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Abstract

High dimensional single-cell analyses have improved the ability to resolve complex mixtures of 

cells from human disease samples; however, identifying disease-associated cell types or cell states 

in patient samples remains challenging due to technical and inter-individual variation. Here we 

present Mixed-effects modeling of Associations of Single Cells (MASC), a reverse single cell 

association strategy for testing whether case-control status influences the membership of single 

cells in any of multiple cellular subsets while accounting for technical confounders and biological 

variation. Applying MASC to mass cytometry analyses of CD4+ T cells from the blood of 

rheumatoid arthritis (RA) patients and controls revealed a significantly expanded population of 

CD4+ T cells, identified as CD27- HLA-DR+ effector memory cells, in RA patients (OR = 1.7; p 

= 1.1 × 10−3). The frequency of CD27- HLA-DR+ cells was similarly elevated in blood samples 

from a second RA patient cohort, and CD27- HLA-DR+ cell frequency decreased in RA patients 

who responded to immunosuppressive therapy. Mass cytometry and flow cytometry analyses 

indicated that CD27- HLA-DR+ cells were associated with RA (meta-analysis p = 2.3 × 10−4). 

Compared to peripheral blood, synovial fluid and synovial tissue samples from RA patients 

contained ~5-fold higher frequencies of CD27- HLA-DR+ cells, which comprised ~10% of 

synovial CD4+ T cells. CD27- HLA-DR+ cells expressed a distinctive effector memory 

transcriptomic program with Th1- and cytotoxicity-associated features, and produced abundant 

IFN-γ and granzyme A protein upon stimulation. We propose that MASC is a broadly applicable 

method to identify disease-associated cell populations in high-dimensional single cell data.

One Sentence Summary:

Mixed-effects regression of single-cell data accounts for confounding variation and reveals an 

expanded CD4+ T cell population in rheumatoid arthritis.

Introduction

The advance of single cell technologies has enabled investigators to resolve cellular 

heterogeneity with unprecedented resolution. Single cell assays have been particularly useful 

in the study of the immune system, in which diverse cell populations often consisting of rare 

and transitional cell states may play an important role (1). Application of single cell 

transcriptomic and cytometric assays in a case-control study has the potential to reveal 

expanded pathogenic cell populations in immune-mediated diseases.

Rheumatoid arthritis (RA) is a chronic, systemic disease affecting 0.5–1% of the adult 

population, making it one of the most common autoimmune disorders worldwide (2). RA is 

triggered by environmental and genetic risk factors, leading to activation of autoreactive T 

cells and B cells that mediate an autoimmune response directed at the joints (3, 4). CD4+ T 

cells have been strongly implicated in RA pathogenesis (5, 6). For one, the strongest genetic 

association to RA is with the HLA-DRB1 gene within the MHC; these polymorphisms 
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affect the range of antigens that MHCII molecules can bind and present in order to activate 

CD4+ T cells (3, 7, 8). Furthermore, many RA risk alleles outside of the MHC locus also lie 

in pathways important for CD4+ T cell activation, differentiation into effector (Teff) and 

regulatory (Treg) subsets, and maintenance of subset identity (4, 8–12). Defining the precise 

CD4+ T cell subsets that are expanded or dysregulated in RA patients is critical to 

deciphering pathogenesis. Such cell populations may be enriched in antigen-specific T cells 

and may aid in discovery of dominant disease-associated autoantigens. In addition, these 

populations may directly carry out pathologic effector functions that can be targeted 

therapeutically (13).

For many autoimmune diseases, directly assaying affected tissues is difficult because 

samples are only available through invasive procedures. Instead, querying peripheral blood 

for altered immune cell populations is a rapidly scalable strategy that achieves larger sample 

sizes and allows for serial monitoring. Flow cytometric studies have identified alterations in 

specific circulating T cell subsets in RA patients, including an increased frequency of CD28- 

CD4+ T cells (14–16); however, the expansion of CD28- T cells represents one of the 

relatively few T cell alterations that has been reproducibly detected by multiple groups. 

Limited reproducibility may be the consequence of differences in clinical cohorts, small 

sample sizes, methodologic variability, and use of limited, idiosyncratic combinations of 

phenotypic markers (17).

The advent of mass cytometry now allows for relatively broad assessment of circulating 

immune cell populations with >30 markers (18), enabling detailed, multiparametric 

characterization of lymphocyte subsets. This technology provides the potential to define and 

quantify lymphocyte subsets at high resolution using multiple markers. While the discovery 

of novel cellular populations has been enabled by rapid progress in developing sensitive 

clustering methods (19–23), a key challenge that remains is establishing methods to identify 

cell populations associated with a disease. In particular, inter-individual variation and 

technical variation can influence cell population frequencies and need to be accounted for in 

an association framework.

Single cell association studies, with either mass cytometry or single-cell RNA-seq, require 

statistical strategies robust to inter-individual donor variability and technical effects that can 

skew cell subset estimates. For example, mass cytometry studies need to control for 

variability in machine sensitivity, reagent staining, and sample handling that can lead to 

batch effects. Inter-individual differences can lead to real shifts in cell population 

frequencies at baseline, while technical effects can lead to apparent shifts in cell population 

frequencies.

Here we describe a robust statistical method to test for disease associations with single cell 

data called MASC (Mixed-effects modeling of Associations of Single Cells), which tests at 

the single cell level the association between population clusters and disease status. It is a 

‘reverse’ association strategy where the case-control status is an independent variable, rather 

than the dependent variable. This approach enables modeling of technical and inter-

individual variance as random effects, allowing robust detection of disease associated 

cellular populations. We applied MASC to identify T cell subsets associated with RA in a 
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mass cytometry case-control immunophenotyping dataset that we generated focused on 

CD4+ T cells. This high-dimensional analysis enabled us to identify disease-specific 

changes in canonical as well as non-canonical CD4+ T cell populations using a panel of 32 

markers to reveal cell lineage, activation, and function (24, 25). Using MASC, we identified 

a population of memory CD4+ T cells, characterized as CD27- HLA-DR+, which was 

expanded in the circulation of RA patients. Further, we found that CD27- HLA-DR+ T cells 

were enriched within inflamed RA joints, rapidly produced IFN-γ and cytolytic factors, and 

contracted with successful treatment of RA.

Results

Statistical and computational strategy

We acquired single cell data from RA case and osteoarthritis (OA) control samples (Figure 

1), and then applied MASC after stringent quality controls to remove technical artifacts and 

poorly stained cells that are typically observed in mass cytometry data (Materials and 

Methods). First, we objectively defined subsets of cells using an equal number of random 

cells from each sample so that they contributed equally to the subsequent analyses. We then 

used DensVM (26) to cluster the mass cytometry data. Finally, we applied MASC to identify 

differentially abundant cellular populations associated with disease.

MASC is a reverse association strategy that uses single cell logistic mixed-effect modeling 

to test individual cellular populations for association by predicting the subset membership of 

each cell based upon fixed effects (e.g. sex) and random effects (e.g. batch, donor). It 

assumes a null model where the subset membership of each single cell is estimated by fixed 

and random effects without considering the case-control status of the samples. Thus, under 

this null framework, we assume that variation in cluster frequencies are not associated with 

case-control status. We then measured the improvement in model fit when a fixed effect term 

for the case-control status of the sample was included with a likelihood ratio test. This 

framework allowed us to evaluate the significance and effect size of the case-control 

association for each subset while controlling for inter-individual and technical variability.

To ensure that MASC was had appropriately calibrated type 1 error, we ran the analysis 

10,000 times after permuting case-control labels using the dataset described below to 

obviate almost any case-control association that might be present. We then recorded the 

reported p-values for each cluster. Under ideal circumstances, 5% of these 10000 trials 

would achieve a p-value < 0.05 purely by chance in this random a data set; conversely, an 

inflated method would have much greater than 5% of trials obtaining a p-value < 0.05. This 

approach demonstrated that MASC has only a modestly inflated type I error rate for the 19 

clusters in the dataset, with 6.5% of trials obtaining p<0.05 (Figure S1A). We found that 

including both donor and batch random effects was critical; eliminating random effects in 

the model led to highly inflated p-values with 66.1% of trials obtaining p<0.05 (Figure 

S1B). As an alternative and frequently used strategy, we also tested a simple binomial test 

for case-control association. This approach is limited in our view as it fails to model donor 

specific and technical effects. Unsurprisingly, we found that this commonly used approach 

produced highly inflated results in comparison to MASC, with 65.7% of trials obtaining 

p<0.05 (Figure S1C).
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Experimental strategy

We applied MASC to mass cytometric analysis of memory CD4+ T cells that were 

magnetically isolated from peripheral blood mononuclear cells from patients with 

established RA (cases) and non-inflammatory controls (Table 1). We either (1) rested the 

cells for 24 hours or (2) stimulated the cells with anti-CD3/anti-CD28 beads for 24 hours 

before analyzing cells with a 32-marker mass cytometry panel that included 22 markers of 

lineage, activation, and function (Table S1). This experimental design allowed us to 

interrogate immune states across cases and controls and also capture stimulation-dependent 

changes. After stringent quality control measures, we analyzed a total of 26 RA cases and 26 

controls. We randomly sampled 1000 cells from each of the 52 samples so that each sample 

contributed equally to the analysis, preventing samples that happened to have more cells 

captured by the mass cytometry assay from being overrepresented. We projected resting and 

stimulated T cell data separately using the Barnes-Hut modification to the t-SNE (t-
distributed stochastic neighbor embedding) algorithm (60) so that all cells from all samples 

were projected into the same two dimensions using all markers in the panel with the 

exception of CD4 and CD45RO, which we used to gate CD4+ memory T cells for analysis.

Clustering Approach

Projecting the data into t-SNE space revealed areas of local density that consisted of 

predominantly cells from RA or OA samples (Figure S2). We wanted to identify CD4+ 

memory T cell populations in an unsupervised way. Currently, clustering high dimensional 

single cell data (such as mass cytometry or single cell RNA-seq data) is an active area of 

research, and there is no consensus on the best clustering strategy. Hence we objectively 

considered multiple clustering algorithm options. We evaluated DensVM (26), FlowSOM 

(27), and Phenograph (23), which were identified as among the best performing in a recent 

benchmarking comparison of clustering methods for high dimensional cytometry data (28). 

The DensVM method uses an t-SNE projection of the dataset to first estimate the number of 

clusters by searching for local densities on the projection with varying bandwidths before 

classifying cells based on the similarity of expression. Phenograph works by creating a 

graph representing phenotypic similarities between cells and identifying clusters using 

Louvain community detection. The FlowSOM algorithm builds a self-organizing map with a 

minimum spanning tree to detect populations, then classifies cells in a meta-clustering step 

using consensus hierarchical clustering. We clustered cells with all three methods using the 

same selection of markers that was used to create t-SNE projections.

After running all three algorithms on the dataset, we identified 19, 19, and 21 clusters for 

DensVM, FlowSOM, and Phenograph respectively. An ideal clustering algorithm would 

define clusters that are distinct from each other in terms of marker intensities. However, 

cluster intensity differences should not be driven by batch effects; that is, clusters should not 

be disproportionately constituted by cells from any individual batch.

In order to quantify the extent to which clustering approaches defined clusters with distinct 

marker intensities, we utilized an Marker Informativeness Metric (MIM) (Materials and 

Methods). All three methods were similar in their ability to generate clusters with distinct 

marker intensities (Figure S3A). Then, to determine whether those intensity differences were 
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dependent on batch differences, we used Cluster Informativeness Metric (CIM) based metric 

to assess whether clusters were disproportionately represented by individual batches 

(Materials and Methods). Here, we observed that Phenograph and FlowSOM were much 

more sensitive to batch effects than clusters identified by DensVM (p < 2 × 10−3, Wilcoxon 

rank sum test, Figure S3B). Consistent with this quantitative assessment, we observed that in 

our data FlowSOM and Phenograph produced clusters that constituted exclusively of or 

dominated by cells from a specific batch. Thus, we chose to analyze clusters identified by 

the DensVM algorithm going forward.

Landscape of CD4+ Memory T Cell Subsets

We observed substantial diversity among resting CD4+ memory T cells, consistent with 

previous reports demonstrating the breadth of phenotypes in CD8+ T cells and CD4+ T cells 

(29–31). We identified 19 distinct subsets in resting (R) memory CD4+ T cells (Figure 2A, 

S4A). Central memory T cells (TCM) segregated from effector memory T cells (TEM) by the 

expression of CD62L (Figure 2B). Five subsets (subsets 1 – 5) of TCM cells, all expressing 

CD62L, varied in the expression of CD27 and CD38, highlighting the heterogeneity within 

the TCM compartment (Figure 2E). We identified two Th1 subsets (subsets 8 and 12) as well 

as two Treg subsets (subsets 7 and 11). Both Treg subsets expressed high levels of CD25 and 

FoxP3, and subset 11 also expressed HLA-DR, reflecting a known diversity among Treg 

populations in humans (32).

When applied to the stimulated CD4+ T cell data in a separate analysis, DensVM identified 

21 subsets (Figure 2C, S4B). As expected, certain activation markers, such as CD25 and 

CD40L, were broadly expressed across most subsets after stimulation (Figure 2D). Mass 

cytometry robustly detected cytokine production from stimulated CD4+ memory T cells 

(Figure 2D, 2F). Activated effector cells identified by the production of IL-2 were separated 

into three groups (subsets 1 – 3) according to relative expression of TNF. Cytokine 

expression after stimulation also improved the ability to resolve certain CD4+ T effector 

subsets, such as Th17 cells (subset 15) and Th1 cells (subset 12). However, we were unable 

to resolve the Treg subtypes that were observed in the resting T cells; after stimulation, all 

CD25+ FoxP3+ cells were grouped together (subset 21). The set of cells that did not activate 

after stimulation (subsets 16, 17, and 19) were easily identified by the lack of expression of 

activation markers such as CD25, CD40L, and cytokines, and the retention of high CD3 

expression.

Identifying Populations that are Enriched or Depleted in RA Samples

We next sought to identify subsets that were significantly overrepresented or 

underrepresented in patient cells. The frequency of RA cells in each subset ranged from 

36.7% to 63.6% in the resting state, and 38.9% to 65.7% in the stimulated state (Table S2, 

Figure S5A). Visualizing the density of the t-SNE projections revealed that related cells 

clustered into dense groups both at rest and after stimulation (Figure 2B, 2D), and plotting t-

SNE projections of cells from cases and controls separately while coloring by density 

c6learly suggested differential abundance of RA cells among clusters (Figure S2). 

Accounting for subject-specific and batch-specific random effects with MASC (Materials 

and Methods), we observed three populations with significantly altered proportions of cells 
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from cases in the resting T cell data. Most notably, we observed enrichment in subset 18 (p = 

5.9 × 10−4 Table 2, Figure 3A); this subset consisted 3.1% of total cells from cases 

compared to 1.7% of cells from controls and achieved an odds ratio (OR) of 1.9 (95% 

confidence interval [CI] = 1.3 – 2.7). Conversely, subset 7 (p = 8.8 × 10−4, OR = 0.6, 95% 

CI = 0.5 – 0.8) and subset 12 (p = 2.0 × 10−3, OR = 0.5, 95% CI = 0.4 0.8) were 

underrepresented for RA cells.

To confirm the robustness of this analytical model, we conducted a stringent permutation 

test that was robust to potential batch effects. To control for batch, we reassigned case-

control labels randomly to each sample, retaining the same number of cases and controls in 

each batch. For each T cell subset we recorded the number of case cells after randomization 

to define a null distribution. In the real data, we observed that 753 out of the 1184 cells in 

subset 18 were from case samples. In contrast, when we permuted the data we observed a 

mean of 550 cells and a standard deviation of 63 cells from case samples. In only 93 out of 

100,000 permutations did we observe more than 753 cells from case samples in the 

randomized data (permutation p = 9.4 × 10−4, Table S2). We applied permutation testing to 

every subset and found that the p-values produced by permutation were similar to p-values 

derived from the mixed-effects model framework (Spearman’s r = 0.86, Figure S5B, S5C). 

When we considered the subsets identified as significant by MASC, both subsets 18 

(permutation p = 9.4 × 10−4) and 7 (permutation p = 1.8 × 10−4) retained significance 

whereas subset 12 demonstrated nominal evidence of case-control association (permutation 

p = 1.3 × 10−2).

Next, for each resting T cell subset, we identified corresponding subsets in the stimulated T 

cell dataset using a cluster centroid alignment strategy to calculate the distance between 

subsets across datasets (Materials and Methods). Subset 18 in the resting dataset was most 

similar to subset 18 in the stimulated dataset, while subset 7 in the resting dataset was most 

similar to subset 21 in the stimulated dataset (Figure S5D, S5E). Applying MASC, we 

observed case-control association for subset 18 in the stimulated data (p = 1.2 × 10−3, OR = 

1.7, 95% CI = 1.2 – 2.2), while subset 21 (p = 0.55) was not significant in the stimulated 

data (Table 2, Figure 3B). We identified one additional population subset that was significant 

in the stimulated dataset: subset 20 (p = 1.7 × 10−3, OR = 1.7, 95% CI = 1.2 − 2.3) (Table 

S3).

We wanted to ensure that the results we observed were not an artifact of using DensVM to 

cluster the cytometry data. When we used Phenograph (23) and FlowSOM (27) to cluster the 

same mass cytometry dataset, we observed a CD27-, HLA-DR+ cluster with either method 

(Figure S6A, S6C) with association to RA by MASC (Figure S6B, S6D). We also assessed 

how analysis by MASC compared to Citrus (43), an algorithm that uses hierarchical 

clustering to define cellular subsets and then builds a set of models using the clusters to 

stratify cases and controls. When applied to the same case-control resting dataset, Citrus was 

unable to produce models with an acceptable cross-validation error rate, regardless of the 

method used (Figure S7).
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CD27- HLA-DR+ CD4+ Effector Memory T Cell Expansion in RA

After noting that subset 18 demonstrated robust association with RA, we interrogated the 

key features of this population. The lack of CD62L expression iin subset 18 ndicates that 

this subset is an effector memory T cell population. To define the markers that best 

differentiated this subset from other cells, we calculated the MIM for the expression of each 

marker in the subset for both the resting and stimulated datasets (Materials and Methods, 

Figure 4A). The expression of HLA-DR and perforin were notably increased in subset 18 

compared to all other cells, while the expression of CD27 was decreased in this subset 

(Figure 4B). We observed that gating on CD27 and HLA-DR largely recapitulated subset 18 

in both the resting cells and the stimulated cells (Figure 4C and 4D), with an F measure of 

0.8 and 0.7 respectively (Materials and Methods). Although HLA-DR is a known to be 

expressed on T cells in response to activation, it takes several days to induce strong HLA-

DR expression (33). Thus, it is likely that cells in subset 18 expressed HLA-DR prior to 

stimulation, such that analyses of both resting and stimulated cells identified the same HLA-

DR+ CD27- effector memory T cell population.

In order to confirm the expansion of the CD27- HLA-DR+ T cell population in RA patients 

that we observed by mass cytometry, we evaluated the frequency of CD27- HLA-DR+ T 

cells in an independent cohort of 39 seropositive RA patients and 27 non-inflammatory 

controls using conventional flow cytometry (Table 1). We determined the percentage of 

memory CD4+ T cells with a CD27- HLA-DR+ phenotype by gating individual samples 

from each group (Figure 3C, Figure S8A, Figure S9). Consistent with the mass cytometry 

analysis, CD27- HLA-DR+ cells were significantly expanded in the RA patient samples (p = 

0.044, one-tailed t test, Shapiro Wilk normality test p > 0.52, Figure 3D). The frequency of 

this subset was 0.8% in controls and 1.7% in RA samples, which is similar to the two-fold 

enrichment we observed in the mass cytometry data. We then considered the mass cytometry 

and flow cytometry association results together in a meta-analysis, confirming that CD27- 

HLA-DR+ cells significantly associated with RA (p = 2.3 × 10−4, Stouffers Z-score method, 

Table 2).

To assess the effect of RA treatment on CD27- HLA-DR+ cell frequency, we quantified 

CD27- HLA-DR+ cell frequencies in 23 RA patients before and 3 months after initiation of 

a new medication for RA. We dichotomized patients as those who experienced a clinical 

response, defined as a reduction in CDAI (Clinical Disease Activity Index) (61) scores 

(ΔCDAI-), versus those that did not, defined as an increase in CDAI scores (ΔCDAI+). We 

observed that changes in CD27- HLA-DR+ cell frequency tracked with clinical response to 

treatment initiation (p = 3.49×10−4, Wilcoxon signed-rank test, Figure 5A). Specifically, in 

the 18 ΔCDAI- patients, the frequency of CD27- HLA-DR+ cells significantly reduced by 

0.7 fold; in contrast, the 5 ΔCDAI+ patients in this same trial had an 1.8-fold increase in 

CD27- HLA-DR+ cells (p = 0.006, Wilcoxon signed-rank test, Figure S10A). We observed a 

significant difference in the CD27- HLA-DR+ frequency fold-change between patients 

experiencing a CDAI reduction versus not (p = 0.02, Wilcoxon rank sum test, Figure S10B). 

The decrease in frequency of CD27- HLA-DR+ cells in patients responding to treatment 

escalation was accompanied by a slight increase in the frequency of CD27+ HLA-DR- cells: 

CD27+ HLA-DR- cells represented an average of 86.2% of CD4+ memory T cells before 
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treatment, and an average of 87.9% of CD4+ memory T cells afterwards (p = 0.009, 

Wilcoxon signed-rank test, Figure S10C). These results confirm that CD27- HLA-DR+ 

CD4+ T cells were expanded in the circulation of RA patients and decreased with effective 

disease treatment.

To determine whether CD27- HLA-DR+ T cells were further enriched at the sites of 

inflammation in seropositive RA patients, we evaluated T cells in inflamed synovial tissue 

samples obtained at the time of arthroplasty (Table 1) and in inflammatory synovial fluid 

samples from RA patients. In a set of 9 synovial tissue samples with lymphocytic infiltrates 

observed by histology, the frequency of CD27- HLA-DR+ cells was significantly increased 

5-fold (p < 0.01, Wilcoxon rank-sum, median 10.5% of memory CD4+ T cells) compared to 

blood (Figure 5B). Notably, in 2 of the tissue samples, >20% of the memory CD4+ T cells 

displayed this phenotype. CD27- HLA-DR+ cells were similarly expanded in synovial fluid 

samples from seropositive RA patients (p < 0.001, Wilcoxon rank-sum, median 8.9% of 

memory CD4+ T cells, n=8) Thus, CD27- HLA-DR+ T cells are enriched at the primary 

sites of inflammation in RA patients.

Functional and Transcriptional Features of CD27- HLA-DR+ CD4+ Effector Memory T Cells

To evaluate the potential function of the CD27- HLA-DR+ cell subset, we performed RNA-

seq on CD27- HLA-DR+ CD4+ T cells with other effector populations to identify 

transcriptomic signatures for this subset (Figure S8B–D). We sorted and sequenced the 

following CD4+ T cell populations: naïve CD4+ T cells (TN), central memory CD4+ T cells 

(TCM), regulatory CD4+ T cells (TReg), and all four CD27−/+ HLA-DR−/+ subsets – 

defined as DR+27+ Effector T cells (DR+27+), DR+27- Effector T Cells (DR+27-), DR-27+ 

Effector T Cells (DR-27+), and DR-27- Effector T Cells (DR-27-) – from peripheral blood 

mononuclear cells (PBMCs) from 7 RA cases and 6 OA controls. In total we generated 1.1 

billion reads for 90 samples. We aligned reads with Kallisto (34) and applied stringent 

quality controls to remove genes that lacked sufficient expression (Materials and Methods), 

ultimately resulting in a set of 15,234 genes for analysis.

We performed principal components analysis (PCA) on the expression data (Figure 6A). 

Strikingly, the first PC, capturing 4% of the total variation, separated cell types along a naïve 

to effector axis, with the CD27- HLA-DR+ subset representing the extreme case with the 

highest PC1 values, and naïve T cells with the lowest PC1 values. We examined the genes 

with the highest PC1 loadings, and found that PC1 was associated negatively with CCR7 
and positively with CXCR3 and CCR5. This finding was consistent with the elevated 

expression of CXCR3 and CCR5 we observed in the mass cytometry analyses of CD27- 

HLA-DR+ cells. We note that CXCR3 and CCR5 are both chemokine receptors associated 

with a Th1 phenotype. In addition, PRF1 (perforin), a cytotoxic factor, was also strongly 

associated with PC1. The extreme position of CD27- HLA-DR+ cells along the continuum 

of CD4+ T cells suggested a possible late or terminal effector memory phenotype. To further 

explore this naïve to effector gradient, we used the gene loadings along PC1 to perform gene 

set enrichment analysis (GSEA) and identify the pathways that were most associated. 

Intriguingly, the naïve to CD27- HLA-DR+ axis was strongly correlated with naïve vs 

effector and natural killer (NK) vs CD4+ T cell gene signatures (Figure 6B).
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The association of CXCR3 and CCR5 with PC1 prompted us to examine the expression of 

Th1-associated genes in these cells. The effector memory cell populations showed increased 

expression of multiple Th1-associated genes, including IFNG (IFN-γ) and TBX21 (Tbet), 

compared to naïve, Treg, and central memory cells. In addition, expression of these Th1-

associated genes was higher in CD27- HLADR+ compared to CD27+ HLADR- effector 

memory cells, which constituted the majority of the effector memory T cell pool (Figure 

6C). In contrast, cytokines characteristic of other polarized Th subsets (IL17A, IL4, IL21, 

TGFB1) and transcription factors associated with other Th subsets (RORC, GATA3, BCL6, 

FOXP3) were not elevated in CD27- HLA-DR+ cells compared to other effector populations 

(Figure S11A). We noted that the transcription factor CIITA was also increased in CD27- 

HLA-DR+ cells (Figure 6C). CIITA is well-known for its role as a regulator of MHC class 

II; indeed, we observed that targets of CIITA such as HLA genes were significantly 

overexpressed in the CD27- HLA-DR+ population compared to other populations (Figure 

S11B).

As the expression of PRF1 was positively associated with PC1, we wanted to assess the 

relationship between the expression of cytotoxic gene programs and the naïve to effector 

PC1 gradient. We used gene set enrichment analysis (GSEA) to query whether NK cell 

associated genes were upregulated in the CD27-HLA-DR+ population. Specifically, we 

ranked genes by their degree of differential expression, comparing expression in CD27-

HLA-DR+ versus that in all other cell types. For NK cell associated genes, we used the 

previously defined geneset from MSigDB that defines genes upregulated in NK cells versus 

CD4+ T cells. Indeed, genes that were highly expressed in NK cells similarly showed high 

expression in CD27- HLA-DR+ cells, while genes with low expression in NK cells showed 

similarly low expression in CD27- HLADR+ cells (Table S4). Consistent with the 

enrichment results, a set of genes characteristically associated with cytolytic cells, including 

PRF1, GZMB, GZMA, GNLY, and NKG7 were all increased in expression in CD27- 

HLADR+ cells compared to most other T cell populations analyzed (Figure 6D). These 

results indicate that CD27- HLA-DR+ cells express a transcriptomic signature characteristic 

of cytotoxic cells.

We also evaluated the production and expression of cytokines and cytolytic factors at the 

protein level by intracellular flow cytometry. We assessed production of effector molecules 

by cells after in vitro stimulation with PMA + ionomycin, a stimulation method that readily 

reveals T cell capacity for cytokine production. Consistent with RNA-seq analyses, CD27- 

HLA-DR+ cells also more frequently expressed perforin (p = 0.031, one-tailed Wilcoxon 

signed-rank test) and granzyme A (p = 0.015, one-tailed Wilcoxon signed-rank test), than 

did CD27+ HLA-DR- cells, which constitute the majority of memory CD4+ T cells. In 

addition, CD27- HLA-DR+ cells produced IFN-γ at a much higher frequency (p = 0.009, 

one-tailed Wilcoxon signed-rank test, Figure 6E). Percent positivity for each marker was 

determined by selecting an expression level threshold to determine positive staining (Figure 

S12). Taken together, broad analyses of gene expression and targeted measures of effector 

molecule production at the protein level indicated that CD27 HLA-DR+ T cells are a Th1-

skewed T cell population capable of producing cytotoxic molecules.
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Discussion

Mass cytometry has been successfully applied to decipher the heterogeneity of human T 

cells in multiple settings, including for the identification of disease-specific changes to 

circulating immune cell populations and mapping of developmental pathways (29, 35–38). It 

and other emerging single cell strategies offer a promising avenue to characterize the T cell 

and other immunological features of a wide-range of diseases in humans. However, 

successful application of mass cytometry on a larger scale (>20 samples) to conduct 

association studies on clinical phenotypes in humans has been limited thus far (39–42), in 

part due to the limited availability of effective association testing strategies.

Although there are many approaches to cluster single cell data (19–23, 26, 27), extension of 

these methods to perform case-control association testing is not straightforward. The 

simplest strategy would be to define subsets of interest by clustering the cells and then 

comparing frequencies of these subsets in cases and controls with a univariate test such as a 

t-test or a non-parametric Mann-Whitney test. While commonly used in flow cytometry 

analysis, this approach is dramatically underpowered, as it relies upon reducing single-cell 

data to potentially inaccurate per-sample subset frequencies.

In contrast, our methodology takes full advantage of single cell measurements by using a 

“reverse-association” framework to test whether case-control status influences the 

membership of a given cell in a population - that is, each single cell was treated as a single 

event. However, these cells are not actually entirely statistically independent. Failing to 

account for dependencies, for example by using a binomial test or not accounting for 

random effects, can result in considerably inflated statistics and irreproducible associations 

(Figure S1). Using a mixed-effects logistic regression model allowed us to account for 

covariance in single cell data induced by technical and biological factors that could 

confound association signals (Figure 1, Figure S1B), without inflated association tests. 

MASC also allows users to utilize technical covariates that might be relevant to a single cell 

measurement (e.g. read depth per cell for single cell RNA-seq or signal quality for mass 

cytometry) that might influence cluster membership for a single cell.

We note that Citrus, an association strategy to automatically highlight statistical differences 

between experimental groups and identify predictive populations in mass cytometry data 

(43), was unable to identify the expanded CD27- HLA-DR+ population. We believe that our 

methodology compared favorably to Citrus because it incorporated both technical covariates 

(e.g. batch) and clinical covariates when modeling associations, a key feature when 

analyzing high-dimensional datasets of large disease cohorts. Additionally, the 

agglomerative hierarchical clustering framework in Citrus substantially increased the testing 

burden and limited power.

Although we found that clustering with DensVM outperformed FlowSOM and Phenograph 

on our data (Figure S3), we want to emphasize that many clustering methods have emerged 

to analyze both cytometry and single cell RNA-seq data; clustering single cell data remains 

an active field of research (44, 45). There continues to be controversy as to the best 

strategies, most appropriate metrics, and the optimal parameter choices (44, 46–48). 
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Available clustering approaches utilize a variety of methods, such as graph-based 

community detection, self-organizing maps (27), and density-based clustering (20, 23, 49). 

As neural networks and as a subclass, autoencoders, have been proven to be powerful 

general nonlinear models, we implemented an autoencoder-based clustering approach that 

we tested on our datasets. We found this clustering method also had potential, and should be 

further investigated in the future (Figure S13). As different clustering strategies may be more 

appropriate for different datasets, we have implemented MASC specifically to allow for 

different clustering options based on user preference.

The CD27- HLA-DR+ T cells identified by MASC in blood samples from RA patients were 

further enriched in both synovial tissue and synovial fluid of RA patients. The accumulation 

of these cells in chronically inflamed RA joints, combined with lack of CD27, suggests that 

these cells have been chronically activated. Loss of CD27 is characteristic of T cells that 

have been repeatedly activated, for example T cells that recognize common restimulation 

antigens (50–52). Importantly, the broader CD27- CD4+ T cell population did not itself 

differ in frequency between RA patients and controls, in contrast to the expanded population 

of CD27- HLA-DR+ cells identified by MASC. We hypothesize the CD27- HLA-DR+ T 

cell population in RA patients may be enriched in RA antigen-specific T cells, offering a 

potential tool to identify relevant antigens in RA.

Expression of HLA-DR suggests recent or continued activation of these cells in vivo. The 

well-known HLA class II association to RA may also suggest an important role in disease 

susceptibility for this subset. Despite the suspected chronic activation of these cells, CD27- 

HLA-DR+ cells did not appear functionally exhausted. CD27- HLA-DR+ cells rapidly 

produced multiple effector cytokines upon stimulation in vitro, with an increased 

predisposition to IFN-γ production. These cells also showed increased expression of 

cytolytic molecules such as granzyme A and perforin on both the transcriptomic and 

proteomic level.

CD4+ cytotoxic T cells expressing granzyme A and perforin, also with a CD27- phenotype, 

are reported to be expanded in patients with chronic viral infections (53). Of note, CD4+ 

cells that are perforin+ and granzyme A+ have been observed in RA synovial samples (54, 

55) and other chronic inflammatory conditions (56, 57). Interestingly, cytolytic CD4+ T 

cells lack the capacity to provide B cell help, suggesting that this is a distinct population 

from the expanded T peripheral helper cell population in seropositive RA (13, 55). These 

findings nominate CD27- HLA-DR+ T cells as a potential pathogenic T cell population that 

may participate in the chronic autoimmune response in RA.

Although we were able to detect significant associations between the frequency of CD27- 

HLA-DR+ cells and clinical response (Figure 5A), we recognize the need for a larger study 

to detect other subtle subphenotypic associations, such as association with specific 

therapeutics or disease activity (Figure S14). To this end, larger prospective cohorts with 

deep immunophenotyping of CD4+ T cells in blood and tissue will be critical.

We note that this study has certain limitations. First, the degree of expansion of CD27- 

HLA-DR+ T cells in the periphery is modest and varies between individuals. While we were 
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able to recover the majority of cells identified as expanded by MASC in our mass cytometry 

experiments using CD27 and HLA-DR as markers; we note that the expression of cells has 

some degree of heterogeneity (Figure S15). More fine-grained immunophenotyping may 

help to refine phenotypes that even more specifically pinpoint the disease-associated T cell 

population. While we have characterized these cells as effector memory CD4+ T cells that 

produce molecules associated with cytotoxicity and Th1 phenotype, further characterization 

is needed in future studies. For example, we assigned an effector memory phenotype to the 

CD27- HLADR+ cell subset based on upon mass cytometry data; however, the mass 

cytometry panel did not specifically measure the expression of CD45RA. While this would 

appear to leave open the possibility that these cells might belong to a TEMRA (CD45RO+ 

CD45RA+) subset, we note that our sorting strategy for cells prior to assay by mass 

cytometry specifically excluded CD45RA+ cells and consider this possibility unlikely. In 

addition, our study focused exclusively on CD45RO+ memory CD4+ T cells, thus we have 

not assessed other CD4+ T cells populations that may also have cytotoxic features, including 

T effector memory CD45RA+ (TEMRA) cells (62). A broader cytometric assessment of T 

cell and other immune cell phenotypes in RA will be of interest in subsequent studies. Also, 

we did observe that the mRNA and protein expression of specific markers was not always 

concordant. Applying more recently developed single cell techniques that ascertain protein 

and mRNA expression simultaneously would better describe the dynamics of CD27- HLA-

DR+ T cells in response to stimulation (63, 64). We anticipate that MASC will be applied 

test for case-control associated differential abundance across multiple cell types in the 

future.

In summary, the MASC single-cell association modeling framework identified a Th1-

skewed cytotoxic effector memory CD4+ T cell population expanded in RA using a case-

control mass cytometry dataset. The MASC method is adaptable to any case-control 

experiment in which single cell data are available, including flow cytometry, mass 

cytometry, and single cell RNA-seq datasets. Although current single cell RNA-seq studies 

are not yet large scale, ongoing projects may benefit from using the MASC framework in 

case-control testing, or testing for other clinical subphenotypes such as specific treatment 

response or disease progression.

Materials and Methods

Study Design

The objective of this research study was to profile immune subsets in peripheral blood 

samples from RA patients and osteoarthriris (OA) controls to identify disease-related 

alterations or changes in frequency among CD4+ T cells.

Human subject research was performed in accordance with the Institutional Review Boards 

at Partners HealthCare and Hospital for Special Surgery via approved protocols (Partners 

HealthCare Protocol 2014P00255) with appropriate informed consent as required. Patients 

with RA fulfilled the ACR 2010 Rheumatoid Arthritis classification criteria, and electronic 

medical records were used to ascertain patients’ rheumatoid factor and anti-CCP antibody 

status, C-reactive protein level, and medication use. Synovial tissue samples for mass and 

flow cytometry were collected from seropositive RA patients undergoing arthroplasty at the 
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Hospital for Special Surgery, New York or at Brigham and Women’s Hospital, Boston. 

Samples with lymphocytic infiltrates on histology were selected for analysis. Sample 

inclusion criteria were established prospectively, with the exception of samples that were 

excluded from the study due to poor acquisition by the mass cytometer. The study sample 

size was a result of including all samples that passed quality control and not set 

prospectively.

Synovial fluid samples were obtained as excess material from a separate cohort of patients 

undergoing diagnostic or therapeutic arthrocentesis of an inflammatory knee effusion as 

directed by the treating rheumatologist. These samples were de-identified; therefore, 

additional clinical information was not available.

Blood samples for clinical phenotyping were obtained from consented patients seen at 

Brigham and Women’s Hospital. We performed medical record review for ACPA (anti-

citrullinated protein antibody) positivity according to CCP2 (cyclic citrullinated protein) 

assays, C-reactive protein (CRP), and RA-specific medications including methotrexate and 

biologic DMARDS. For blood cell analyses in the cross-sectional cohort, the treating 

physician measured the clinical disease activity index (CDAI) on the day of sample 

acquisition. For RA patients followed longitudinally, a new disease-modifying antirheumatic 

drug (DMARD) was initiated at the discretion of the treating rheumatologist, and CDAIs 

were determined at each visit by trained research study staff. Blood samples were acquired 

before initiation of a new biologic DMARD or within 1 week of starting methotrexate and 3 

months after initiating DMARD therapy(58). Concurrent prednisone at doses ≤10mg/day 

were permitted. All synovial fluid and blood samples were subjected to density 

centrifugation using Ficoll-Hypaque to isolate mononuclear cells, which were cryopreserved 

for batched analyses.

Sample Preparation for Mass Cytometry

We rapidly thawed cryopreserved PBMCs and isolated total CD4+ Memory T cells by 

negative selection using MACS magnetic bead separation technology (Miltenyi). 

Subsequently, we rested the CD4+ Memory T cells for 24 hours in complete RPMI (Gibco) 

sterile-filtered and supplemented with 15% FBS, 1% Pen/Strep (Gibco), 0.5% Essential and 

Non-Essential Amino Acids (Gibco), 1%Sodium Pyruvate (Gibco), 1% HEPES (Gibco), and 

55μM 2-mercaptoethanol (Gibco). We activated the cells using Human T-Activator CD3/

CD28 Dynabeads (ThermoFisher) at a density of 1 bead:2 cells. At 6 hours prior to 

harvesting (t=18 hours of stimulation), we added Monensin and Brefeldin A 1:1000 (BD 

GolgiPlug and BD GolgiStop). After 24 hours of stimulation, we incubated the cells with a 

rhodium metallointercalator (Fluidigm) in culture at a final dilution of 1:500 for 15 minutes 

as a viability measure. We then harvested cells into FACS tubes and washed with CyTOF 

Staining Buffer (CSB) composed of PBS with 0.5% BSA (Sigma-Aldrich), 0.02% sodium 

azide (Sigma-Aldrich), and 2μM EDTA (Ambion). We spun the cells at 500xg for 7 minutes 

at room temperature. We incubated the resulting cell pellets in 10ul Fc Receptor Binding 

Inhibitor Polyclonal Antibody (eBioscience) and 40ul of CSB for 10 minutes at 4C. The 

samples were then incubated for 30 minutes at 4C on a shaker rack with 1ul of the following 

eighteen CyTOF surface antibodies in a cocktail brought to a volume of 50ul/sample in 
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CSB: Anti-Human CD49D (9F10)-141Pr (Fluidigm), Anti-Human CCR5 (CD195)(–P-6G4) 

- 144Nd (Fluidigm), Anti-Human CD4 (RPA-T4) −145Nd (Fluidigm), Anti-Human CD8a 

(RPA-T8) −146Nd (Fluidigm), Anti-Human CD45RO-147Sm (Brigham and Women’s 

Hospital CyTOF Core), Anti-Human CD28–148Nd (BWH CyTOF Core), Anti-Human 

CD25 (IL-2R- (2A3) - 149Sm (Fluidigm), Anti-Human PD1–151Eu (BWH CyTOF Core), 

Anti-Human CD62L (DREG-56)-153Eu (Fluidigm), Anti-Human CD3 (UCHT1) −154Sm 

(Fluidigm), Anti-Human CD27 (L128) −155Gd (Fluidigm), Anti-Human CD183[CXCR3]

(G025H7)-156Gd (Fluidigm), Anti-Human CCR7–170Er (BWH CyTOF Core), Anti-

Human ICOS-160Gd (BWH CyTOF Core), Anti-Human CD38 (HIT2)-167Er (Fluidigm), 

Anti-Human CD154 (CD40L) (24–31)-168Er (Fluidigm), Anti-Human CXCR5[CD185]

(51505)-171Yb (Fluidigm), and Anti-Human HLA-DR (L243) −174Yb (Fluidigm). We 

washed the cells with 1 ml of CSB and spun at 700xg for 5 minutes at RT. Post spin, we 

aspirated the buffer from pellet and added 1 ml 1:4 ratio of concentrate to diluent of a 

Foxp3 / Transcription Factor Staining Buffer Set (eBioscience) supplemented with 

formaldehyde solution (Sigma-Aldrich #F1268) to a final concentration of 1.6%. We 

incubated the cells at room temperature on a gentle shaker in the dark for 45 minutes. We 

washed the cells with two ml of CSB + 0.3% saponin (CSB-S), and spun at 800xg for 5 

minutes. We incubated the cell pellet with 1ul of the following fourteen intracellular 

antibodies and 10ul of a solution of Iridium (1:25) in CSB-S brought to a total volume of 

100ul for 35 minutes at r.t. on a gentle shaker: Anti-Human IL-4 (MP4–25D2)-142 

(Fluidigm), Anti-Mouse/Human IL-5 (TRFK5) −143Nd (Fluidigm), Anti-Human IL-22 

(22URTI) −150Nd (Fluidigm), Anti-Human TNFα (Mab11) −152Sm (Fluidigm), Anti-

Human IL-2 (MQ1–17H12)-158Gd (Fluidigm), Anti-Human IL21–159Tb (BWH CyTOF 

Core), Anti-Human IFNg (B27) −165Ho (Fluidigm), Anti-Human GATA3–166Er (BWH 

CyTOF Core), Anti-Human IL9–172Yb (BWH CyTOF Core), Anti-Human Perforin (B-

D48)-175Lu (Fluidigm), Anti-Human IL10–176Yb (BWH CyTOF Core), Anti-Human 

IL17A-169Tm (BWH CyTOF Core), Anti-Human Foxp3 (PCH101)-162Dy (Fluidigm), and 

Anti-Human Tbet-164Dy (BWH CyTOF Core). Post-incubation, we washed the cells in 

PBS and spun them at 800xg for 5 minutes. We resuspended the pellet in 1 ml of 4% 

formaldehyde prepared in CSB and incubated the cells for 10 minutes at r.t. on a gentle 

shaker, followed by another PBS wash and spin at 800xg for 5 minutes. We washed the 

pellet in 1ml of MilliQ deionized water, spun at 800xg for 6 minutes, and subsequently 

resuspended the resulting pellet in deionized water at a concentration of 700,000 cells per ml 

for analysis via the CyTOF 2. We transferred the suspensions to new FACS tubes through a 

70μm cell strainer and added MaxPar EQ Four Element Calibration Beads (Fluidigm 

#201078) at a ratio of 1:10 by volume prior to acquisition.

Mass Cytometry Panel Design

We designed an antibody panel for mass cytometry with the goal of both accurately 

identifying CD4+ effector memory T cell populations and measuring cellular heterogeneity 

within these populations. We chose markers that fell into one of five categories to generate a 

broadly informative panel: chemokine receptors, transcription factors, lineage markers, 

effector molecules, and markers of cellular activation and exhaustion (Table S1).
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Mass Cytometry Data Acquisition

We analyzed samples at a concentration of 700,000 cells/ml on a Fluidigm-DVS CyTOF 2 

mass cytometer. We added Max Par 4-Element EQ calibration beads to every sample that 

was run on the CyTOF 2, which allowed us to normalize variability in detector sensitivity 

for samples run in different batches using previously described methods(59). We used 

staining for iridium and rhodium metallointercalators to identify viable singlet events. We 

excluded samples where acquisition failed or only yielded a fraction of the input cells (< 

5%). The criteria for sample exclusion were not set prospectively but were maintained 

during all data collection runs.

As samples were processed and analyzed on different dates, we ran equal numbers of cases 

and controls each time to guard against batch effects. However, as CyTOF data are very 

sensitive to day-to-day variability, we took extra steps to pre-process and normalize data 

across the entire study.

Flow Cytometry Sample Preparation

For flow cytometry analysis of the validation and longitudinal blood cohorts and synovial 

samples, cryopreserved cells were thawed into warm RPMI/10% FBS, washed once in cold 

PBS, and stained in PBS/1% BSA with the following antibodies for 45 minutes: anti-CD27-

FITC (TB01), anti-CXCR3-PE (CEW33D), anti-CD4-PE-Cy7 (RPA-T4), anti-ICOS-PerCP-

Cy5.5 (ISA-3), anti-CXCR5-BV421 (J252D4), anti-CD45RA-BV510 (HI100), anti-HLA-

DR-BV605 (G46–6), anti-CD49d-BV711 (9F10), anti-PD-1-APC (EH12.2H7), anti-CD3-

AlexaFluor700 (HIT3A), anti-CD29-APC-Cy7 (TS2/16), propidium iodide. Cells were 

washed in cold PBS, passed through a 70-micron filter, and data acquired on a BD 

FACSAria Fusion or BD Fortessa using FACSDiva software. Samples were analyzed in 

uniformly processed batches containing both cases and controls.

Flow Cytometry Intracellular Cytokine Staining

Effector memory CD4+ T cells were purified from cryopreserved PBMCs by magnetic 

negative selection (Miltenyi) and rested overnight in RPMI/10%FBS media. The following 

day, cells were stimulated with PMA (50ng/mL) and ionomycin (1μg/mL) for 6 hours. 

Brefeldin A and monensin (both 1:1000, eBioscience) were added for the last 5 hours. Cells 

were washed twice in cold PBS, incubated for 30 minutes with Fixable Viability Dye eFluor 

780 (eBioscience), washed in PBS/1%BSA, and stained with anti-CD4-BV650 (RPA-T4), 

anti-CD27-BV510 (TB01), anti-HLADR-BV605 (G46–6), anti-CD20-APC-Cy7 (2H7), and 

anti-CD14-APC-Cy7 (M5E2). Cells were then washed and fixed and permeabilized using 

the eBioscience Transcription Factor Fix/Perm Buffer. Cells were then washed in PBS/

1%BSA/0.3% saponin and incubated with anti-IFN-γ-FITC (B27), anti-TNF-PerCp/Cy5.5 

(mAb11), anti-IL-10-PE (JES3–9D7) and anti-IL-2-PE/Cy7 (MQ1–17H12) or anti-

granzyme A-AF647 (CB9) and anti-perforin-PE/Cy7 (B-D48) for 30 minutes, washed once, 

filtered, and data acquired on a BD Fortessa analyzer. Gates were drawn to identify singlet T 

cells by FSC/SSC characteristics, and dead cells and any contaminating monocytes and B 

cells were excluded by gating out eFluor 780-positive, CD20+, and CD14+ events.
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Synovial Tissue Processing

Synovial samples were acquired after removal as part of standard of care during arthroplasty 

surgery. Synovial tissue was isolated by careful dissection, minced, and digested with 

100μg/mL LiberaseTL and 100μg/mL DNaseI (both Roche) in RPMI (Life Technologies) 

for 15 minutes, inverting every 5 minutes. Cells were passed through a 70μm cell strainer, 

washed, subjected to red blood cell lysis, and cryopreserved in Cryostor CS10 (BioLife 

Solutions) for batched analyses.

RNA Library Preparation and Sequencing

Seven RA case samples and six OA control samples were flow sorted into the following 

seven subsets for low-input RNA-Sequencing: Central Memory T cells (TCM), Naïve T 

cells (TN), Regulatory T cells (TReg), DR+27+ Effector T cells (DR+27+), DR+27- 

Effector T Cells (DR+27-), DR-27+ Effector T Cells (DR-27+), and DR-27- Effector T Cells 

(DR-27-). We rapidly thawed the case and control samples of cryopreserved peripheral 

blood mononuclear cells, and MACS enriched the samples for CD4+ T cells (Miltenyi). We 

rested the samples overnight in complete RPMI/10% FBS. Following the rest, we prepared 

the samples for fluorescence activated cell sorting (FACS). We washed the cells once in cold 

PBS, and incubated them with eBioscience human FC Receptor Binding Inhibitor (Thermo). 

Subsequently, we stained the samples in PBS/5% FBS for 45 minutes with the following 

antibodies: FITC CD27 (Biolegend), PE CD25 (Biolegend), Pe/Cy7 CD127(IL-7Ra) 

(Biolegend), Brilliant Violet 510 HLA-DR (Biolegend), Brilliant Violet 605 CD45RA 

(Biolegend), APC CD62L (Biolegend), Alexa Fluor 700 CD4 (Biolegend), APC/Cy7 CD14 

(Biolegend), and APC/Cy7 CD19 (Biolegend). Post-stain, we washed the cells in cold PBS, 

passed them through a 70-micron filter, and acquired the samples on a BD FACSAria Fusion 

cytometer. 1000 cells from each subset were sorted and collected into 5ul of TCL Lysis 

Buffer (Qiagen) with 1% b-me. We processed and collected the samples uniformly in 

batches containing both cases and controls, and randomized the samples within the plate. We 

prepared sequencing libraries using the Smart-Seq2 protocol. Sequenced libraries were 

pooled and sequenced with the Illumina HiSeq 2500 using 25bp paired-end reads. We 

removed one outlier with low read depth. The remaining libraries were sequenced to a depth 

of 6–19M reads.

Flow Cytometry Data Analysis

Flow cytometry data were analyzed using FlowJo 10.0.7 (TreeStar Inc.), with serial gates 

drawn to identify singlet lymphocytes by FSC/SSC characteristics. Viable memory CD4+ T 

cells were identified as propidium iodide-negative CD3+ CD4+ CD45RA- cells. We then 

calculated the frequency of various populations from the pool of memory CD4+ T cells.

Gene Expression Quantification

We quantified cDNAs on canonical chromosomes (autosomal, X, Y, and Mitochondrial) in 

Ensembl release 83 with Kallisto v0.43.1 in transcripts per million (TPM). This analysis 

quantified inferred counts and length-normalized expression (TPM) of transcripts. To 

quantify gene expression, we collapsed transcripts mapping to the same HGNC genes 

symbol by summing the TPM values over. We filtered transcripts that were not sufficiently 
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well expressed, omitting those that did not have at least 5 counts in at least 10 samples. This 

resulted in 15,234 well expressed genes, from 27,717 total. For differential expression 

analysis and principal components analysis (PCA), we used log (base 2) transformed TPM 

values.

Principal Component Analysis

Using the gene level log2 TPM expression described above, we selected the top 500 most 

variably expressed genes for PCA, excluding genes with lower than 1 mean or 0.75 standard 

deviation expression. We used the removeBatchEffect function in the R Limma package, 

with default parameters, to regress out donor-specific contributions to gene expression. To 

prevent the absolute range of a strongly expressed gene from dominating the signal in the 

PCA, we scaled gene expression using the base R scale function on the rows of the 

expression matrix. This function centers and scales a vector by subtracting the mean and 

dividing by standard deviation. We then re-normalized the samples by centering and scaling 

the columns, with the same R function. Finally, we used prcomp in R to perform PCA on the 

resulting gene expression matrix.

Correlation Analysis

For individual genes, we computed association of their expression with the proposed 

ordering of cell types, along the naïve to effector gradient. In this association, we modeled 

expression as a linear function of cell type, encoded as an ordinal variable, and donor, one-

hot encoded as a categorical variable. The statistical significance of the association was 

estimated with the lm function in R, followed by adjustment using the Benjamini-Hochberg 

procedure.

Gene Set Enrichment Analysis

We performed gene set enrichment analysis using the R package gage directly on orderings 

defined by previous analyses. To enrich pathways from the PCA results, we used gene 

loadings for each principle component. For differential expression, we used the estimated t 
statistics. In order to produce barcode plots for select pathways, we reanalyzed these 

pathways using the R liger package.

Statistical Analysis

Mixed-effects modeling of Associations of Single Cells (MASC)

Here, we present a flexible method of finding significant associations between subset 

abundance and case-control status that we have named MASC (Mixed-effects modeling of 

Associations of Single Cells). The MASC framework has three steps: (1) stringent quality 

control, (2) definition of population clusters, and (3) association testing. Here we assume 

that we have single cell assays each quantifying M possible markers where markers can be 

genes (RNA-seq) or proteins (cytometry).

Quality control.—To mitigate the influence of batch effects and spurious clusters, we first 

removed poorly recorded events and low-quality markers before further analysis. We 

removed those markers (1) that have little expression, as these markers are not informative, 
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and (2) with significant batch variability. First, we concatenated samples by batch and 

measured the fraction of cells negative and positive for each marker. We then calculated the 

ratio of between-batch variance to total variance for each marker’s negative and positive 

populations, allowing us to rank and retain 20 markers that were the least variable between 

batches. We also removed markers that were either uniformly negative or positive across 

batches, as this indicated that the antibody for that marker was not binding specifically to its 

target. For single-cell transcriptomic data, an analogous step would involve removing genes 

with low numbers of supporting reads or genes whose expression varies widely between 

batches.

Once low-quality markers were identified and removed, we removed events that were likely 

to be artifacts. We first removed events that had extremely high signal for a single marker: 

events that have recorded expression values at or above the 99.9th percentile for that marker 

are removed. These events were considered unlikely to be intact, viable cells. Next, a 

composite “information content” score (eq. 1) for eacI event i was created in the following 

manner: the expression x for each marker M is rescaled from 0 to 1 across the entire dataset 

to create normalized expression values yi for each event i. The sum of these normalized 

expression values was used to create the event’s information content score.

INFOi = ∑m = 1
m = M yi, m 1)

The information content score reflects that events with little to no expression in every 

channel are less informative than events that have more recorded expression. Events with 

low scores (INFOi < 0.05) were considered unlikely to be informative in downstream 

analysis and were removed. In addition, events that derived more than half of their 

information content score from expression in a single channel were also removed (eq. 2):

INFOi ∗ 0.5 < max
m ∈ M

(yi, m) 2)

Potential explanations for these events include poorly stained cells or artifacts caused by the 

clumping of antibodies with DNA fragments. A final filtering step retained events that were 

recorded as having detectable expression in at least Mmin markers, where Mmin may vary 

from experiment to experiment based on the panel design and expected level of co-

expression between channels. The quality control steps described here are specific for mass 

cytometry analysis and will need to be optimized for use with transcriptomic data.

Clustering.—After applying quality control measures to each sample, we combined data 

from cases and controls into a single dataset. It was critical to ensure that each sample 

contributed equal numbers of cells to this dataset, as otherwise the largest samples would 

dominate the analysis and confound association testing. After sampling an equal number of 

cells from each sample, we partitioned these cells into populations using DensVM (26), 

which performs unsupervised clustering based on marker expression. We note that 
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partitioning the data can be accomplished with different clustering approaches – such as 

SPADE or PhenoGraph for mass cytometry data – or even by using traditional bivariate 

gating, as MASC is not dependent on any particular method of clustering (Figure S5)

Association testing.—Once all cells were assigned to a given cluster, the relationship 

between single cells and clusters was modeled using mixed-effects logistic regression to 

account for donor or technical variation (eq. 3). We modeled the age and sex of sample k as 
fixed effect covariates, whereas the donor and batch that cell i belongs to were modeled as 

random effects. The random effects variance-covariance matrix treated each sample and 

batch as independent gaussians. Each cluster was individually modeled. Note that this 

baseline model did not explicitly include any single cell expression measures.

log
Y i, j

1 − Y i, j
= θ j + βclinicalXi, k + (ϕi k) + (κi m) 3)

where Yi,j is the odds of cell i belonging to cluster j, θj is the intercept for cluster j, βclinical 

is a vector of clinical covariates for the kth sample, (ϕi |k) is the random effect for cell i from 

kth sample, (κi |m) is the random effect for cell i from batch m.

To determine if any clusters were associated with case-control status, we included an 

additional covariate that indicated whether the kth sample is a case or control (eq. 4)

log
Y i, j

1 − Y i, j
= θ j + βclinicalXi, k + (ϕi k) + (κi m) + βcaseXi, k 4)

Here Yi,j is the odds of cell i belonging to cluster j, θj is the intercept for cluster j, βclinical is 

a vector of clinical covariates for the kth sample, (ϕi |k) is the random effect for cell i from 

kth sample, (κi |m) is the random effect for cell i from batch m, βcase indicates the effect of 

kth sample’s case-control status.

D = − 2 ∗ ln ( likelihood for null model
likelihood for full model ) 5)

p = 1 − t(v − 2)/2e−t /2

2v/2Γ( v
2 )

6)

We compared the two models using a likelihood ratio test (eq. 5) to find the test statistic D, 

which is the ratio of the likelihoods for the baseline and full models. The term D is 

distributed under the null by a χ2 distribution with 1 degree of freedom, as there is only one 

additional parameter in the full model compared to the null (case-control status). We derived 
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a p-value by comparing test statistic D of the likelihood ratio test to the value of the χ2 

distribution with 1 degree of freedom (eq. 6), allowing us to find clusters in which case-

control status significantly improves model fit. A significant result (p < 0.05 after multiple 

testing correction) indicated that cluster membership for a single cell is influenced by case-

status after accounting for technical and clinical covariates. The effect size of the case-

control association can be estimated by calculating the odds ratio from βcase. If a dataset 

includes multiple groups, then we can test for association between g groups using g-1 

indicator variables. This approach allowed us to capture inter-individual differences between 

donors, as well as model the influence of technical and clinical covariates that might 

influence a cell to be included as a member of one cluster versus another.

Mass Cytometry Data Analysis

We analyzed 50 magnetically sorted peripheral blood samples (26 cases, 24 controls) in the 

resting condition and 52 samples (26 cases, 26 controls) in the stimulated condition by 

CyTOF. Here, we stimulated samples by incubating them with Human T-Activator CD3/

CD28 Dynabeads (ThermoFisher) at a density of 1 bead:2 cells for 24 hours. Two samples 

were only analyzed after stimulation due to low numbers of available PBMCs. We ran 

aliquots of a standard PBMC sample alongside cases and controls with each CyTOF run to 

allow us to measure batch variability directly, as these aliquots should not be biologically 

dissimilar. We then used these data to find markers that had stained poorly or varied 

significantly between batches and removed them analysis. After acquisition, each sample 

was gated to a CD4+, CD45RO+ population using FlowJo 10.1 (TreeStar, USA) and 

combined into a single dataset before analyzing the data using MASC as previously 

described. We performed the data filtration steps requiring cells to demonstrate measurable 

expression (arcsinh-transformed expression > 0) in at least 5 markers (Mmin = 5). This 

removed 3.0–6.0% of all events captured in each sample. We first removed the initial noise 

factor applied to all zero expression values in mass cytometry by subtracting 1 from 

expression values and setting any negative values to 0, then applied the inverse hyperbolic 

sine transform with a cofactor of 5 to the raw expression data, using the following equation: 

y = sinh−1max(x − 1, 0)
5

To partition the data, we first randomly selected 1000 cells from each sample and applied the 

t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Barnes-Hut 

implementation(60)) to the reduced dataset with the following parameters: perplexity = 30 

and theta = 0.5. We did not include channels for CD4 or CD45RO in the t-SNE clustering as 

these markers were only used in gating samples to confirm the purity of CD4 memory T cell 

selection. We performed separate t-SNE projections for resting and stimulated cells. To 

identify high-dimensional populations, we used a modified version of DensVM(26). 

DensVM performs kernel density estimation across the dimensionally reduced t-SNE map to 

build a training set, then assigns cells to clusters by their expression of all markers using an 

SVM classifier. We modified the DensVM code to increase the range of potential 

bandwidths searched during the density estimation step and to return the SVM model 

generated from the t-SNE projection.
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To create elbow plots, we ran DensVM using 25 bandwidth settings evenly spaced along the 

interval [0.61, 5] for the resting data and [0.66, 5] for the stimulated data. We normalized 

marker expression to mean 0 variance 1 in each dataset before calculating the fraction of 

total variance explained by between-cluster variance.

Association testing for each cluster was performed using mixed-effects logistic regression 

according to the MASC method. Donor and batch were included as random-effect 

covariates, donor sex and age was included as a fixed-effect covariate, and donors were 

labeled as either cases (RA) or controls (OA). To confirm the associations found by MASC, 

we conducted exact permutation testing in which we permuted the association between case-

control status and samples within batches 10,000 times, measuring the fraction of cells from 

RA samples that contributed to each cluster in each permutation. This allowed us to build an 

empirical null for the case-control skew of each cluster, and we could then determine for 

each cluster how often a skew equal or greater to the observed skew occurred. We adjusted 

the p-values for the number of tests we performed (the number of clusters analyzed in each 

condition) using the Bonferroni correction.

Cluster Alignment—We aligned subsets between experiments using the following 

strategy: In each experiment, expression data was first scaled to mean zero, variance one to 

account for differences in sensitivity. We used the mean expression value for marker column 

to define a centroid for each cluster in both datasets. For a given cluster in the first dataset 

(query dataset), we calculated the Euclidean distance (eq. 7) between that cluster and cluster 

centroids in the second dataset (target dataset) across all shared markers. The cluster that is 

most similar to the cluster in query dataset is the cluster with the lowest distance in the target 

dataset, relative to all other clusters in that dataset.

dist(q, t) = ∑k = 1
K (qk − tk)2 7)

Here, q refers to the query cluster and t to the target cluster, while qk and tk indicate the 

normalized mean expression of marker k (out of K total markers) in clusters q and t 
respectively.

Marker Informativeness Metric (MIM)—We wanted to determine which markers best 

separated a given population from the rest of the data in a quantitative manner, as finding a 

set of population-specific markers is crucial for isolating the population in vivo. In order to 

do this, we examined the distribution of expression for each marker individually in the entire 

dataset (Q) and the population of interest (P). We then grouped expression values for P and 

Q into 100 bins, normalized the binned vector to 1, and calculated the Kullback-Leibler 

divergence from Q to P for that marker with the following equation:

DKL(P ∥ Q) = ∑i = 1
i = 100Pilog

Pi
Qi
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The divergence score can be interpreted as a measure of how much the distribution of 

expression for a given marker in the entire dataset resembles the distribution of expression 

for that marker in the population of interest. Higher scores represent lower similarity of the 

marker’s expression distributions for P and Q, indicating that the expression profile of that 

marker is more specific for that population. By calculating this score for every marker, we 

can rank and identify markers that best differentiate the population of interest from the 

dataset.

Biaxial Gating and Cluster Overlap—To determine the concordance between biaxial 

gating of CD27- HLA-DR+ cells and cluster 18, we first selected cells that had normalized 

expression values of CD27 < 1 and HLA-DR >= 1. We then calculated an F-measure 

statistic between the cells selected using the CD27 and HLA-DR gates and each cluster 

identified in the resting and stimulated datasets (eq. 8). Here, precision is defined as the 

number of cells in each cluster tested that fall into the CD27- HLA-DR+ gate, while recall is 

defined as the number of cells gated as CD27-HLA-DR+ that are in each cluster.

Fmeasure = 2 × precision × recall
precision + r ecall 8)

Clustering Informativeness Metric (CIM)—We compared clustering sets that 

contained either 19 (FlowSOM and DensVM) or 21 (Phenograph) clusters. We 

independently clustered the resting dataset with Phenograph and FlowSOM using the same 

cells and markers used to cluster the data with DensVM. We set k to 19 for FlowSOM 

clustering to match the number of clusters found by DensVM; for Phenograph, we used the 

default setting of k = 30.

To evaluate quantify the ability of different clustering algorithms to define clusters that was 

explaining marker fluctuations, we defined an information theory based metric to evaluate 

the relative information content captured by each set of clusters in terms of marker intensity. 

We selected this approach since it is separate from the objective functions that the clustering 

algorithms were attempting to optimize.

First, for each cell, we normalized marker intensities so that they summed to one. Then we 

defined a null Qi representing the average normalized intenIity for marker i across all cells. 

We also defined Pi,j which is the mean intInsity of marker i of cells from cluster j. Then for 

each cluster j we calculate their KL divergence for each of the M markers (eq. 9).

DKL, j(P j ∥ Q) = ∑i
M Pi, jln

Pi, j
Qi

9)

A cluster with low divergence from the average expression of markers across the entire 

dataset will capture less marker intensity information than one with a high divergence, as 
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biologically valid clusters will have unique marker profiles that differ greatly from one 

another and from the average marker expression profile.

We defined a similar metric to quantify the extent to which individual batches were 

accounting for differences in cluster composition. In this instance we calculated Pi,j which is 

the proportion of cells from cluIter j that batch i contributed. We also calculate Qi which is 

the proportion oI cells that batch i contributes overall to the dataset. With this definition we 

calculate the KL divergence for each of the M batches (eq. 10).

DKL, j(P . j ∥ Q) = ∑i
M Pi, jln

Pi, j
Qi

10)

A cluster that contains cells with low divergence from the null distribution of cells across 

batches is affected less by batch effects than one with a high divergence score, and a cluster 

completely free of batch effects should have a K-L divergence of zero.

Autoencoder Clustering—We performed clustering analysis using a deep autoencoder 

and a Gaussian Mixture Model (GMM). The autoencoder was designed with an architecture 

of 3 hidden layers, with depths of 8, 2, and 8 nodes, respectively. We trained the model with 

no regularization and 300 epochs. The two modes from the middle hidden layer were then 

used as features to learn a GMM. The number of clusters was chosen a priori to match the 

number discovered in the DensVM analysis. All parameters not specific in this section were 

set to default values.

Meta-Analysis—We used Stouffer’s Z-score method to define a meta-analysis p-value for 

the significant expansion of CD27- HLA-DR+ cells in RA. We converted p-values from the 

resting mass cytometry and flow cytometry analyses to Z-scores, and found a meta-analysis 

Z-score by taking the sum of these scores divided by the square-root of the number of scores 

– which was two, in our case. We then derived a meta-analysis p-value from the Z-score 

using the standard normal distribution.

All analyses were performed using custom scripts for R 3.4.0. We used the following 

packages: flowCore (65) to read and process FCS files for further analysis, lme4 (66) to 

apply mixed-effects logistic regression, ggplot2 (67), and pheatmap (68) for data 

visualization, and cytofkit (69) for the implementation of FlowSOM and Phenograph 

clustering algorithms. RNA-seq analyses were conducted using Kallisto (70) to align reads 

and gage (71) and liger (72) to perform gene set enrichment analysis. The h2o (73) package 

and mclust (74) packages were used to implement the autoencoder clustering method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Mixed-effects modeling of Associations of Single Cells (MASC) overview.
Single cell transcriptomics or proteomics are used to assay samples from cases and controls, 

such as immunoprofiling of peripheral blood. The data is then clustered to define 

populations of similar cells. Mixed-effects logistic regression is used to predict individual 

cell membership in previously defined populations. The addition of a case-control term to 

the regression model allows the user to identify populations for which case-control status is 

significantly associated.
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Figure 2: Diversity of CD4+ memory T cells before and after stimulation.
(A) t-SNE projection of 50,000 resting CD4+ memory T cells sampled equally from RA 

patients (n=24) and controls (n=26). DensVM identified 19 populations in this dataset. (B) 

Same t-SNE projections as in (A) colored by the density of cells on the SNE plot or the 

expression of the markers labeled above each panel. (C) t-SNE projection of 52,000 CD4+ 

stimulated memory T cells sampled equally from RA patients (n=26) and controls (n=26). 

Cells were stimulated for 24 hours with anti-CD3/anti-CD28 beads. (D) Same t-SNE 

projections as in (C) colored by the density of cells on the SNE plot or the expression of the 

markers labeled above each panel. (E) Heatmap showing mean expression of indicated 

markers across the 19 populations found in resting cells. (F) Heatmap showing mean 

expression of indicated markers across the 21 populations found after stimulation. Protein 

expression data are shown after arcsinh transformation. All markers but CD4 and CD45RO 

were used to create t-SNE projections and perform clustering.
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Figure 3: MASC identifies a population that is expanded in RA.
(A, B) Odds ratios and association p-values were calculated by MASC for each population 

identified the resting (A) and stimulated (B) datasets. The yellow line indicates the 

significance threshold after applying the Bonferroni correction for multiple testing. (C) Flow 

cytometry dot plot of gated memory CD4+ T cells from a single RA donor shows the gates 

used to identify CD27− HLA-DR+ memory CD4+ T cells (blue quadrant). (D) Flow 

cytometric quantification of the percentage of CD27−, HLA-DR+ cells among blood 

memory CD4+ T cells in an independent cohort of seropositive RA patients (n = 39) and 

controls (n = 27). Statistical significance was assessed using a one-tailed t-test after 

assessing normality with a Shapiro-Wilk test (p > 0.52).
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Figure 4: CD27 and HLA-DR expression specifically mark the expanded population.
(A) Plot of the Kullback-Liebler divergence for each marker comparing cluster 18 to all 

other cells (grey) in both the resting dataset (red) and the stimulated dataset (blue). (B) 

Density plots showing expression of the five markers most different between cluster 18 cells 

(resting = red, stimulated = blue) and all other cells in the same dataset (black line). (C) 

Left: t-SNE projection of clusters identified in resting dataset; Middle: Same t-SNE 

projection, with cells gated as CD27- HLA-DR+ colored in red; Right: F-measure scores 

were calculated for the overlap between gated cells and each cluster in the resting dataset. 

(D) Left: t-SNE projection of clusters identified in stimulated dataset; Middle: Same t-SNE 

projection, with cells gated as CD27- HLA-DR+ colored in red; Right: F-measure scores 

were calculated for the overlap between gated cells and each cluster in the stimulated 

dataset.
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Figure 5: CD27− HLA-DR+ memory CD4+ T cells are expanded in the blood and joints of 
patients with active RA.
(A) Flow cytometric quantification of the frequency of CD27- HLA-DR+ memory CD4+ T 

cells in 18 RA patients prior to starting a new medication, plotted against change in cell 

frequency after 3 months of new therapy. Treatment significantly reduced CD27- HLA-DR+ 

cell frequency as determined by a Wilcoxon signed-rank test. (B) Flow cytometric 

quantification of the percentage of memory CD4+ T cells with a CD27- HLA-DR+ 

phenotype in cells from seropositive RA synovial fluid (n=8) and synovial tissue (n=9), 

compared to blood samples from RA patients and controls. Blood sample data are the same 

as shown in panel 3d. Significance was assessed using one-tailed t-test after determining 

normality with a Shapiro-Wilk test (p > 0.52) and applying a Bonferroni correction for 

multiple testing.
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Figure 6: Transcriptomic characterization of CD27- HLA-DR+ memory CD4+ T cells identified 
a Th1-skewed cytotoxic phenotype.
RNA-seq characterization of CD627- HLA-DR+ (DR+27-) cells and 6 related CD4+ T cell 

populations: naive T cells (Tnaive), regulatory T cells (Treg), central memory t cells (TCM), 

and three populations of effector memory T cells, CD27+ HLA-DR- (DR-27+), CD27+ 

HLA-DR+ (DR+27+), and CD27- HLA-DR- (DR-27-). (A) PCA plot (top) and PC1 gene 

loadings (bottom) of 90 samples from the 7 CD4+ T cell populations. Cells were colored on 

the PCA plot according to known cell type. Normal confidence ellipses at 1 standard 

deviation were plotted for each cell type. The 300 most positive and 300 most negative PC1 

gene loadings for each cell type were averaged and plotted in the heatmap. Genes relevant to 

the CD27- HLA-DR+ population were labeled. (B) Gene set enrichment analysis was 

performed on all genes, ranked on their PC1 loadings. Two significantly enriched gene sets: 

NK signature (GSE22886 NAIVE CD4 T CELL VS NK CELL DN) and effector memory t 

cell signature (GSE11057 NAIVE VS EFF MEMORY CD4 T CELL) are shown. (C) 

Distribution of log-scaled expression of six canonical Th1 genes: CCR5, CIITA, CXCR3, 

IFNG, TBX21 (Tbet), and TNF. Populations are ordered by PC1 loading values, with CD27- 

HLA-DR+ population highlighted in red. (D) Distribution of log-scaled gene expression of 

six canonical cytotoxic genes: GNLY, GZMA, GZMB, GMZK, NKG7, and PRF1. 

Populations are ordered by PC1 loading values, with the CD27- HLA-DR+ population 
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highlighted in red. Reported p-values in (C) and (D) correspond to a linear model of gene 

expression against ordered cell type (as an ordinal variable), with p-values adjusted for 

multiple testing by the Benjamini Hochberg procedure. (E) Cytokine expression determined 

by intracellular cytokine staining of peripheral effector memory CD4+ T cells after in vitro 
stimulation with PMA/ionomycin. The percentage of cells positive for each stain is plotted 

for CD27+ HLA-DR- and CD27- HLA-DR+ subsets. Each dot represents a separate donor 

(n = 12; 6 RA patients and 6 controls, except for the quantification of Granyzme A and 

perforin where n = 6; 3 RA patients and 3 controls). Statistical significance was assessed 

using a Wilcoxon signed-rank test.
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Table 1:

Clinical characteristics of patient samples used. Mean ± SD is shown. Parentheses indicate percentages. CRP: 

C-reactive protein. CDAI: clinical disease activity index. “Other biologics” includes rituximab, tofacitinib, and 

abatacept.

Mass cytometry cohort Flow cytometry cohort

Controls Cases Controls Cases

Blood Cross-sectional cohorts

Number 26 26 27 39

Age 57 ± 15 66 ± 9 61 ± 14 58 ± 14

Female 19 (73) 20 (77) 18 (64) 30 (77)

ACPA- or RF-positive N/A 22 (85) N/A 39 (100)

CRP (mg/L) N/A 8.6 ± 16.9 N/A 9.8 ± 17.9

CDAI N/A 9.3 ± 4.4 N/A 13.7 ± 7.4

Methotrexate 0 18 (69) 0 18 (46)

Anti-TNF 0 10 (38) 0 16 (41)

Other biologics 0 5 (19) 0 9 (23)

Longitudinal cohort

Blood Longitudinal cohort

Number 18

Age 49 ± 17

Female 17 (94)

ACPA- or RF-positive 18 (100)

CDAI Before 17.6 ± 9.3

CDAI After 6.3 ± 4.2

Started methotrexate 7

Started anti-TNF 4

Started other biologic 7

Patient #1 #2 #3 #4 #5 #6 #7 #8 #9

Synovial Tissue Donors

Age 57 54 76 46 46 79 62 63 52

Sex F F F F F F M M F

CRP (mg/L) 25 8 8 11 17 19 13 66 76

CDAI 14 9 17 15 21 25 5 9 N/A

Methotrexate No Yes No No No No No Yes No

Biologic therapy Yes Yes Yes Yes Yes No No No No
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Table 2:

Overview of the subsets found to be significantly expanded in RA. RA proportion reflects the fraction of cells 

in the subset that were from RA donors. The 95% confidence interval is shown next to the odds ratio.

Condition Description Subset RA Proportion P value Odds Ratio Test

Resting HLA-DR+,CD27− 18 0.636 5.9 × 10−4 1.9 (1.3 – 
2.7)

MASC

Stimulated HLA-DR+, CD27− 18 0.619 1.3 × 10−3 1.7 (1.2 – 
2.2)

MASC

Flow cytometry replication Gated HLA-DR+, CD27− NA NA 4. 4 × 
10−2

NA One-tailed t test

Meta-analysis HLA-DR+, CD27− NA NA 4.8 × 10−5 NA Stouffer’s Z-score method
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