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Abstract
Extracellular matrix (ECM) molecules are responsible for structural and biochemical support, as well as for regulation of molecular
signalling and tissue repair in many organ structures, including the pancreas. In pancreatic islets, collagen type IVand VI, and laminins
are the most abundant molecules, but other ECMmolecules are also present. The ECM interacts with specific combinations of integrin
α/β heterodimers on islet cells and guides many cellular processes. More specifically, some ECMmolecules are involved in beta cell
survival, function and insulin production, while others can fine tune the susceptibility of islet cells to cytokines. Further, some ECM
induce release of growth factors to facilitate tissue repair. During enzymatic isolation of islets for transplantation, the ECM is damaged,
impacting islet function. However, restoration of the ECM in human islets (for example by adding ECM to the interior of
immunoprotective capsules) has been shown to enhance islet function. Here, we provide current insight into the role of ECMmolecules
in islet function and discuss the clinical potential of ECM manipulation to enhance pancreatic islet function and survival.
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Abbreviations
CCL Chemokine ligand
ECM Extracellular matrix
EGFR EGF receptor
ERK Extracellular signal-regulated kinase
FAK Focal adhesion kinase
FGF Fibroblast growth factor
FGFR1 Fibroblast growth factor receptor-1
GAG Glycosaminoglycan
GSIS Glucose-stimulated insulin secretion
HGF Hepatocyte growth factor
HSPG Heparan sulfate proteoglycans
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein -1
MIP Macrophage inflammatory protein

MMP Matrix metalloproteinase
RANTES Regulated on activation, normal

T cell expressed and secreted
RGD Arginine-glycine-aspartic acid

Introduction

Type 1 diabetes is an autoimmune disorder leading to the de-
struction of insulin-producing beta cells. Current clinically
available methods of insulin replacement cannot prevent the
occurrence of frequent hypoglycaemia and diabetic complica-
tions [1]. Hence, an insulin source that regulates glucose levels
on a minute-by-minute basis to prevent hypoglycaemia and
diabetic complications [2, 3] and to improve quality of life
and life expectancy [1, 4, 5] is required. Theoretically, this
can be achieved by transplantation of allogeneic pancreatic is-
lets (either via transplantation of the whole pancreas or isolated
pancreatic islets) [4, 6]. Both whole pancreas or pancreatic islet
transplantation prevents the development of hypoglycaemia
and diabetic complications [7], but the latter has two principle
advantages over the former. First, islets can be modulated be-
fore transplantation to reduce the risk of graft rejection. Second,
islet transplantation is a minimally invasive surgical procedure,
involves a short hospital stay, has low morbidity [4] and can be
repeated with minor adverse effects in case of graft failure.
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State of the art
Islet transplantation into the liver is effective in type 
1 diabetes but islet grafts still fail after 3 years owing 
to instant blood-mediated inflammatory reactions, 
recurrence of autoimmunity, natural killer cell 
cytotoxicity, loss of cells caused by ischaemia and 
inadequate revascularisation

New player 
Islets are isolated from the pancreas by enzymes 
that damage islet ECM. ECM–cell interactions 
influence functional survival of cells. Thus, reduction 
of cell death by restoring the ECM may enhance 
survival of pancreatic islet grafts. The major compo-
nents of ECM are polypeptide chains of collagen, 
laminin, fibronectin and elastin interlaced with 
polysaccharide chains (GAGs)

Bioengineering approaches 
Graft supplementation with certain ECM molecules 
enhances function and survival of pancreatic islets 
contained within immuno-isolating capsules. Spec-
ifically, some laminin sequences and collagen IV 
have beneficial effects on graft survival. However, 
the mechanisms remain to be identified

Outlook 
Understanding the crucial role of specific ECM 
molecules in (immuno-isolated) islet graft survival 
might lead to better survival of islet grafts, ultimately 
allowing for a reduction in islet dose and the time 
required for reversal of type 1 diabetes in a large 
number of recipients 

Summary 

Islets are conventionally transplanted by infusion into the
liver via the portal vein. This procedure is clinically effective
in type 1 diabetes [8] but islet grafts often fail after 3–5 years
despite the use of immunosuppressants. Many factors contrib-
ute towards graft failure, including instant blood-mediated
inflammatory reactions (IBMIRs) [9], recurrence of autoim-
munity [10], natural killer (NK) cell cytotoxicity [2, 11, 12],
loss of cells owing to ischaemia [13] and inadequate
revascularisation [13, 14].

Recently, the importance of the extracellular matrix (ECM)
in islet transplantation has been recognised [3, 6, 15, 16], al-
though the precise role of islet ECM integrity in graft function
and survival is not yet understood. Pancreatic islets have an
extensive network of ECM molecules [17–20]; these are dam-
aged during isolation of pancreatic islets via application of
enzymes that break down ECM molecules between endocrine
and exocrine cells [6, 21]. Although selective, the process of
enzymatic degradation of exocrine connections is not specific
[2] and, as a consequence, many ECM components that sur-
round the islets and interconnect endocrine cells are also dam-
aged [2, 22], affecting islet function [6, 21, 23, 24]. After

isolation using ECM-degrading collagenases, the whole micro-
vasculature of the islet is destroyed [25] and islet cells undergo
cell-death processes, such as anoikis, necroptosis and necrosis
[2, 22, 26, 27]. To amplify matters, these processes are associ-
ated with the release of highly inflammatory danger-associated
molecular patterns (DAMPs) that contribute to immune re-
sponses against pancreatic islets [28]. Therefore, it is conceiv-
able that islet cell death may be reduced via restoration of the
ECM to enhance survival of pancreatic islet grafts. In fact, graft
supplementation with ECM molecules has been shown to en-
hance the function and survival of pancreatic islets (via mech-
anisms that are largely unknown) [3, 18, 29]. The applicability
of this approach has already been demonstrated under settings
of tissue engineering, whereby ECM supplementation has con-
tributed to the success of grafts [23, 30], with the supplemented
ECM guiding cellular development by mimicking the bio-
chemical composition, fibrillar structure and viscoelastic prop-
erties of the ECM in the target organ [31].

Here, we provide a summary of the types of ECM mole-
cules that are normally expressed in the islet, followed by a
discussion of the current knowledge on the contribution made
by ECM to the function of islets and other organs. This knowl-
edge will facilitate the future design of islet ECM complexes
applicable for islet transplantation.We conclude by discussing
the current experimental proof of principle of improving islet
function by supplementation with specific ECM components
in immuno-isolating islet grafts.

ECM structures that might support islet
function

ECM molecules play an important role in guiding prolifera-
tion, differentiation and migration of cells, starting as early as
embryogenesis [32, 33]. They also modulate and attenuate
inflammatory responses in various organs [34]. Usually, col-
lagens provide structural stiffness and cohesiveness to tissues
[24, 32, 35] and laminin chains may be critical in maintaining
the integrity and shape of an organ structure [32, 36].
Moreover, fibronectin, fibrillin and laminin are found in the
pancreas and are involved in cytoskeletal remodelling, con-
tractility and differential cell adhesion [32, 37]. Pancreatic
islets contain almost all major ECM molecules in varying
proportions [18, 19, 22, 38]. The most abundant ECM mole-
cules in pancreatic islets are collagen type IV and VI, and
laminins, such as laminin-332 and laminin-511 [39–41].
Most ECM molecules in the islets have been associated with
specific biological processes, as discussed below. However,
some ECM molecules in the pancreatic islets have not been
studied to a great extent and, thus, are yet to be fully
characterised; for these, we will describe their function in
other organs, where they likely perform similar functions as
in the islets.
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Collagen Collagens are the most abundant protein in organ-
isms and are usually divided into fibrillar and nonfibrillar
structures [42, 43]. Over 20 chemically distinct collagen struc-
tures have been described. Collagens I, II, III, IV, Vand VI are
present in the peripheral ECM ofmature human islets but only
collagens type I and IV are commonly used as supplements/
adjuvants for cellular functions in biomedical applications
[44, 45].

Collagens VI and IVare located at the islet–exocrine inter-
face and islet basement membrane and regulate fibronectin
assembly by restraining cell–fibronectin interactions
[46–48]. Collagen IV is also abundant in the peripheral matrix
of human islets and affects the stiffness of the ECM, and
determines cell fate [21, 24, 49]. Previous studies demonstrate
that collagen IV significantly promotes cell survival in intact
human islets [3, 6, 15] but may also decrease insulin produc-
tion in beta cells [50] when present at high concentrations [6].

Combinations of collagens and polymeric biomaterials or
other ECM molecules have been incorporated into
transplanted grafts to create matrices with desired mechanical
properties [16]. For example, collagen matrices have been
incorporated into synthetic polymeric scaffolds to improve
mechanical performance of the scaffolds [39, 50, 51]. Such
an approach may also be used to enhance islet function, since
collagen IV combined with specific laminin sequences has
been found to improve glucose-stimulated insulin secretion
(GSIS) in pancreatic islets [6, 52].

Fibronectin Fibronectin, a multifunctional component of ECM,
facilitates cell attachment and cellular spreading by direct inter-
action with cells [53, 54]. The amino acid sequences of fibro-
nectin interact with several cellular ligands. The best-known
example is the tripeptide arginine-glycine-aspartic acid
(RGD) receptor of fibronectin, which interacts with the β-I/A
domain and is the synergy site in the adjacent fibronectin type
III (FN3) repeat that interacts with the propeller domain [55,
56]. Accordingly, RGD has been incorporated into or applied
on surfaces of numerous biomaterials [31]. Moreover, specific
sections of the fibronectin RGD receptor can interact with
α4β1, α5β1 and α9β1 integrins and with Ig superfamily cell-
surface counter receptors, such as vascular cell adhesion mole-
cule 1 (VCAM-1) [55]. One suggested strategy for improving
functional cell survival in tissue engineering is to create several
layers of oriented fibronectin to enhance the availability of its
binding sites for cells [54, 57]. However, fibronectin can also
interact with cells via non-integrin receptors, such as dystrogly-
can and syndecan [58, 59].

Fibronectin regulates several processes in islets via interac-
tion with islet integrin and non-integrin receptors. It improves
islet and beta cell function and, through transcriptional upreg-
ulation of the anti-apoptotic protein B cell lymphoma 2 (Bcl-
2), has been demonstrated to enhance islet survival [6, 16, 60].
Lin et al showed that fibronectin stimulates beta cell

proliferation and GSIS [61], whilst other have shown that
fibronectin induces gene expression of differentiation markers
for endocrine tissue, such as insulin 2, glucagon, Pdx1 and
Pax6 [62]. Further, in vitro studies on porcine islets have
demonstrated that a fibronectin-mimetic peptide can specifi-
cally bind toα5β1 integrin and increase matrix production and
cell viability in isolated islets [60].

Laminins Laminins are heterotrimeric glycoproteins composed
of α, β and γ polypeptide chains joined by disulfide bonds
[63]. The specific expression and distribution of laminin iso-
forms in islets are not well understood [64]. However, recent
studies report that laminins co-localise with α6 integrins in the
developing pancreas and promote islet function in vitro [64].
Laminin-111 (composed ofα1,β1 andγ1 chains) is the primary
isoform present in the developing mouse pancreas [36, 65].
However, when mice reach adulthood, this is replaced by lam-
inin-511, a trimer of the α5, β1, and γ1 isoform [64]. In human
islets, laminin-411 (composed of α4, β1 and γ1 chains) and -
laminin-511 have been found to be essential for beta cell pro-
liferation and insulin transcription [66].

In terms of distribution, laminin-332 has been found to be
present near the glucagon producing alpha cell [67], whilst
laminin-511/521 is present in the double basement membrane
layer of human islets [40]. Interactions with the islet cell mem-
brane may not necessarily occur through integrins, as (like
fibronectin) laminins may also bind to receptors of a non-
integrin nature. For example, they may bind to dystroglycan
to regulate assembly of the basal lamina [20] or induce beta
cell differentiation and survival in fetal mouse pancreas [65,
68]. Most of the integrin-binding regions can bind to specific
adhesive fragments of laminin [69], such as IKVAV, VAYI and
IKLLI and laminin-111, which are all α1 chains [3, 70–73].
Other adhesive amino acid sequences of laminin, including
YIGSR, PDSGR, RYVVLPR and LGTIPG, are present in
the β1 chain [16, 20, 70, 71]. Although little is known about
the interactions of these ligands with pancreatic islet cells,
laminin adhesive sequences are reported to improve the func-
tion of pancreatic islets in vitro [3, 6]. Furthermore, laminins
induce expression of islet-specific transcription factors and
hormones, such as pancreatic and duodenal homeobox 1
(PDX1), insulin 1, insulin 2, glucagon, somatostatin and
GLUT-2 [62]. They also activate protein kinase B (Akt) and
extracellular signal-regulated kinase, (ERK), which are impor-
tant regulators of cell metabolism and can induce differentia-
tion of precursor cells into beta cells [61].

Glycosaminoglycans Glycosaminoglycans (GAGs) are linear
sugar chains consisting of repeating units of disaccharides,
hexosamine (glucosamine or galactosamine) and uronic acid
[44]. Except for hyaluronic acid, these disaccharide chains are
covalently linked to core proteins to form proteoglycans.
Hyaluronic acid is localised in the ECM of pancreatic islets,
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whilst heparan sulfate proteoglycans (HSPGs; another class of
GAGs) are concentrated in the intracellular space of beta cells
[74, 75] and in the peri-islet basement membrane of islets in
mice [19, 76]. In humans, the HSPG perlecan has been found
to be present in beta cells from those with and without type 2
diabetes [77].

GAGs, particularly HSPGs, may also be involved in islet
amyloid formation and cellular dysfunction [78]. For example,
perlecan and agrin are HSPGs that exist in different isoforms
and conformations in the pancreas. They are the primary car-
riers of heparan sulfate side chains in islets. Although the pres-
ence of perlecan and agrin in the islet basement membrane has
not yet been elucidated [53], they are thought to dictate the
composition of the vascular basement membrane, and also beta
cell function [5, 75]. Specifically, in humans, perlecan is sug-
gested to be involved in beta cell dysfunction. To support the
role of these HSPGs in islet health, there is evidence that de-
creasing GAG synthesis might reduce islet amyloid formation
[77–79]. Furthermore, decreasing HSPG levels or the addition
of heparinase has been found to reduce amyloid formation [78].
In addition, a study by Ziolkowski et al suggests that the abun-
dance of heparan sulfate was altered in islets and/or lymphoid
tissue upon type 1 diabetes development [76].

Fibrin Fibrin, a complex matrix formed by polymerisation of
fibrinogen, plays an important role in homeostasis and tissue
repair [44]. Although fibrin is not a regular component of the
ECM, it may be present as a temporary matrix that is replaced
by other ECM molecules. Fibrin has many clinical applica-
tions [80, 81], including use as a biodegradable scaffold or
glue to support islets after transplantation [82, 83]. It has also
been applied as a delivery matrix for biomedical purposes,
especially in combination with other biodegradable sub-
stances. The fact that fibrin has a matrix structure that is sim-
ilar to the native pancreas makes it a candidate ECM protein
for the support of long-term islet survival [81, 84, 85]. In
recent studies, we have applied fibrin in polymeric scaffolds
that serve as an artificial transplantation site for pancreatic
islets under the skin [86]. This resulted in enhanced vascular-
isation and engraftment of islets, reducing the number of islets
needed to achieve normoglycaemia in mice [86, 87]. This
might be explained by specific interactions of fibrin with some
integrins in islets, including αvβ1, which is known to be im-
portant for the function of transplanted islets [88]. In vitro
studies have demonstrated enhanced survival of insulin-
producing cells when in contact with fibrin [61, 80, 81]. For
example, Riopel et al cultured islets in fibrin and demonstrated
improved beta cell function and survival, which was associat-
ed with regulation of focal adhesion kinase (FAK), ERK1/2
and Akt [80]. Fibrin can also upregulate αvβ3 integrin expres-
sion, which prevents beta cell apoptosis [80, 83]. Thus, fibrin
is an excellent candidate for exogenous addition to islet grafts
to enhance their survival [86, 87].

Cellular functions guided by ECM

As mentioned, combinations of ECM molecules play an im-
portant role in cell proliferation, differentiation and migration
[32, 33] and, although functional aspects of ECM molecules
have not been studied in detail in the endocrine pancreas, it is
likely that cellular functions and the integrity of the pancreas is
dependent on the ECM [20]. In one in vitro study, the addition
of exogenous ECM enhanced rat beta cell proliferation in the
presence of human growth hormone and the glucagon-like
peptide-1 analogue liraglutide [89]. Another study found that
islet heparan sulfate was involved in the regulation of postna-
tal islet growth and insulin secretion [76]. Specifically, in pan-
creatic islets, lamininsα4 andα5 were found to be essential for
normal beta cell adhesion, proliferation and insulin secretion
[90]. On the other hand, however, in vitro studies on beta cell
proliferation by Rutti et al indicated that specific ECM sub-
stratum or a similar natural basement membrane structure was
necessary for human beta cell proliferation [91].

As mentioned above, ECM molecules convert their signal
into a biological response via ligation to cellular receptors,
such as integrins [92] and non-integrin receptors. Specific
sequences in ECMmolecules are responsible for this ligation.
The RGD sequence, for example, binds to αIIbβ3 and αvβ3

integrin in the β subunit N-terminus [56, 93, 94]. RGD sites
can be found in ECM proteins present in the endocrine pan-
creas, such as entactin, fibronectin, fibrinogen, laminin,
vitronectin, von Willebrand factor and, in some cases, colla-
gens [54]. Ligation of RGD to these ECM molecules can
directly activate intracellular signalling pathways associated
with prevention of apoptosis [16, 95]. Indeed, positive effects
of RGD supplementation on islet cell survival have been ob-
served by us and others [6, 16, 95].

The potency of manipulating ECM to achieve beneficial
effects on pancreatic islet function is demonstrated by the
stimulation of interactions between integrins and the ECM
that modulate the expression of fibroblast growth factor
receptor-1 (FGFR1) in beta cells, a receptor that regulates
pathways involved in beta cell survival and function [20].
However, in addition to direct activation of signalling path-
ways via receptor interaction, ECM molecules (such as
laminins), along with growth factors, cytokines, matrix metal-
loproteinases (MMPs) and other signalling molecules, can
also regulate cellular functions through indirect pathways
[96]. Two types of indirect mechanisms have been identified.
One mechanism involves modulation of cytokine activity
[97]; for example, in beta cells cultured on pancreas-specific
ECM, a transient activation of NF-κB downstream activity
and integrin engagement, as well as FAK activation are ob-
served [98]. This leads to proliferation, enhanced cell survival
and GSIS [3] and reduced cytokine-associated effects [12].
The other mechanism involves the ECM serving as a depot
for growth factors that support tissue repair and homeostasis.
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This has not been studied extensively in islets but in the liver,
for example, hepatocyte growth factor (HGF) is stored in the
ECM in an inactive form. When the liver is damaged, the
ECM is degraded byMMPs to release HGF, which stimulates
hepatocyte proliferation [99, 100]. Whether these indirect
mechanisms might also be involved in the pancreas remains
to be demonstrated.

ECM, MMPs and cellular receptors

Some believe that changes in ECM composition and ECM in-
teraction with cells act as a morphogenetic language that is pre-
cisely interpreted by cells [32]. The sensing of embedded infor-
mation in the ECM by specialised receptors at the cell surface
has an important influence on cell behaviour. These receptors
not only affect spatial differences in shape and function of cells
but they also guide migration and intracellular processes, which
is an often-ignored aspect of mechanical homeostasis in tissues
[29]. The attachment of cells to ECM molecules can influence
cell survival. Excessivemechanical force or other stressors, such
as disturbances induced by enzymes, may influence ECM li-
gand–cell interactions and may trigger cell-death processes such
as apoptosis [101] (Fig. 1). Manipulating ECM composition is
therefore considered to be an effective approach to steer cellular
function [3, 102, 103]. An example of this is the manipulation of
hyaluronan (an inflammatory mediator of islet destruction) in
the peri-islet and intra-islet environment [104].

In addition to adding ECM molecules, modulation or im-
provement of cellular function can be achieved by adding
ECM-modulating MMPs, which carry out multiple functions,
such as lysis of susceptible intracellular proteins in subcellular
compartments [105]. Amultitude of cytokines, such as TNF-α,
IL-lβ, IL-17 and IL-18 [106–108], and chemokine ligand
(CCL)2 (also known as monocyte chemoattractant protein -1
[MCP-1]), CCL3 (macrophage inflammatory protein [MIP]-1
α), and CCL5 (regulated on activation, normal Tcell expressed
and secreted [RANTES]) stimulate the release of monocyte
MMP [109]. MMPs create the cellular environment required
during development and morphogenesis by modulating the
ECM [105]. In fact, an original criterion for an enzyme to be

classified as an MMP was ‘the ability of the enzyme to proteo-
lytically process at least one ECM protein’ [99]. However, it is
now recognised that MMPs can cleave many other molecules
besides ECM [110], including cytokines, chemokines, recep-
tors, growth factors and cell adhesion molecules [111], thus
influencing many biological processes. For example, IL-1β is
cleaved into its active form by severalMMPs, includingMMP-
2 and MMP-9, which are considered to be required for islet
formation [100, 112]. Furthermore, growth factors such as fi-
broblast growth factors (FGFs), IGFs [113] and TGF-β [99]
are known to be modulated by extracellular MMPs.

Since integrins connect ECM molecules with the cytoskel-
eton via adapters, such as talin [114], and initiate signalling
cascades that ultimately affect the expression of genes
influencing survival, growth and differentiation of cells [114,
115], the effect of integrin stimulation on beta cell prolifera-
tion has also been explored. Integrin receptors bind to and
interact with several ligands in the pancreas, such as collagen,
RGD, fibronectin and laminin [20, 116]. The presence of α3,
α5, αv, α6, β1, β3 and β5 integrin components have been
reported in adult pancreatic islets [21, 117], α3, α5, α6 and
β1 integrin in fetal pancreatic tissue [118, 119] and α3, αv, α6,
β1 and β5 integrin subunits in endocrine pancreas cells [40,
117, 118]. Figure 2 summarises the current knowledge on
interactions of integrins with ECM within islets. Stimulation
of integrins leads to activation of FAK and subsequent activa-
tion of Akt and mitogen-activated protein kinases (MAPKs)
[120]. Some integrin subunits, including αv, β1, β4, and β7,
can crosstalk with growth factor receptors like EGF receptor
(EGFR) [121]. The β1 subunit is of special interest for cell
transplantation and tissue engineering since it has been shown
to be important in maintaining stem cell function in several
organs, including islets [115, 122, 123].

Islet integrins can be stimulated via different ECM mole-
cules (Table 1). For example, it has been reported that α6β1 is
involved in the transduction of a matrix signal that modulates
beta cell function and enhances insulin secretion [124] and
that interaction of this integrin with laminin-5 stimulates rat
beta cell proliferation [124]. In other examples, ligands for the
islet-specific α3β1 integrin include fibronectin, laminin, col-
lagen I and collagen IV, yet only collagens I and IV promote

ECM

a b
Cell-death
 process

Apoptosis

Fig. 1 Cell function and survival is determined by ECM–cell interac-
tions. (a) All cells require interaction with ECM for homeostasis of cel-
lular functions. (b) Loss of ECM–cell interactions owing to mechanical

forces or enzymatic digestion trigger cell-death processes, such as apo-
ptosis. This figure is available as part of a downloadable slideset
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rat INS-1 cell viability and proliferation [125]. Additionally,
αvβ3 binds tenascin C, which is a glycoprotein linked to pro-
motion of tumour progression [126] whilst, dystroglycan has
been implicated to play a role in laminin-111-induced beta cell
differentiation and survival in the fetal mouse pancreas [20,
68]. Furthermore, Kaido et al [50] found that purified human
beta cells contain αvβ1, αvβ5, and α1β1, suggesting that
many of these integrins are localised in or on beta cells and
that α1, αv and β1 integrins might be important for creating
and maintaining islet architecture. These interactions between
ECM and integrins can induce both intracellular and extracel-
lular processes [127]. Intracellular signalling activated by
integrin–ECM interaction can alter the effects of cytokines
on cells [128] and, hence, might be a novel tool for modulat-
ing the sensitivity of transplanted cells to avoid cytokine-
associated cytotoxicity.

Immunomodulation and ECM

In addition to its direct interaction with cells, the ECM can
serve as a reservoir for immune-active signalling molecules,

such as cytokines and growth factors [29, 105], thereby acting
in an immunomodulating capacity [129]. For example, when
bound to fibronectin or laminin, cytokines (e.g. TNF-α) were
found to improve the adhesion of T lymphocytes to fibronectin/
laminin via integrin β1-dependent interactions [130].

Proteoglycans are the major ECM component involved in
immune signalling. Further, perlecan and agrin [53, 131], lo-
cated in the basement membranes surrounding the exocrine
acini of adult mouse pancreas [19], are involved in the con-
trolled release of cytokines and growth factors. Proteoglycans
can serve as a binding site for IFN-γ and TGF-β [12, 132] and
they are also implicated in interactions with heparin-binding
cytokines, such as TNF-α. They can also act as a binding site
for TGF-β; for example, a group of small proteoglycans, in-
cluding decorin, biglycan and fibromodulin, regulate immune
responses by binding TGF-β [133]. In an in vivo study, decorin
inhibited TGF-β by immobilising it and preventing it from
interacting with its cell surface signalling receptors [12].

Other matrix molecules, such as laminin-332, can mediate
the synthesis of TGF-β1 and TNF-α [134]. Moreover, certain
cells may enable activation of specific cytokines, such as IL-3,
IL-7 and IFN-γ, by changing the composition of their cell-
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Fig. 2 Summary of the current knowledge on ECM–cell interactions
within islets. Integrin receptors bind to and interact with several ECM
molecules in the pancreas, including collagen, RGD, fibronectin and lam-
inin. Integrins, Src family kinases, and Rho GTPases are essential in
mediating cellular responses downstream of ECM engagement.
Stimulation of integrins initiate signalling cascades that ultimately affect

the expression of genes influencing survival, growth and differentiation
of cells. For example, FAK activation and subsequent activation of Akt
and MAPKs can result from ECM–integrin interactions in the pancreas,
whilst other integrin subunits crosstalk with growth factor receptors like
EGFR. This figure is available as part of a downloadable slideset

Table 1 Integrin receptors for ECM components in pancreatic islets

ECM component Integrin subunits Reference

Collagen α1β1, α2β1, α3β1, αvβ1, α10β1, α11β1 [18, 43, 45, 50, 56, 118, 119]

Fibronectin/fibrin α3β1, α4β1, α5β1, α4β7, α8β1, αvβ1, αvβ3, αvβ5, αvβ6, αIIbβ3 [18, 80, 93, 94, 118]

Laminin α1β1, α2β1, α3β1, α6β1, α7β1, α9β1, αvβ3, αvβ5, αvβ8, α6β4 [64, 67, 71, 73, 116–118, 144]

GAGs α2β1, αMβ2, αIIbβ3, αvβ3, α4β1, α5β1 [18, 19, 58]
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surface heparan sulfates [135, 136]. This process is fine-tuned
by an interplay between the affinity of the receptor and the
ligand cytokine/growth factor [137]. The dynamics of this pro-
cess have been best studied using FGF-2, which binds to hep-
aran sulfate chains at lower affinity than to its receptor [133].

The efficacy of cytokines can also depend on ECM mole-
cules as co-receptors, or on ECM receptors molecules, such as
integrins [137]. For example, simultaneous binding of growth
factors/cytokines to their respective signalling receptor and to
heparan sulfate chains forms the basis of dual receptor cyto-
kine signalling [137]. Cytokine receptors are also required for
the clustering of integrins, enabling effective signal transduc-
tion pathways [137, 138]. This clustering of receptors also
applies to key cytokines involved in beta cell destruction in
type 1 diabetes, such as IL-1β [138, 139]; interestingly the
expression of ECM-associated genes (even at low levels) is
associated with diminished IL-1β effects [10].

Considerations for engineering and future
applications of ECM in pancreatic islet
transplantation

Human islets are currently isolated by application of enzyme
mixtures, which contain collagenase, neutral protease, trypsin
and clostripain [140]. As mentioned above, these mixtures se-
lectively break down the connections between the exocrine and

endocrine tissue, but also break down the islet vasculature and
ECM [2, 141]. For example, following administration via the
ductal circuit collagenase may enter the islets and destroy intra-
islet ECM [2]. Several studies have also shown detrimental
effects of enzymatic islet isolation on peripheral islet ECM,
such as on collagens [2, 6] and laminins [119]. Collagenases
digest several collagen types, such as types I, III, IVand V [25].
This has a dramatic impact on cell viability [27]. The enzymes
also damage intracellular stores of the GAG heparan sulfates
[22], with a predictable impact on islet transplant outcomes.

A possible strategy for enhancing the functional survival of
islets is to add specific ECMmolecules before transplantation.
Recent studies have demonstrated that collagen IV and lami-
nin sequences, such as RGD, LRE and PDSGR, have positive
effects on the function of isolated human islets [6, 15, 16, 23].
An emerging field, in which we recently proved the principle
of applying ECM supplementation for islet cell survival, is the
immuno-isolation of islets by encapsulation (Fig. 3).
Encapsulation of islets in an immunoprotective but semiper-
meable membrane allows for successful transplantation of is-
lets without the need for immunosuppression [142]. One ob-
stacle to this application is the loss of islets in the immediate
transplant period, which can amount to 60% of the graft in the
first 2 weeks after implantation [142, 143]. Recently, we dem-
onstrated that the enzyme preparation has a huge influence on
both islet cell survival and the immunogenicity of the tissue
[2]. Islets isolated from the pancreas using a less-favourable
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Integrin

Collagen IV
Fibronectin

Laminin

GAGs

Islet cell membrane
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a
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Fig. 3 Supplementation of ECM in capsules for immuno-isolation of
pancreatic islets enhance functional survival of the graft. (a) Specific
ECM molecules may be added to islets before transplantation to enhance
the functional survival of islets. For example, collagen IV and laminin
sequences, such as RGD, LRE and PDSGR, have positive effects on the
function of isolated human islets. (b) Supplemented ECM can mimic/

interact with various molecules on the islet cell membrane. Immuno-iso-
lation of islets by encapsulation has been used to demonstrate that ECM
supplementation can promote islet cell survival. Encapsulation of islets in
an immunoprotective but semipermeable membrane allows for successful
transplantation of islets without the need for immunosuppression. This
figure is available as part of a downloadable slideset
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enzyme mixture produced less insulin upon glucose challenge
but more IFN-γ-inducible protein 10 (IP-10), growth related
oncogene-α (GRO-α), MIP-1 and -2, RANTES, and cyto-
kines, includingMCP-1. This resulted in a twofold lower graft
survival time than islets extracted using a different collagenase
mixture [2].

In an attempt to enhance the survival of encapsulated pan-
creatic islets in alginate-based microcapsules, we investigated
the impact of single ECM molecules and combinations of
ECM molecules. We used bioactive sequences of ECM mol-
ecules instead of full proteins as they can be produced syn-
thetically and are associated with fewer variations than ECM
components from biological origin. An interesting observa-
tion was that not all ECM components had beneficial effects
and effects vary depending on the concentration of ECM com-
ponents. For example, excessively high concentrations of col-
lagen IV had detrimental effects on GSIS [3, 6]; whilst, con-
centrations of collagen IV that mimicked physiological con-
ditions in islets in vivo supported insulin secretion [29]. When
combined with collagen IV, out of several ECM molecules,
only RGD, LRE and PDSGR were found to have a positive
impact on the function of pancreatic islets [6]. These studies
highlight that there is still much to learn about the role of ECM
in the biology and functional survival of pancreatic islets and
that a stepwise approach is necessary to select beneficial ECM
components. At the same time, it also demonstrates that sup-
plementation with ECM components, as used in other fields,
including tissue engineering, is a feasible approach to enhance
pancreatic islet cell survival and graft function.

Conclusion

Overall, it is clear that the manipulation of ECM may promote
successful islet transplantation. However, there are still many
questions left to be answered with regard to the type of ECM
molecules that are beneficial for islet graft survival. To facilitate
a response to these questions, however, we must first elucidate
the mechanisms by which these ECM molecules enhance the
survival and function of pancreatic islets. Importantly, these
finding may aid with the development of future treatments for
type 1 diabetes that will help to improve the life expectancy and
quality of patients with type 1 diabetes.
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