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Abstract

Perivascular spaces (PVS) in the human brain are related to various brain diseases. However, it is 

difficult to quantify them due to their thin and blurry appearance. In this paper, we introduce a 

deep-learning-based method, which can enhance a magnetic resonance (MR) image to better 

visualize the PVS. To accurately predict the enhanced image, we propose a very deep 3D 

convolutional neural network that contains densely connected networks with skip connections. The 

proposed networks can utilize rich contextual information derived from low-level to high-level 

features and effectively alleviate the gradient vanishing problem caused by the deep layers. The 

proposed method is evaluated on 17 7T MR images by a twofold cross-validation. The 

experiments show that our proposed network is much more effective to enhance the PVS than the 

previous PVS enhancement methods.
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1. INTRODUCTION

Perivascular spaces (PVS) are thin fluid-filled spaces surround arteries and veins in the 

human brain. The PVS regulate fluid motion and drainage in the central nervous system. The 

correlation between the PVS, aging and brain diseases has been studied since the 19th 

century and there have been reports indicating that the increase of PVS number or PVS 

thickness is associated with various brain diseases [1]. For example, the enlarged PVS is 

known to be associated with lacunar stroke subtype and white matter hyperintensities that 

cause small vessel diseases [2], [3]. Also, in patients with multiple sclerosis, a greater 
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number of PVS are identified in magnetic resonance (MR) images than in controls [4], [5], 

and also thickening of these PVS is associated with cognitive decline [6]. Furthermore, a 

greater number of PVS are often found in patients with Alzheimer’s disease or mild 

cognitive impairment than in healthy subjects [7], [8]. Accordingly, several studies have 

been conducted to use the PVS as a biomarker of neurovascular, neurodegenerative diseases 

[9] and inflammatory activity [10] by quantifying the relationship between the thickness, 

length, distribution of PVS and each of specific diseases.

However, manual labeling of PVS for quantitative analysis is very time consuming since the 

PVS are small and thin tubular structures and are distributed throughout the whole white 

matter region. Furthermore, the PVS are not often clearly visible in MR images acquired by 

traditional 1.5T, 3T or even by 7T MR scanners. Thus, most of the studies did not extract all 

the PVS, but instead classified the severity into a few levels or counted the number of PVS 

in representative 2D slices [9], [10]. Recently, Bouvy et al. [11] and Zong et al. [12] 

proposed novel acquisition parameters of 7T MR scanner to make the PVS more visible, but 

it is still difficult to find the parameters that can improve only the PVS while reducing the 

noise in the background.

Accordingly, instead of carefully searching for certain specific parameters of MR scanner, 

several studies have been proposed to enhance the PVS by using image processing methods 

after MR images are acquired. For example, Uchiyama et al. [13] used the white top hat 

transform to highlight tubular structures and proved that this enhancement is effective to 

detect the PVS. Hou et al. [14] proposed a method that can improve the intensity of thin 

tubular structures using a nonlinear mapping function in Haar domain, and then removes 

noise in background by using block matching filtering. Although these methods can help 

extract the PVS by enhancing the intensity of PVS, heuristic parameter tuning such as 

determining the filter type, size, or thresholds in nonlinear mapping functions was required 

depending on the target image.

To address these limitations, in this paper, we propose a deep learning based PVS 

enhancement method that does not require heuristic parameter tuning and additional 

processing steps for denoising. Specifically, we propose a very deep 3D convolutional neural 

network consisting of densely connected dense blocks [15] with skip connections. The 

proposed deep network effectively enhances the PVS while suppressing other noise signals 

by utilizing rich contextual information derived from low-level to high-level features. 

Moreover, the dense skip connections help alleviate the gradient vanishing problem. The 

proposed network was evaluated on seventeen 7T MR images. Experimental results show 

that the proposed deep network is more effective to enhance the PVS than the prior PVS 

enhancement and other deep learning based methods.

A. RELATED WORKS

Various image enhancement methods such as gamma correction [16], vesselness filtering 

[17], morphological processing [13] and nonlocal block matching [14] have been used to 

facilitate the detection of PVS. However, these methods needed to heuristically find suitable 

parameters with respect to the target images, and thus often achieved unsatisfactory 

generated images.
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Recently, deep learning based methods have achieved state-of-the-art performance in image 

enhancement problems. For example, in super-resolution problem, Dong et al. [18] first 

proposed a method using three convolution layers and achieved improved prediction results 

compared to the sparse coding based methods [19] and regression based methods [20]. 

Subsequently, several studies using deeper networks have been proposed to utilize higher 

level contextual features [21]–[24]. In particular, Kim et al. proposed a deep network 

consisting of 20 layers with gradient clipping [21] and a recursive neural network to reflect 

large contextual information without additional weight parameters [21]. Ledig et al. [22] 

used a ResNet structure with generalized adversarial network (GAN) and Lim et al. [23] 

further employed the residual scaling method to train a large model. Tong et al. [24] 

proposed a network using densely connected blocks with skip connections to reflect various 

levels of features.

Accordingly, deep learning methods have also been applied to improve the quality of 

medical images. For example, Pham et al. [25] applied a 3D SRCNN for the brain MR 

image super-resolution. Zhao et al. [26] and Shi et al. [27] used deeper networks to improve 

the prediction performance. Chen et al. [28] proposed a densely connected block, inspired 

by densely connected convolutional network [15]. Nie et al. [29] proposed a generative 

adversarial network for image synthesis such as predicting 7T MRimages from 3T 

MRimages and CT images from MR images. Wolterink et al. [30] and Olut et al. [31] also 

applied the generative adversarial network to synthesize unpaired MR, CT and MRA images 

from multi-contrast MR images, respectively.

B. CONTRIBUTIONS

We first propose a deep neural network to enhance MR image to better visualize the PVS. 

Compared to the previous PVS enhancement methods, our proposed method does not 

require heuristic parameter tuning and post-processing steps [13], [14], [16], [17]. Compared 

to the prior deep learning based methods applied for medical applications such as super-

resolution and image synthesis, we design a much deeper 3D network (including six dense 

blocks with 39 convolutional layers) to utilize the rich contextual information. Thus, non-

linear mapping such as intensity amplification on the PVS and noise reduction in the whole 

white matter region can be effectively considered.

A preliminary version of this work has been presented at a conference [32]. Herein, we (i) 

generate appropriate enhanced MR images through manual modification and use them as the 

ground truth instead of using the outputs of existing PVS enhancement method [14], (ii) 

include additional comparisons with previous PVS enhancement methods as well as 

additional deep learning networks, (iii) include comparison of prediction accuracy near PVS 

for thorough verification, (iv) discuss the effect of network depth on performance, and 

finally (v) include further related works and discussions that are not described in the 

conference publication.

II. METHOD

We introduce a deep learning based method which generates an enhanced 7T MR image 

from a 7T MR image. Learning a deep network that maps the whole 3D MR image is 
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infeasible due to memory limitations. Moreover, since most PVS are in the white matter 

region, it is inefficient to learn a model for prediction of the whole MR image. Thus, we first 

extract the white matter region by using a brain segmentation tool [33] and sample 3D 

patches that contain a part of white matter from the common 7T MR images and the 

enhanced 7T MR images. Then, we train the deep 3D convolutional neural network to learn 

the relationship between the patches. The proposed network consists of an initial 

convolution layer for training low-level features, six dense blocks for training middle-level 

to high-level features, a bottleneck layer for extracting a small number of informative 

features from the low to high-level feature maps, and a prediction layer for generating the 

enhanced 3D image patch. Fig. 1 shows the proposed network, with the detailed descriptions 

provided in subsections. In testing, we similarly extract white matter using [33], sample the 

3D patches with white matter, and then estimate the enhanced image patches by performing 

the prediction and merging them. Except the white matter region, the intensity values in the 

target MR image are copied to the predicted image.

A. DENSELY CONNECTED DEEP NEURAL NETWORK

The proposed network learns the relationship between the patches X sampled from 7T MR 

images and the patches Y sampled from the corresponding enhanced 7T MR images. The 

relevance is parameterized by weights w= [w1, ..., wn] and biases b= [b1, ..., bn] between 

layers where n is the number of convolution layers, and the enhanced patches P(X, w, b) are 

estimated by these parameters. In training, the parameters w and b are updated by an 

optimizer to minimize the mean squared loss L between P(X, w, b) and Y ,

L w, b = Y − P X, w, b 2
2 . (1)

In the forward propagation, the input patches are passed through an initial convolution layer 

with six dense blocks, where each dense block consists of 6 convolution layers, a bottle 

layer, and a prediction layer (i.e., n 39). In each convolution layer, 8 kernels with a size 3 × 3 

× 3 are used with a rectified linear unit (ReLU) as the activation function, formally:

Fi = max(0, wi ∗ Fi−1 + bi), (2)

where Fi is the feature maps in the ith layer and F0 is X .

In each dense block, as proposed by Huang et al. [15], the feature maps generated in 

previous layers are concatenated to generate new feature maps as

Fi =  max(0,  wi ∗ (Fid
⊕ Fid + 1 ⊕ ... ⊕ Fi−1)  + bi), (3)

where id is the index of initial layer of the dense block, and ⊕ represents concatenation. The 

new feature maps are also concatenated to the previous feature maps and later used in the 

next convolution layer. Thus, the number of feature maps is linearly increased by the number 
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of kernels used, i.e., each dense block generates 48 feature maps as we use 6 convolution 

layers with 8 kernels in each dense block. The concatenation of the feature maps not only 

reduces the number of parameters but also alleviates the vanishing gradient problem. Finally, 

the 8 feature maps generated from the last layer in each dense block are used as the input of 

the next dense block.

After passing through all dense blocks, prediction can be performed by using the feature 

maps from the last dense block. However, in this way, the low-level and middle-level feature 

maps extracted by the initial layer and the initial dense blocks are rarely reflected in the 

prediction. Thus, to use all levels of information in the prediction, we use skip connections 

between the following layers, the initial convolution layer and six dense blocks. Specifically, 

296 feature maps obtained from the initial convolution layer (8 feature maps) and all dense 

blocks (288 = 48 × 6 feature maps) are concatenated in the following layer.

Predicting a single channel output from many feature maps at once (i.e., 296 to 1) is 

computationally inefficient and hard to reflect all features for prediction. Therefore, a 1 × 1 

× 1 convolution layer with 16 kernels is utilized as the bottleneck layer between the last 

dense block and the prediction layer to reduce the number of feature maps. Finally, the 16 

feature maps generated from the bottleneck layer are passed through the prediction layer to 

predict the final output (i.e., 296 to 16, and then 16 to 1). Through the bottleneck layer, the 

prediction can be more accurate and efficient since this layer extracts a small number of 

informative features from the low-level to high-level feature maps for the final prediction.

B. IMPLEMENTATION DETAILS

For training, we sampled 2000 patches in each training image. The patch size was 

determined as 60 × 60 × 60 by considering the receptive field of our network. Regarding the 

proposed network, the weights w were initialized by the method proposed in He et al. [36] 

and the biases b were initialized to 0. The mini batch size was set as 5. The Adam optimizer 

[37] was used to minimize the mean squared error between P(X, w, b) and Y . The learning 

rate was initially set as 0.0001 and then decreased by 2 × 10−7 for each epoch, with 70 

epochs in total. The method was implemented using Tensorflow and all training and testing 

were performed on a workstation with a NVIDIA Titan XP GPU.

III. EXPERIMENTS AND RESULTS

A. DATA SET

We acquired 17 images from healthy volunteers aged between 25 and 37 years with a 7T 

MR scanner. Informed consents were obtained from volunteers and the study was reviewed 

and approved by the institutional review board of University of North Carolina at Chapel 

Hill. T2-weighted MR images were used for the experiments due to its high contrast 

between the PVS and white matter. The detailed parameters for image acquisition were 

specified in [12].

An ideal way to make the ground truth is to create the enhanced images through sequence 

design or scanning protocols, but there have been few protocols known to improve the PVS 

signal while eliminating white matter noise. In addition, due to the intensity inhomogeneity 
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of MRI caused by magnetic field inhomogeneity and nonlinearity of signal amplifiers, it was 

difficult to acquire the enhanced image that only contains the enhanced PVS and the rest of 

white matter regions composed of voxels with a similar intensity range. Thus, we generated 

the ground truth via image processing methods and then manually corrected erroneous 

regions. Specifically, we extracted white matter by using a brain tissue segmentation method 

[33], thereafter applying the non-local Haar transform method (NonLocal) [14] to generate a 

sharp image including the enhanced PVS. Furthermore, a block matching filtering method 

(BM4D) [34] is employed to generate a denoised image. Consequently, we generated the 

enhanced image by using the intensity of the sharp image if the voxel in the sharp image had 

a higher intensity than a certain threshold, and otherwise using the intensity of the denoised 

image. The threshold was manually chosen for each image since the degree of enhancement 

by [14] was different in each image. Except for the white matter, we copied the intensities of 

the original image to the enhanced image.

Even though the threshold was manually defined, some non-PVS regions can be considered 

as PVS, and thus enhanced by taking the intensity values of the sharp image. On the 

contrary, PVS regions can be smoothed by taking the intensity values of the denoised image. 

Thus, we manually corrected both missing PVS and incorrectly high-lighted regions in the 

enhanced image. Specifically, two raters checked each original image and its corresponding 

enhanced image using ITK-SNAP [38], which is a tool that can show synchronized views 

and receive user annotations. Two raters annotated the missing PVS and incorrectly high-

lighted regions with different indices, and then took the intensity values of the sharp image 

on the missing PVS and took the intensity values of the denoised image on the incorrectly 

highlighted regions. In case of inconsistency between the two raters, the final decision was 

made after discussion. Fig. 2 shows the outputs of BM4D and NonLocal methods, the 

enhanced image we generated, and the prediction result by the proposed method.

B. EVALUATION SETTINGS

Since the amount of data used for this experiment was relatively small (i.e., 17), we divided 

the data into two sets, and then performed two-fold cross validation. Specically, we used the 

first set of 9 images as training and the second set consisting 8 images as testing in the first 

fold, and then reversely used the second set as training and the first set as testing in the 

second fold. The prediction accuracy was measured by Peak Signal-to-Noise Ratio (PSNR) 

and Structural SIMilarity (SSIM) between the predicted images and the enhanced images. 

The PSNR and SSIM were measured near the PVS marked as red lines in Fig. 2(f), as well 

as in the white matter marked as yellow lines in Fig. 2(f), to demonstrate that the noise in 

white matter was well removed and the intensities near the PVS were well improved. To 

extract the regions surrounding PVS represented by red lines, we extracted the regions with 

high intensity values in the enhanced image by thresholding, and then dilated them by using 

a 5 × 5 × 5 structuring element. The white matter represented by yellow lines was extracted 

using a brain tissue segmentation method [33].

To demonstrate the superiority of the proposed densely connected dense network 

(DCDenseNet), we compared our method with BM4D [34] and NonLocal [14] methods. 

More-over, we compared our method with previous deep learning based methods such as 
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SRCNN [18] using three convolution layers with the kernel sizes 9, 5, and 5, VDSR [35] 

using 20 convolution layers with 32 kernels, and DenseNet [28] using one dense block for 

prediction. For fair comparison, we modified the 2D networks of SRCNN and VDSR to 

respective 3D networks in our experiments. The number of parameters are 52; 704 in 

SRCNN, 499; 392 in VDSR, 29; 192 in DenseNet, and 171; 272 in DCDenseNet, 

respectively. For both folds, the results of all the methods showed that the increase in 

accuracy was reduced after 30 epochs, and the accuracy scores were gradually saturated 

without prominent over-fitting as shown in Fig. 7. Thus, we compared the results in 70th 

epoch with sufficient saturation for all the methods.

C. QUANTITATIVE RESULTS

Table 1 shows the mean PSNR and SSIM measured from the results obtained by the 

proposed method and the comparison methods. The BM4D fairly reduces noise in the white 

matter region; however, the PVS are also blurred and thus the accuracy is low near the PVS. 

On the other hand, Non-Local method achieved better results than the BM4D near the PVS, 

though the noise in white matter did not disappear effectively. Furthermore, results obtained 

by SRCNN [18] were mostly better than the conventional PVS enhancement methods [14], 

[34]. However, both the PSNR and SSIM were lower than other deep learning based 

methods since the small number of hidden layers could not produce useful high-level 

features for prediction. The VDSR achieved improved performance compared to SRCNN by 

utilizing high-level features through the deep neural network. The performance of DenseNet 

[28] was comparable to VDSR even though the number of parameters of DenseNet was 17 

times smaller than that of VDSR. It shows that using the low-level feature maps together 

with the high-level feature maps is informative to improve the prediction accuracy. The 

proposed DCDenseNet further improved the performance by using much deeper dense block 

layers with skip connections by considering feature maps of all levels.

Fig. 3 shows box plots representing the distributions of PSNR and SSIM measured by each 

method. The BM4D [34] and NonLocal [14] obtained high variance due to difficulty of 

finding good parameter for all subjects. On the other hand, the deep learning based methods 

achieved relatively lower PSNR and SSIM variances. We also performed the two tailed 

Wilcoxon signed-rank test for statistical analysis. Table 2 represents the p-values between 

the DCDenseNet and other comparison methods. The improvement of our proposed method 

was statistically significant (i. e. p-value < 0.05) in the most cases.

D. QUALITATIVE RESULTS

Fig. 4 and Fig. 5 show the qualitative results obtained by the proposed method and the 

comparison methods. The difference between predicted image and enhanced image is 

represented in color and the relative root mean squared error (RRMSE). In the difference 

map, the red color implies that the intensity of enhanced image is higher than that of the 

predicted image, while the blue color implies that the intensity of predicted image is higher 

than that of enhanced image. The images obtained by BM4D showed the overall good 

denoising results on white matter, but the PVS were not improved well. Although the color 

was light near the PVS in the results generated by NonLocal method, lots of errors occurred 

on the white matter. This indicates that NonLocal method generates many noises in non-
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PVS white matter region. In the results obtained by SRCNN, it appeared that the regions 

surrounding PVS were enhanced with the PVS, and thus the PVS appeared to be thick. This 

may lead to the problem of merging multiple nearby thin PVS into a single thick PVS when 

quantifying the PVS. On the other hand, VDSR, DenseNet, and DCDenseNet only enhance 

the intensities of PVS sharply. Among the three deep networks, the DCDenseNet produces 

the most similar predicted images compared to the enhanced images.

E. DISCUSSION FOR COMPARISON NETWORKS

We further analyzed the impact of each component in the network by measuring the training 

loss and accuracy with respect to the training iterations. Fig. 6 and Fig. 7 represent the 

training loss and accuracy near the PVS and white matter with respect to the training 

iterations, respectively. Since the SRCNN [18] had a smaller number of parameters 

compared to other networks, it had relatively high initial and final training losses, thus low 

prediction accuracy. On the other hand, the VDSR [35] using a large number of parameters 

(i.e., 20 convolution layers with 32 channels) had the lowest initial and final training loss 

among the compared methods (Fig. 6). However, it overfitted to the training data, and thus 

the prediction accuracy was not the highest among the compared methods. Although the 

DenseNet obtained higher initial and final training loss than VDSR due to fewer parameters 

(i.e., 6 convolution layers with 8 channels), the accuracy was comparable to that of VDSR. 

According to these observations, we could confirm that the deep networks for high-level 

features as well as the densely connected skip connections utilizing low-level and high-level 

features were important to achieve good prediction. The proposed method obtained the 

lowest training loss and both the highest PSNR and SSIM in most iterations by using 

multiple dense blocks with all the feature maps generated.

F. DISCUSSION FOR NETWORK DEPTH

We also confirmed the performance change with respect to the number of dense blocks. 

Table. 3 shows the changes of average accuracy scores with respect to the change of the 

number of dense blocks, as well as the respective statistical difference between the results of 

DCDenseNet with 6 blocks and the results of others. The performance of PSNR and SSIM 

increased proportionally with the increasing number of dense blocks until six, and then 

decreased. The method with 6 dense blocks achieved the best performance, and was 

significantly better than DCDenseNet with less than 4 dense blocks in both PVS and white 

matter.

The learning time increases in proportion to the number of parameters, but the difference of 

computational time between DCDenseNet with 6 blocks and DCDenseNet with a single 

block was just around 10 seconds in the testing phase (i.e., DCDenseNet with 6 blocks took 

around 30 seconds, while DCDenseNet with a single block took 20 seconds). Although a 

relatively small amount of training data was used in this study, it demonstrated that using 

appropriate depth in a network can help learn parameters reflecting high-level features for 

non-linear image mapping problems.
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IV. CONCLUSION

We proposed a novel PVS enhancement method using a deep dense network with skip 

connections. We demonstrated that the deep learning based method can be used for the PVS 

enhancement problem. Compared to previous PVS enhancement methods, the proposed 

method does not require empirical parameter tuning and additional processing such as 

denoising. Furthermore, the experiments show that the proposed method can significantly 

outperform the state-of-the-art deep learning based methods by utilizing various levels of 

features. In this paper, we solely focused on the task of designing a good generative model 

by changing network structures such as depth and skip connections. It is expected to further 

improve performance if discriminative learning in GAN can be applied. In the future, we 

will perform several experiments to prove how the proposed method can help in PVS 

segmentation.
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FIGURE 1. 
The proposed densely connected deep convolutional neural network for PVS enhancement.
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FIGURE 2. 
Visual comparison between original image, the enhanced image (we manually made), and 

the predicted image. (a) Original image, (b) output of BM4D [34], (c) output of NonLocal 

[14], (d) enhanced image, (e) output of the proposed method, (f) output of the proposed 

method with the regions surrounding PVS (red line) and white matter (yellow line).
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FIGURE 3. 
Box plots of the PSNR and SSIM scores. The top, center and bottom lines of each box 

represent upper quartile, median, and lower quartile scores, respectively. The upper and 

lower whiskers represent the maximum and minimum scores, respectively.
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FIGURE 4. 
Visual comparison of predicted image patches obtained by the proposed method and the 

comparison methods. The difference maps between predicted patches and ground-truth 

patches and the relative root mean squared errors are provided in even rows. (a) The original 

images, (b) the results obtained by BM4D [34], (c) the results obtained by NonLocal [14], 

(d) the results obtained by SRCNN [18], (e) the results obtained by VDSR [35], (f) the 

results obtained by DenseNet [28], (g) the results obtained by DCDenseNet, and (h) the 

ground-truths.
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FIGURE 5. 
Visual comparison of difference maps between the predicted images and the ground-truth 

images and the relative root mean squared errors. (a) The results obtained by BM4D [34], 

(b) the results obtained by NonLocal [14], (c) the results obtained by SRCNN [18], (d) the 

results obtained by VDSR [35], (e) the results obtained by DenseNet [28], and (f) the results 

obtained by DCDenseNet.
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FIGURE 6. 
Change of training loss with respect to the training iteration in each comparison method.
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FIGURE 7. 
Change of prediction accuracy with respect to the training iteration in each comparison 

method.
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