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An older population with an increased prevalence of cardiovascular disease and an aging 

workforce are engendering a state of healthcare crisis in cardiology.1 Most cardiologists now 

face an unprecedented time crunch as they rush through their appointments to perform and 

interpret more and more procedures. The need to multitask creates exhaustion leading to 

burnout and frequent reporting errors.2 The recent interest in using artificial intelligence 

techniques, such as machine learning, may offer a solution to reduce physician workload 

including repetitive and tedious tasks involved in diagnosing and analyzing patient data and 

imaging. To this end, the study by Zhang and colleagues3 in this issue of Circulation adds to 

the growing enthusiasm for developing a machine learning algorithm that automates several 

facets of echocardiography measurement and interpretation.

Zhang and colleagues used a deep learning model that has enjoyed spectacular success in 

addressing computer vision problems including image classification, face recognition, robot 

navigation, and driverless cars to name a few. Although traditional machine learning 

workflow includes an initial stage of feature engineering and selection from the data for 

classification, deep learning methods attempt to learn the important features directly from 

the raw image data (with minimal preprocessing). Zhang and colleagues applied an 

algorithm that has triumphed in image recognition tasks and reported a 96% accuracy for 

distinguishing between broad echocardiographic view classes (eg, parasternal long axis from 

short axis, or an apical view) and an 84% accuracy overall (including partially obscured 

views). These results are consistent with a recent study that applied deep learning with 

convolutional neural networks for view classification of echocardiograms.4 However, Zhang 

et al notably used a deeper architecture with more layers (18 versus 11), considered a larger 
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number of echocardiography view classes (23 versus 15 views), and applied their technique 

to a larger data set (14 035 versus 267 echocardiographic studies).

The authors also reported an overall metric of accuracy of image segmentation ranging from 

72% to 90% for image segmentation. Although deep learning has been explored previously 

for segmenting the left ventricle,5 the work by Zhang et al was much more extensive with 

additional cardiac segments beyond the left ventricle and a larger data set, involving millions 

of images from 14 035 studies. Moreover, the authors succeeded in going a step beyond 

simple classification and segmentation by providing an algorithm for automated 

quantification of cardiac structure and function. The comparison with manually recorded 

measurements, however, showed wide limits of agreements emphasizing the potential real-

world variability of echocardiography measurements. Independent verification from a core 

laboratory or the use of a gold standard like cardiac magnetic resonance was not reported 

and could perhaps help us understand the accuracy and precision of the new technology. 

Nevertheless, automated view detection, segmentation, and measurements are important 

advances that have been made increasingly available in recent years.6

Finally, the authors assessed the ability to perform disease detection essentially based on the 

results of the automated quantification. With the output restricted to 2 classes, disease and 

control, authors were able to identify 3 cardiovascular diseases with impressive results: area 

under the receiver operating characteristic curve of 0.93 for hypertrophic cardiomyopathy, 

0.87 for cardiac amyloidosis, and 0.85 for pulmonary arterial hypertension. These 

remarkable results expand the observations made in several previous studies where machine 

learning was touted to have abilities in detecting different cardiac phenotypes.7–10

Transthoracic echocardiographic imaging is the most commonly performed noninvasive 

cardiac procedure. Image quality, however, varies substantially between patients and is also 

operator dependent, which increases interobserver variability. Consequently, despite the 

wide utilization, errors in echocardiography quantification and interpretation are prevalent 

and often associated with conflicting interpretations in echocardiography reports.11 In the 

majority of instances, such errors may be linked to physician fatigue, impaired attention, 

memory, and executive function that decrease reader recall and attention to detail. There is 

little doubt that machine learning techniques like the one illustrated by Zhang and 

colleagues3 would go a long way for better data organization, improving workflows, and 

reducing echocardiography measurement and cognitive errors. Moreover, these technologies 

may offer solutions for limited training opportunities and the lack of expert supervision. 

Undoubtedly, deep learning has the potential of improving clinical workflow and diagnostic 

efficacy in echocardiography. It is not surprising, as the figure shows, that there has been a 

recent surge in interest in the application of artificial intelligence techniques in medicine 

and, in particular, in echocardiography. The figure shows that machine learning and deep 

learning techniques are rapidly emerging as the preferred approach over traditional methods 

that use feature engineering. However, the question that is looming currently is whether deep 

learning techniques could eventually supersede an echocardiographer? This question pleads 

for an understanding of the current state of deep learning and artificial intelligence 

technologies in relation to human intelligence. The strengths and limitations of the current 

deep learning techniques have been recently debated.12 First, the bio-inspired neural 
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network design used currently for deep learning remotely resembles the activities of a 

human brain. Structurally, they resemble at best the outer layers of the retina or the visual 

cortex where images are just sensed or represented. These layers of neurons can hardly do 

what our brains are capable of, such as the reasoning and knowledge components 

represented in the more open terrains of general intelligence, that form a foundation of 

pervasive common-sense knowledge in humans. There are several other innate virtues of 

human cognition. Human learning is distinguished by its richness and its efficiency; a child 

learns rapidly to ambulate after a few falls. Moreover, humans can use a learned model to 

orchestrate action sequences that maximize future reward. However, a deep learning 

algorithm would require thousand-to-millions of attempts at learning before it can accurately 

relegate an image! Thus deep learning, although widely publicized for its amazing 

performance, is actually quite shallow in its intelligence. Ironically enough, the deep in deep 

learning refers to the architecture of the neural network and not the concept of learning as 

has been well highlighted in a recent treatise by Gary Marcus.12

From the foregoing account, it is clear that complex decisions like determining the 

appropriateness of a test or the mechanism to weigh and extract information from study in 

the clinical context would be quite arduous for current computational algorithms. A 

physician uses his tacit and codified knowledge of cardiac physiology to target 

measurements in end-systole and end-diastole and integrates these measurements in a mental 

model. A deep learning technique may not be programmed to extrapolate the knowledge of 

cardiac physiology, but rather depend on mundane features that may not make intuitive sense 

beyond the data sets. It is astounding how expeditiously physicians learn incipient 

pathologies and disease presentations. We develop a hierarchical pattern of new knowledge 

representation based on association with previous knowledge. This allows us to quickly 

identify the uniqueness of a new case. Deep learning techniques currently cannot relegate 

such cognizance hierarchically; most correlations between sets of features are flat or 

nonhierarchical, as if in a simple, unstructured list, with every feature often treated with 

similar priority.12 Thus, unlike human intelligence, deep learning cannot yet integrate prior 

knowledge effectively (at least, in the same way as a human), and in the absence of large 

data sets, it would be difficult to train the network to correctly identify rare anomalies. That 

said, it is worth considering that the most appropriate approach used by machine leaning 

techniques to reach their decisions may not always follow the same steps that are often used 

by humans. Clearly, this is an area where cross talk between new cognitive, unsupervised, 

deep learning, and reinforcement learning approaches may be especially paramount for 

future development.

In summary, the work presented by Zhang and colleagues represents a ladder in the right 

direction; however, it is still a long journey ahead. In the current time, the best use of the 

technology would be to free up time for physicians from repetitive low-level and uneventful 

activities like measurements, data preparation, standardization, and quality control to more 

direct time spent in higher calibers of interpretation, patient care, and medical decision 

making. This will perhaps allow physicians to be more interactive and experiential in 

answering diagnostic questions, and communicating the findings optimally to teams, a key 

ingredient of good patient care. Moreover, such strategies can embolden the patient-doctor 

relationships and overcome any engineered approaches that carry the risks of dehumanizing 
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care. A well-functioning patient-physician encounter is an essential part of healing, in 

particular, for chronic disorders where the skills of physicians and diagnostic tests can 

influence patients’ objective and subjective measures of well-being.13,14 Perhaps by 

efficaciously integrating the automated measurements and interpretations, the human 

physician will continue to do what machines are incapable of (or at least, not yet good at), 

bring higher wisdom in personalized care, foster patient engagement, and motivate patients 

for much needed chronic lifestyle behavior changes.
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Figure. Trends in artificial intelligence techniques in echocardiography based on publications in 
PubMed.
echo indicates “echocardiography” or “echocardiogram” or “cardiac ultrasound”; FE, 

“feature extraction” or “feature engineering”; ML, “machine learning”; DL, “deep learning”; 

“+,” logical AND. PubMed publication counts obtained using the EUtilsSummary() function 

in the R package “RISmed” (https://CRAN.R-project.org/package=RISmed).
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