the multinomial distribution, have found numerous
applications in biology, medicine and marketing in order to deal with overdisper-
sion and unobserved heterogeneity; see Frühwirth-Schnatter (2006, Section 9.4) for a
review. A finite mixture of Poisson regression models, for instance, reads:

p(yi |θ1, . . . , θK , η) =
K∑

k=1

ηk fP (yi ; λk,i ), (10)

where fP (yi ; λk,i ) is the Poisson density withmean λk,i = exp(xiβk), xi is a row vec-
tor containing the observed covariates (including 1 for the intercept) and β1, . . . ,βK
are unknown component-specific regression parameters. A useful extension of (10) is
a model where the Poisson distribution is substituted by a negative binomial distribu-
tion with mean being equal to λk,i , while allowing at the same time for overdispersion
of an unknown degree. Sparse finite mixtures of GLMs will be investigated for the
Fabric Fault Data (Aitkin 1996) in Sect. 5.3.

Implementation of Step (a) in Algorithm 1 can be based on any MCMC sampler
that delivers draws from the posterior distribution p(θk |S, y) of a GLM, with the
outcomes yi being restricted to those observations, where Si = k. Various proposals
have been put forward how to estimate the unknown parameters of a GLMs for count
data (including the overdispersion parameter for negative binomial distributions) such
as auxiliarymixture sampling (Frühwirth-Schnatter et al. 2009) and the Pólya-Gamma
sampler (Polson et al. 2013).

To estimate K for a given family of regression models p(yi |θk), marginal likeli-
hoods could be computed for each K . This is not at all straightforward for mixtures
of GLMs, however a technique introduced in Frühwirth-Schnatter andWagner (2008)
can be used to approximate the marginal likelihood p(y|K ). Sparse finite mixtures of
GLMs offer an attractive alternative to facing this computational challenge.
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3.4 Sparse finite mixtures of skew normal and skew-t distributions

Finally, clustering of continuous data with non-Gaussian clusters using mixtures of
skew normal and skew-t distributions is discussed in this subsection. Applications
to the univariate Alzheimer Data (Frühwirth-Schnatter and Pyne 2010) will be
considered in Sect. 5.4, whereas Sect. 5.5 considers the multivariate flow cytometric
DLBCL Data (Lee and McLachlan 2013).

When clustering continuous data where the clusters are expected to have non-
Gaussian shapes, it may be difficult to decide, which (parametric) distribution is
appropriate to characterize the data clusters, especially in higher dimensions.Malsiner
Walli et al. (2017) pursued a sparse finitemixture ofGaussianmixtures approach. They
exploit the ability of normal mixtures to accurately approximate a wide class of prob-
ability distributions and model the non-Gaussian cluster distributions themselves by
Gaussian mixtures. On top of that, they use the concept of sparse finite mixture models
to select the number of the (semi-parametrically estimated) non-Gaussian clusters.

On the other hand,many researchers exploitedmixtures of parametric non-Gaussian
component distributions to cluster such data. To capture non-Gaussian clusters, many
papers consider skew distributions as introduced by Azzalini (1985, 1986) as compo-
nent densities, see e.g. Frühwirth-Schnatter and Pyne (2010) and Lee and McLachlan
(2013), among many others. A univariate random variable X follows a standard uni-
variate skew normal distribution with skewness parameter α, if the pdf takes the form
p(x) = 2φ(x)�(αx), where φ(·) and�(·) are, respectively, the pdf and the cdf of the
standard normal distribution. For α < 0, a left-skewed density results, whereas the
density is right-skewed for α > 0. Obviously, choosing α = 0 leads back to the stan-
dard normal distribution. The standard skew-t distribution with ν degrees of freedom
results, if φ(·) and �(·) are, respectively, the pdf and the cdf of a tν-distribution. In a
mixture context, the skewness parameter αk and (for univariate skew-t mixtures) the
degree of freedom parameter νk take component-specific values for eachmixture com-
ponent. For both families, group-specific location parameters ξk and scale parameters
ωk are introduced through the transformation Y = ξk + ωk X .

A multivariate version of the skew normal distribution has been defined in Azzalini
and Dalla Valle (1996), while multivariate skew-t distributions have been introduced
by Azzalini and Capitanio (2003). In a multivariate setting, the skewness parameter α

is a vector of dimension r . For standard members of this family, the pdf takes the form
p(x) = 2φ(x)�(α′x) with φ(·) and �(·) being equal to, respectively, the pdf of the
r -variate and the cdf of the univariate standard normal distribution for the multivariate
skew normal distribution. For the multivariate skew-t distribution with ν degrees of
freedom, φ(·) and �(·) are equal to, respectively, the pdf of the r -variate and the cdf
of the univariate tν-distribution. As for the univariate case, group-specific location
parameters ξ k (a vector of dimension r ) and scale matrices 	k (a matrix of dimension
r × r ) are introduced through the transformation Y = ξ k + 	kX, where X follows
the standard r -variate distribution described above, with component-specific skewness
parameters αk and (for multivariate skew-t mixtures) component-specific degrees of
freedom parameters νk .
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Table 1 Occurrence probabilities for the three variables in the two classes

Categories Y1 Y2 Y3

1 2 3 1 2 3 1 2 3 4

Class 1 0.1 0.1 0.8 0.1 0.7 0.2 0.7 0.1 0.1 0.1

Class 2 0.2 0.6 0.2 0.2 0.2 0.6 0.2 0.1 0.1 0.6

The first paper which considered Bayesian inference, both for univariate as well as
multivariate mixtures of skew normal and skew-t distributions, is Frühwirth-Schnatter
and Pyne (2010) who developed an efficient MCMC scheme, combining a latent
variable representation with a latent factor following a truncated standard normal dis-
tribution with data augmentation. This MCMC scheme can be easily incorporated in
Step (a) of Algorithm 1 to estimate sparse finite mixtures of skew normal and skew-t
distributions as well as DPM. Frühwirth-Schnatter and Pyne (2010) also discussed
various methods for selecting K for finite mixtures of skew normal and skew-t distri-
butions, both in the univariate as well as in the multivariate case, among themmarginal
likelihoods p(y|K ) computed using bridge sampling (Frühwirth-Schnatter 2004), BIC
and various DIC criteria (Celeux et al. 2006). However, it was practically impossible
to compute the marginal likelihood p(y|K ) for mixtures with more than 5 or 6 compo-
nents. Hence, sparse finite mixtures of skew normal and skew-t distributions appear
to be an attractive way to select the number of groups or clusters for such mixture
models.

4 A simulation study

The aim of this simulation study is to investigate whether (1) a sparse finite mixture of
non-Gaussian components appropriately estimates the number of data clusters, (2) the
posterior of K+ of sparse finite mixtures and DPM is comparable, if the priors on the
precision parameters e0 and α are matched, and (3) whether both approaches estimate
similar partitions of the data. Additionally, the impact of the prior on α and e0, the
number of specified components K , and the number of observations N is investigated.

Inspired by the Childrens’ Fear Data which will be analyzed in Sect. 5.1, we
generate multivariate categorical data using following simulation setup. 100 data sets
with, respectively, N = 100 and N = 1000 observations are simulated from a latent
class model with two classes of equal size (i.e. η1 = η2 = 0.5) and three variables
with D1 = 3, D2 = 3, and D3 = 4 categories. The occurrence probabilities are given
in Table 1. Sparse latent class models with K = 10 and K = 20 as well as DPM
are fitted to each data set. For both model classes, the Gibbs sampler is run using
Algorithm 1 for 8000 iterations after discarding 8000 draws as burn-in. The starting
classification is obtained by clustering the data points into K = 10 or K = 20 clusters
using k-means.

Various priors α ∼ G (aα, bα) on the precision parameter α of the DPM are inves-
tigated and matched to the prior e0 ∼ G (aα, Kbα) on the precision parameter e0 of
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Table 2 Posterior distribution p(K+|y) for various prior specifications on e0 and α, for K = 10 and
K = 20, for the first data set of the simulation study, N = 100

Prior Method K+ = 1 K+ = 2 K+ = 3 K+ = 4 K+ = 5 K+ = 6 K+ ≥ 7

α ∼ G(1, 20) SFM K = 10 0.000 0.813 0.166 0.019 0.002 0.000 0.000

K = 20 0.000 0.812 0.162 0.022 0.003 0.001 0.000

DPM 0.000 0.704 0.252 0.040 0.004 0.000 0.000

α ∼ G(1, 2) SFM K = 10 0.000 0.310 0.367 0.210 0.082 0.025 0.006

K = 20 0.000 0.359 0.320 0.178 0.085 0.035 0.023

DPM 0.000 0.345 0.312 0.199 0.095 0.035 0.015

α ∼ G(2, 1) SFM K = 10 0.000 0.094 0.207 0.237 0.200 0.140 0.124

K = 20 0.003 0.123 0.188 0.210 0.179 0.135 0.158

DPM 0.000 0.099 0.188 0.210 0.188 0.133 0.174

Table 3 Average clustering results over 100 data sets of size N = 100 and N = 1000, simulated from a
latent class model with two classes, obtained through sparse latent class models (SFM) with K = 10 and
K = 20 and DPM for three different priors on the precision parameters e0 and α as well as using EM
estimation as implemented in the R package poLCA (Linzer et al. 2011)

Prior Method N = 100 N = 1000

E(p.p.|y) K̂+ ari err E(p.p.|y) K̂+ ari err

α ∼ G(1, 20) SFM K = 10 0.009 1.94 0.44 0.18 0.010 2.05 0.54 0.13

K = 20 0.005 1.92 0.43 0.18 0.005 2.02 0.54 0.13

DPM 0.092 1.99 0.44 0.18 0.110 2.29 0.53 0.14

α ∼ G(1, 2) SFM K = 10 0.064 2.29 0.46 0.17 0.068 2.23 0.53 0.14

K = 20 0.035 2.38 0.45 0.17 0.032 2.24 0.53 0.14

DPM 0.599 2.44 0.45 0.17 0.670 2.62 0.52 0.15

α ∼ G(2, 1) SFM K = 10 0.189 3.56 0.45 0.19 0.163 2.97 0.52 0.15

K = 20 0.086 3.34 0.45 0.19 0.072 3.28 0.51 0.16

DPM 1.517 3.50 0.44 0.19 1.360 3.72 0.49 0.17

poLCA 1.37 0.18 0.35 2.00 0.54 0.13

The reported values are averages of the posterior expectation E(p.p.|y) of the precision parameter e0 (SFM)
and α (DPM), the estimated number of clusters K̂+, the adjusted Rand index (ari) and the error rate (err)

the sparse latent class model as described in Sect. 2.3. The first prior, α ∼ G(1, 20)
with E(α) = 0.05, corresponds to the sparse priors e0 ∼ G(1, 200) (for K = 10) and
e0 ∼ G(1, 400) (for K = 20) and yields a “sparse” DPM. The remaining two priors,
α ∼ G(1, 2) and α ∼ G(2, 1), with E(α) = 0.5 and 2 reflect common choices in the
literature.

The posterior distributions of K+ under the various prior settings are exemplified
for one data set in Table 2. They look similar for DPM and sparse finite mixturemodels
if the priors are matched accordingly. The average clustering results over all data sets,
for both N = 100 and N = 1000, are reported in Table 3. The cluster quality of all
estimatedpartitions ismeasuredusing the adjustedRand index (ari) (Hubert andArabie
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1985) and the error rate (err) which is calculated as the proportion of misclassified data
points. For N = 100, again the clustering results are very similar for DPM and sparse
finite mixtures, regardless whether K = 10 or K = 20, or smaller or larger expected
values for e0 and α are defined, as long as the hyper priors are matched. For the sparse
hyper priors α ∼ G(1, 20) and e0 ∼ G(1, 20K ), the average of the posterior mode
estimators K̂+ over all data sets is very close to 2, whereas for more common priors
on α this average is considerably larger than 2, both for sparse latent class models and
DPM. However, the adjusted Rand index and the error rate are roughly the same for all
priors, indicating that the superfluous clusters only consist of a few observations. The
results for larger data sets with N = 1000 observations lead to similar conclusions,
with the DPM showing a stronger tendency toward overfitting K̂+ than sparse finite
mixtures, despite matching the hyper priors for the precision parameters.

For comparison, for each data set a standard latent class analysis is performed
using the EM algorithm and the BIC criterion to estimate the number of clusters. The
R package poLCA (Linzer et al. 2011) is used for this estimation. For N = 100, the
poLCA approach underestimates the number of data clusters, probably because the
asymptotic consistency of BIC does not apply to small-sized data sets. For N = 1000,
the poLCA approach performs equally well as the sparse finite mixture approach.

The simulation study also provides evidence that specifying a (sparse) hyper prior
over e0 is preferable to choosing a fixed (small) value. As shown in Fig. 1 for N = 100,
a sparse finitemixturewith K = 10 and fixed value e0 = 0.005 basically prefers a one-
cluster solution. However, as can be seen from the first row in Table 3, by specifying
the prior e0 ∼ G(1, 200) the posterior mean E(e0|y) is on average twice as large as
the prior mean E(e0) = 0.005 and on average 1.94 clusters are estimated, meaning
that one cluster was selected for only few data sets.

5 Applications

For each type of mixture models discussed in Sect. 3, a case study is provided to
compare sparse finite mixtures with DPM of the same type. For both model classes,
the influence of the priors p(e0) and p(α) on the posterior distribution p(K+|y) of the
number of clusters K+ is investigated in detail. Typically, for sparse finite mixtures
K = 10 and e0 ∼ G (1, 200), implying E(e0) = 0.005, is specified whereas for DPM
α ∼ G(2, 4) is specified as in Escobar and West (1995). In addition, both priors are
matched as described in Sect. 2.3. For each case study, standard finite mixtures with
e0 = 4 are estimated for increasing K .

5.1 Application to theCHILDRENS’ FEAR DATA

Stern et al. (1994) consider data of N = 93 children from white middle class homes
in the U.S., tested at age 4 and 14 months, in the context of infant temperamental
research. For each child, three categorical data (i.e. multivariate data of dimension
r = 3) are observed, namely motor activity (M) at 4 months with D1 = 4 categories,
fret/cry behavior (C) at 4 months with D2 = 3 categories, and fear of unfamiliar
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Table 4 Childrens’ Fear

Data; 4 × 3 × 3 contingency
table summarizing the data
which measure motor activity
(M) at 4 months, fret/cry
behavior (C) at 4 months, and
fear of unfamiliar events (F) at
14 months for N = 93 children
(Stern et al. 1994)

F = 1 F = 2 F = 3

M = 1 C = 1 5 4 1

C = 2 0 1 2

C = 3 2 0 2

M = 2 C = 1 15 4 2

C = 2 2 3 1

C = 3 4 4 2

M = 3 C = 1 3 3 4

C = 2 0 2 3

C = 3 1 1 7

M = 4 C = 1 2 1 2

C = 2 0 1 3

C = 3 0 3 3

events (F) at 14 months with D3 = 3 categories, see Table 4. The categories can be
interpreted as scores with higher scores indicating a stronger behavior.

The scientific hypothesis is that two different profiles in children are present, called
inhibited and unhibited to the unfamiliar (i.e. avoidance or approach to unfamiliar
children, situations and objects). To test this hypothesis, a latent class model as in (8)
is applied,

Pr(M = m,C = c, F = f ) =
K∑

k=1

ηkπ
M
k,mπC

k,cπ
F
k, f ,

with class specific probability distributions πM
k = (πM

k,1, . . . , π
M
k,4), πC

k =
(πC

k,1, . . . , π
C
k,3), and π F

k = (π F
k,1, . . . , π

F
k,3) and K being unknown.

Three types of mixture models are considered, assuming the class specific proba-
bility distributions πM

k , πC
k , and π F

k to be independent, each following a symmetric
Dirichlet prior DDj

(
g0, j

)
with g0, j = 1 for j = 1, . . . , 3. Sparse latent class models

as described in Sect. 3.1 are estimated with K = 10 and compared to DP latent class
models. In addition, a standard latent class model with e0 = 4 is estimated for increas-
ing K and marginal likelihoods are computed using full permutation bridge sampling,
see Table 5.

Table 5 and Fig. 3 compare the various posterior distributions Pr(K+|y) of the
number of clusters K+ under the specific hyper priors. Both for themarginal likelihood
as well as for a sparse finite mixture, K̂+ = 2 is selected, confirming the theoretically
expected number of clusters, whereas the DPM overestimates the number of clusters
with K̂+ = 4. However, once the hyper prior for α is matched to the sparse finite
mixture, the resulting “sparse” DPM also selects two clusters. On the other hand, a
sparse finite mixture matched to the DPM is overfitting. This example illustrates the
importance of prior shrinkage of e0 and α towards small values.

In Table 6, the estimated occurrence probabilities for the two classes are reported.
Clearly, the children in the two classes have a rather different profile. Whereas chil-
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Table 5 Childrens’ Fear Data; the rows in the upper table show the posterior distribution Pr(K+|y)
of the number of clusters K+ for various latent class models: sparse latent class models with K = 10
(SFM) with hyper priors e0 ∼ G(1, 200) and e0 ∼ G(2, 4K ) (matched to DPM), DPM with hyper priors
α ∼ G(2, 4) and α ∼ G(1, 200/K ) (matched to SFM)

Pr(K+|y) K+ = 1 K+ = 2 K+ = 3 K+ = 4 K+ = 5 K+ = 6 K+ ≥ 7

SFM

e0 ∼ G (1, 200) 0 0.686 0.249 0.058 0.007 0.001 0.000

Matched to DPM 0 0.128 0.267 0.280 0.201 0.090 0.033

DPM

α ∼ G (2, 4) 0 0.101 0.235 0.246 0.197 0.118 0.103

Matched to SFM 0 0.688 0.251 0.048 0.011 0.002 0.000

log p̂(y|K ) K = 1 K = 2 K = 3 K = 4 K = 5

FM (e0 = 4) −333.01 −330.46 −333.67 −337.37 −340.48

The lower table shows log marginal likelihoods, log p̂(y|K ), estimated for a latent class model with e0 = 4
(FM) for increasing K
The posterior mode K̂+ is denoted in bold (upper table). The number of components K with the largest
marginal likelihood is denoted in bold (lower table)

Fig. 3 Childrens’ Fear Data; posterior distributions Pr(K+|y) of the number of clusters K+; top:
sparse finite mixtures with K = 10, e0 ∼ G(1, 200) (left-hand side) and matched prior e0 ∼ G(2, 4K )

(right-hand side); bottom: DPM with α ∼ G(2, 4) (right-hand side) and matched prior α ∼ G(1, 200/K )

(left-hand side)

dren belonging to class 1 are more likely to have higher scores in all three variables,
children in class 2 show less motor activity, crying behavior and fear at the same
time. This clustering result is in line with the psychological theory behind the experi-
ments, according to which all three behavioral variables are regularized by the same
physiological mechanism, see Stern et al. (1994) for more details.
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Table 6 Childrens’ Fear

Data; posterior inference for
πM
k , πC

k , and π F
k , based on all

MCMC draws with K+ = 2

Class 1 Class 2

πM
k,1 0.146 (0.032, 0.267) 0.225 (0.103, 0.358)

πM
k,2 0.170 (0.010, 0.319) 0.573 (0.408, 0.730)

πM
k,3 0.408 (0.243, 0.578) 0.126 (0.015, 0.239)

πM
k,4 0.276 (0.127, 0.418) 0.076 (0.002, 0.159)

πC
k,1 0.263 (0.078, 0.419) 0.679 (0.519, 0.844)

πC
k,2 0.311 (0.170, 0.478) 0.109 (0.007, 0.212)

πC
k,3 0.426 (0.261, 0.598) 0.212 (0.079, 0.348)

π F
k,1 0.069 (0.000, 0.177) 0.629 (0.441, 0.823)

π F
k,2 0.298 (0.119, 0.480) 0.279 (0.117, 0.447)

π F
k,3 0.633 (0.447, 0.830) 0.090 (0.000, 0.211)

ηk 0.470 (0.303, 0.645) 0.530 (0.355, 0.698)

The values are the average of the MCMC draws, with 95% HPD inter-
vals in parentheses
For each cluster, themost probable outcome for each feature is denoted
in bold

5.2 Application to the EYE TRACKING DATA

The count data on eye tracking anomalies in 101 schizophrenic patients studied by
Escobar andWest (1998) are reconsidered. To capture overdispersion and excess zeros
diagnosed for this data set, Frühwirth-Schnatter (2006) analyzed the data by a finite
Poisson mixture model. The goal of the analysis is not primarily clustering of the data,
but capturing the extreme unobserved heterogeneity present in this data set, using both
sparse finite Poisson mixtures with K = 10 as in Sect. 3.2 as well as DPM.

For all types of mixture models, the same hierarchical prior is applied for the
component-specific parameters with μk |b0 ∼ G (a0, b0) and b0 ∼ G (g0,G0), where
a0 = 0.1, g0 = 0.5, and G0 = g0y/a0, with y being the mean of the data. Table 7
and Fig. 4 compare the various posterior distributions Pr(K+|y) of the number of
clusters K+ under various hyper priors. The sparse finite Poissonmixturemodel clearly
identifies four clusters, whereas the posterior Pr(K+|y) ismuchmore spread out for the
corresponding DPM, reflecting the extreme unobserved heterogeneity in the observed
counts. However, once the hyper prior for α is matched to the sparse finite mixture,
the resulting DPM also selects four clusters. On the other hand, a sparse finite mixture
matched to the DPM also indicates considerable unobserved heterogeneity which is
confirmed by the marginal likelihoods which are computed using full permutation
bridge sampling.

5.3 Application to the FABRIC FAULT DATA

For further illustration, we consider regression analysis of (count) data on fabric faults
(Aitkin 1996) where the response variable yi is the number of faults in a bolt of
length li . The goal of the analysis is testing homogeneity, i.e. to investigate if a single
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Table 7 Eye Tracking Data; the rows in the upper table show the posterior distribution Pr(K+|y) of
the number of clusters K+ for following Poisson mixture models: sparse finite mixtures with K = 10
(SFM) with hyper priors e0 ∼ G(1, 200) and e0 ∼ G(2, 4K ) (matched to DPM), DPM with hyper priors
α ∼ G(2, 4) and α ∼ G(1, 200/K ) (matched to SFM)

Pr(K+|y) K+ = 1, 2 K+ = 3 K+ = 4 K+ = 5 K+ = 6 K+ = 7 K+ ≥ 8

SFM

e0 ∼ G (1, 200) 0.000 0.091 0.584 0.266 0.056 0.003 0.000

Matched to DPM 0.000 0.007 0.174 0.308 0.299 0.153 0.059

DPM

α ∼ G (2, 4) 0.005 0.095 0.209 0.222 0.173 0.134 0.161

Matched to SFM 0.000 0.012 0.464 0.379 0.122 0.022 0.002

log p̂(y|K ) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

FM (e0 = 4) −472.89 −254.19 −239.79 −234.48 −232.9 −231.84 −231.04

The lower table shows log marginal likelihoods, log p̂(y|K ), estimated for a finite mixture with e0 = 4
(FM) for increasing K
The posterior mode K̂+ is denoted in bold (upper table). The number of components K with the largest
marginal likelihood is denoted in bold (lower table)

Fig. 4 Eye Tracking Data; posterior distributions Pr(K+|y) of the number of clusters K+; top: sparse
finite mixtures with K = 10, e0 ∼ G(1, 200) (left-hand side) and matched prior e0 ∼ G(2, 4K ) (right-hand
side); bottom:DPMwithα ∼ G(2, 4) (right-hand side) andmatched priorα ∼ G(1, 200/K ) (left-hand side)

count data regression model is appropriate or whether unobserved heterogeneity is
present. Based on the regressor matrix xi = (1 log li ), mixtures of Poisson and
negative binomial regression models are fitted as described in Sect. 3.3. Marginal
likelihoods for these data were computed in Frühwirth-Schnatter et al. (2009) for
standard finite mixture models with e0 = 4 up to K = 4 and are compared with
sparse finite GLMs with K = 10 and DPM of GLMs in Table 8. For all mixtures,
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Table 8 Fabric Fault Data; the rows in the upper table show the posterior distribution Pr(K+|y) of
the number of clusters K+ for following mixtures of Poisson GLMs and negative binomial GLMs: sparse
finite mixtures with K = 10 (SFM) with hyper priors e0 ∼ G(1, 200) and e0 ∼ G(2, 4K ) (matched to
DPM), DPM with hyper priors α ∼ G(2, 4) and α ∼ G(1, 200/K ) (matched to SFM)

Pr(K+|y) K+ = 1 K+ = 2 K+ = 3 K+ = 4

Poisson GLM SFM e0 ∼ G (1, 200) 0.241 0.754 0.006 0.000

Matched to DPM 0.060 0.887 0.053 0.001

DPM α ∼ G (2, 4) 0.036 0.914 0.049 0.001

Matched to SFM 0.141 0.832 0.027 0.000

NegBin GLM SFM e0 ∼ G (1, 200) 0.994 0.006

Matched to DPM 0.906 0.093 0.001

DPM α ∼ G (2, 4) 0.940 0.059 0.001

Matched to SFM 0.994 0.006

log p̂(y|K ) K = 1 K = 2 K = 3 K = 4

Poisson GLM FM (e0 = 4) −101.79 −99.21 −100.74 −103.21

NegBin GLM FM (e0 = 4) −96.04 −99.05 −102.61 −105.7

The lower table shows log marginal likelihoods, log p̂(y|K ), estimated for finite mixtures with e0 = 4 (FM)
for increasing K
The posterior mode K̂+ is denoted in bold (upper table). The number of components K with the largest
marginal likelihood is denoted in bold (lower table)

a priori the component-specific regression coefficients are assumed to be i.i.d. from
a N (0, 4)-distribution. For the negative binomial distribution, the same prior as in
Frühwirth-Schnatter et al. (2009) is assumed for the group specific degrees of freedom
parameter ρk : p(ρk) ∝ 2dρk/(ρk +c)3, where the choice of c = 10/(1+√

2) implies
a prior median of 10.

Table 8 and Fig. 5 compare the various posterior distributions Pr(K+|y) of the
number of clusters K+ under various hyper priors for bothmodel classes. For mixtures
of Poisson GLMs, K = 2 is selected by the marginal likelihood and K̂+ = 2, both for
sparse finitemixture aswell asDPM,which confirms results obtained byAitkin (1996)
and McLachlan and Peel (2000) using alternative methods of model selection. For the
more flexible mixture of GLMs based on the negative binomial distribution K = 1
is selected by the marginal likelihood. Also sparse finite mixtures as well as DPM
of GLMs based on the negative binomial distribution estimate K̂+ = 1 cluster. This
illustrates that sparse finite mixtures are also useful for testing homogeneity within a
Bayesian framework.

One advantage of the marginal likelihood over sparse finite mixtures and DPMs,
however, is the possibility to select the number of clusters and the appropriate clustering
kernel at the same time. The model with the largest marginal likelihood in Table 5 is
the negative binomial distribution with K = 1.

5.4 Application to theALZHEIMER DATA

Alzheimer disease is a complex disease that has multiple genetic as well as environ-
mental risk factors. It is commonly characterized by loss of a wide range of cognitive
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Table 9 Alzheimer Data; the rows in the upper table show the posterior distribution Pr(K+|y) of the
number of clusters K+ for following mixtures of univariate skew normal and skew-t distributions: sparse
finite mixtures with K = 10 (SFM) with hyper priors e0 ∼ G(1, 200) and e0 ∼ G(2, 4K ) (matched to
DPM), DPM with hyper priors α ∼ G(2, 4) and α ∼ G(1, 200/K ) (matched to SFM)

Pr(K+|y) K+ = 1 K+ = 2 K+ = 3 K+ = 4 K+ = 5 K+ = 6 K+ ≥ 7

Skew normal

SFM

e0 ∼ G (1, 200) 0.0127 0.760 0.193 0.029 0.005 0.000 0.000

Matched to DPM 0.000 0.268 0.309 0.228 0.119 0.049 0.026

DPM

α ∼ G (2, 4) 0.000 0.181 0.302 0.214 0.139 0.083 0.082

Matched to SFM 0.000 0.784 0.182 0.029 0.004 0.000 0.000

Skew-t

SFM

e0 ∼ G (1, 200) 0.263 0.597 0.124 0.015 0.001 0.000 0.000

Matched to DPM 0.034 0.301 0.320 0.205 0.094 0.032 0.013

DPM

α ∼ G (2, 4) 0.003 0.290 0.275 0.206 0.124 0.058 0.045

Matched to SFM 0.211 0.492 0.214 0.065 0.016 0.002 0.000

log p̂(y|K ) K = 1 K = 2 K = 3 K = 4 K = 5

Skew normal FM (e0 = 4) −689.62 −682.37 −684.45 −690.41 −696.12

Skew-t FM (e0 = 4) −692.29 −688.98 −690.31 −694.11 −699.85

The lower table shows log marginal likelihoods, log p̂(y|K ), estimated for finite mixtures with e0 = 4 (FM)
for increasing K
The posterior mode K̂+ is denoted in bold (upper table). The number of components K with the largest
marginal likelihood is denoted in bold (lower table)

abilities with aging. For illustration, data modelled in Frühwirth-Schnatter and Pyne
(2010) through (standard) finite mixtures of skew normal and skew-t distributions are
reanalyzed. The data set consists of N = 451 subjects, whose level of cognition was
clinically evaluated proximate to their death based on tests of cognitive functions and
summarized by a mean global cognition score, with higher scores suggesting better
cognitive capabilities; see Bennett et al. (2005) for more details on the corresponding
study. The true number of groups in these data is equal to two. The goal of the exercise
is to investigate, if sparse finite mixtures with non-Gaussian components based on
parametric densities such as univariate skew normal and skew-t distributions are able
to detect the true number of clusters and to compare them to DPM models.

Frühwirth-Schnatter and Pyne (2010) considered various methods for selecting K
for skew normal and skew-t mixtures under the prior e0 = 4. In particular, DIC
criteria (Celeux et al. 2006) turned out to be extremely sensitive to prior choices
for the cluster-specific parameter (ξk, αk, ωk). The marginal likelihoods of a stan-
dard finite mixture model with e0 = 4 are compared in Table 9 to sparse finite
skew normal and skew-t mixture models, where K = 10 and e0 ∼ G (1, 200),
as well as to DPMs of these same type. Table 9 and Fig. 6 summarize the pos-
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terior distributions Pr(K+|y) of the number of clusters K+ under various hyper
priors.

Again, Fig. 6 illustrates that the main difference between the resulting posterior
distributions of K+ is not wether a Dirichlet process mixtures or a finite mix-
ture model is applied. Rather, the apparent difference is due to changes in the
hyper prior. A sparse prior on the precision parameters e0 and α yields a clear
decision concerning K+, namely selecting K̂+ = 2 for both types of clustering
kernels. This is true both for a sparse finite mixture and a “sparse” DPM where
the hyper prior for α is matched to the sparse finite mixture. However, for a prior
that does not force sparsity, both sparse finite mixtures as well as DPM overesti-
mate the number of clusters with K̂+ = 3 for the skew normal distribution and
are more or less undecided between two and three clusters for the skew-t mix-
ture.

The choices obtained from both sparse finite mixture models and DPM coincide
with the decision obtained by the marginal likelihood. An advantage of the marginal
likelihood over sparse mixtures is that, in addition to K , the clustering kernel can be
selected. For the data at hand, finitemixtures of skewnormal distributions are preferred
to skew-t distributions.

5.5 Applications to flow cytometric data

To assess how sparse finite mixtures scale to larger data sets, an application to
flow cytometry data is investigated. The three-dimensional DLBCL data set (Lee
and McLachlan 2013) consists of N = 7932 observations, with class labels which
were determined manually. The true number of groups in these data is equal to 4.
Malsiner Walli et al. (2017) fitted a sparse finite mixture-of-mixtures model to these
data with K = 30 and e0 = 0.001. The component densities were estimated in
a semi-parametric manner through a Gaussian mixture with L = 15 components
and inference identifies K̂+ = 4 such non-Gaussian clusters. The resulting error
rate (0.03) outperformed the error rate of 0.056 reported by Lee and McLachlan
(2013).

The goal of this application is to investigate, whether sparse finite mixtures with
non-Gaussian components based on parametric densities such as themultivariate skew
normal and skew-t distributions are able to detect this true number of clusters. Sparse
finitemixtureswith K = 20 and e0 ∼ G (1, 100), as well as DPMof the corresponding
type are fitted to these data and results are reported inTable 10 andFig. 7.As it turns out,
the posterior expectation of both precision parameters, i.e. E(α|y) as well as E(e0|y)
are pretty large, indicating that a lot of components are needed to describe these data.
Consequently, the estimated number of clusters K̂+ is much larger than four for any
of these mixtures. This finding is confirmed by the marginal likelihoods. Obviously,
neither skew normal nor skew-t distributions are as flexible as themixture-of-mixtures
model introduced by Malsiner Walli et al. (2017) to capture departure from normality
for these data.
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Table 10 DLBCL Data; estimated number of clusters K̂+ for followingmixtures ofmultivariate skewnor-
mal and skew-t distributions: sparse finite mixtures with K = 20 (SFM) with hyper priors e0 ∼ G(1, 100)
and e0 ∼ G(2, 4K ) (matched to DPM), DPM with hyper priors α ∼ G(2, 4) and α ∼ G(1, 100/K )

(matched to SFM)

K̂+ E(e0|y) E(α|y)
Skew normal

SFM

e0 ∼ G (1, 100) 15 0.089 (0.04, 0.14)

Matched to DPM 14 0.094 (0.04, 0.15)

DPM

α ∼ G (2, 4) 26 1.71 (0.99, 2.49)

Matched to SFM 23 0.68 (0.38, 0.98)

Skew-t

SFM

e0 ∼ G (1, 100) 11 0.058 (0.03, 0.10)

Matched to DPM 10 0.067 (0.03, 0.11)

DPM

α ∼ G (2, 4) 14 1.20 (0.56, 1.86)

Matched to SFM 10 0.37 (0.15, 0.59)

log p̂(y|K ) K = 2 K = 3 K = 4 K = 5 K = 6

Skew normal FM (e0 = 4) −19160 −19116 −18818 −18388 −18045

Skew-t FM (e0 = 4) −18980 −18433 −18131 −17918 −17915

The lower table shows log marginal likelihoods, log p̂(y|K ), estimated for finite mixtures with e0 = 4 (FM)
for increasing K

6 Discussion and concluding remarks

This paper extends the concept of sparse finitemixturemodels, introduced byMalsiner
Walli et al. (2016) for Gaussian clustering kernels, to a wide range of non-Gaussian
mixture models, including Poisson mixtures, latent class analysis, mixtures of GLMs,
skew normal and skew-t distributions. Opposed to common belief, this paper shows
that finite mixture models do not necessarily assume that the number of clusters is
known. As exemplified for several case studies in Sect. 5, the number of clusters
was estimated a posteriori from the data and ranged from K̂+ = 1 (for the Fabric

Fault Data under a mixture of negative binomial GLMs) to K̂+ = 4 (for the Eye
Tracking Data), when sparse finite mixtures with K = 10 components were fitted.

Sparse finite mixture models are based on overfitting mixture distributions, where
the number of clusters K+ among N data points generated from such amixture is, with
high probability, smaller than K a priori. This is achieved by choosing a symmetric
Dirichlet prior on the weight distribution (η1, . . . , ηK ) ∼ DK (e0), with a sparsity
prior on e0 that favours very small values.

A theoretical justification for sparse finite mixture models seems to emerge from
asymptotic results of Rousseau and Mengersen (2011), who show that the asymptotic
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Table 11 Posterior expectations E(e0|y) of e0 together with 95% confidence regions for the various data
sets; sparse finitemixture with K = 10 and e0 ∼ G (1, 200) (SFM) versus overfittingmixtures with K = 10
and e0 ∼ U [0, d/2] (RM)

Data set N r d SFM RM

E(e0|y) 95% CI E(e0|y) 95% CI

Eye Tracking Data 101 1 1 0.020 (0.004, 0.04) 0.37 (0.18, 0.5)

Childrens’ Fear Data 93 3 7 0.010 (0.0007, 0.023) 1.30 (0.09, 3.01)

Fabric Fault Data (NegBin) 32 1 3 0.004 (0, 0.014) 0.04 (0, 0.13)

Alzheimer Data (SkewN) 451 1 3 0.009 (0.0001, 0.022) 0.36 (0.18, 0.5)

behaviour of the mixture posterior p(θ1, . . . , θK , η|y1, . . . , yN ) as N goes to infinity
is determined by the hyperparameter e0 of the symmetric Dirichlet priorDK (e0). Let
d = dim θk be the dimension of the component-specific parameter θk in a mixture dis-
tribution (1) with Ktr distinct components (i.e. θk �= θ l , k �= l) with non-zero weights.
If e0 < d/2, then the posterior distribution of an overfitting mixture distribution with
K > Ktr components asymptotically concentrates over regions forcing the sum of
the weights of the K − Ktr extra components to concentrate at 0. Hence, if e0 < d/2,
all superfluous components in an overfitting mixture are emptied, as the number of
observations N goes to infinity. However, the implications of this important result for
the posterior concentration of the number of data clusters K+ are still unclear. As
shown by Miller and Harrison (2013), the number of clusters K+ in data generated
from a finite mixture distribution of order Ktr converges to Ktr , as N goes to infinity, if
K = Ktr . Conditions under which such a convergence holds, if Ktr is unknown and an
overfitting mixture with K > Ktr is fitted, are an interesting venue of future research.

As noted by Malsiner Walli et al. (2016), who applied overfitting Gaussian mix-
tures to model-based clustering of quite a few benchmark data sets, values of e0 much
smaller than Rousseau and Mengersen (2011)’s threshold d/2 are needed in practice
to identify the right number of clusters. We obtained similar results for the extensions
and applications considered in the present paper. Table 11 summarizes the posterior
expectations E(e0|y) aswell as 95% confidence regions of e0 for various data sets fitted
in Sect. 5 under the sparse prior e0 ∼ G(1, 200), with prior expectation E(e0) = 0.005.
These results confirm that the posterior distribution of e0 is concentrated over values
that are considerably smaller than d/2 (the dimensions d are also reported in the table).
To see, whether the data alone would have been informative about e0 for these case
studies, the uniform prior e0 ∼ U [0, d/2] over the region [0, d/2] is considered. The
corresponding posterior expectations E(e0|y), reported in Table 11, are considerably
larger than for the sparsity prior. As can be seen in Fig. 8, this leads to posterior dis-
tributions p(K+|y) that overfit the number of clusters for all data sets considerably,
except for the homogeneous Fabric Fault Data. These results indicate that regu-
larisation of the posterior distribution through a sparsity prior that encourages values
of e0 much smaller than d/2 is essential for identifying the number of clusters.

Introducing a sparsity prior avoids overfitting the number of clusters not only for
finitemixtures, but also (somewhat unexpectedly) forDirichlet processmixtureswhich
are known to overfit the number of clusters (Miller and Harrison 2013). For the data
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Fig. 8 Posterior distributions Pr(K+|y) of the number of clusters K+ for the various data sets for a sparse
finitemixturewith K = 10 and prior e0 ∼ U [0, d/2] derived from the criterion of Rousseau andMengersen
(2011)

considered in the present paper, overfitting could be avoided through a prior on the
precision parameter α that encouraged very small values.

Whenmatching the priors of e0 in sparse finitemixtures andα inDPM, the posterior
distribution of the number of clusters was more influenced by these hyper priors than
whether the mixture was finite or infinite. It would be interesting to investigate, if this
proximity of both model classes also holds more generally.

Another avenues for future research concern MCMC estimation. Although we did
not encounter problems with full conditional Gibbs sampling for our case studies,
more efficient algorithms could be designed by using parallel tempering as in van
Havre et al. (2015) or by exploiting ideas from BNP (e.g. Fall and Barat 2014).
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