Skip to main content
. 2018 Aug 24;13(1):33–64. doi: 10.1007/s11634-018-0329-y

Table 3.

Average clustering results over 100 data sets of size N=100 and N=1000, simulated from a latent class model with two classes, obtained through sparse latent class models (SFM) with K=10 and K=20 and DPM for three different priors on the precision parameters e0 and α as well as using EM estimation as implemented in the R package poLCA (Linzer et al. 2011)

Prior Method N=100 N=1000
E(p.p.|y) K^+ ari err E(p.p.|y) K^+ ari err
αG(1,20) SFM K=10 0.009 1.94 0.44 0.18 0.010 2.05 0.54 0.13
K=20 0.005 1.92 0.43 0.18 0.005 2.02 0.54 0.13
DPM 0.092 1.99 0.44 0.18 0.110 2.29 0.53 0.14
αG(1,2) SFM K=10 0.064 2.29 0.46 0.17 0.068 2.23 0.53 0.14
K=20 0.035 2.38 0.45 0.17 0.032 2.24 0.53 0.14
DPM 0.599 2.44 0.45 0.17 0.670 2.62 0.52 0.15
αG(2,1) SFM K=10 0.189 3.56 0.45 0.19 0.163 2.97 0.52 0.15
K=20 0.086 3.34 0.45 0.19 0.072 3.28 0.51 0.16
DPM 1.517 3.50 0.44 0.19 1.360 3.72 0.49 0.17
poLCA 1.37 0.18 0.35 2.00 0.54 0.13

The reported values are averages of the posterior expectation E(p.p.|y) of the precision parameter e0 (SFM) and α (DPM), the estimated number of clusters K^+, the adjusted Rand index (ari) and the error rate (err)