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Abstract

Diastereodivergent and enantioselective conversion of isatin ketimines to α-fluoro-β-aminonitriles 

with vicinal tetrasubstituted stereocenters is achieved by a chiral copper complex/guanidine base 

catalyzed Mannich reaction with proper choice of the bisphosphine ligand. The reaction is broad 

in scope, scalable, and provides efficient access to a series of 3-aminoindolinones exhibiting a 

quaternary carbon-fluorine stereocenter with high yields and stereoselectivities. Selective 

transformations of the Mannich reaction products into multifunctional 3-aminooxindoles without 

erosion of enantiomeric and diastereomeric purity highlight the synthetic utility.
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Catalytic enantioselective reactions that produce multifunctional building blocks with 

carbon-fluorine quaternary stereocenters are of great interest due to the prevalence of this 

motif in biologically active compounds.1 In many cases, the in situ generation of fluorinated 

nucleophiles requires the presence of a proximate carbonyl group which substantially limits 

the pool of substrates that can be applied in catalytic asymmetric synthesis of 

organofluorines displaying a quaternary chirality center.2 The use of α-fluorinated nitriles 

devoid of an activating carbonyl moiety remains very challenging because of the inherent 

fluxionality of α-metalated nitriles and the low C-H acidity, which complicates catalytic 

formation of α-cyano carbanions under mild reaction conditions.3 To the best of our 

knowledge, stereodivergent catalytic asymmetric additions with α-fluoro-α-arylnitriles have 

not been reported to date despite the synthetic potential of these prenucleophiles for the 

construction of chemically versatile scaffolds around a tetrasubstituted carbon-fluorine 

stereocenter.

Mannich reactions with fluorinated nucleophiles are particularly attractive because they 

provide access to pharmaceutically important fluorinated amino compounds.4 Following 

Shibasaki’s pioneering work on aldol-type reactions with nitriles,5 silyl ketene imines that 

overcome some of the difficulties mentioned above have been used as reactive nitrile 

surrogates in asymmetric aldol and Mannich reactions.6 The direct use of nitrile compounds, 

however, appears more appealing because it obviates the necessity to prepare a silyl ketene 

imine derivative. To this end, the introduction of Shibasaki’s cooperative soft Lewis acid – 

hard Brønsted base catalysis strategy has significantly widened the substrate scope.7 In 

recent years, several groups have achieved enantioselective catalytic Mannich additions to 

aldimines with nitriles carrying an adjacent carbonyl, sulfonyl or another activating 

functionality.8 Decarboxylative methods and the catalytic addition of allenylnitriles, 

benzylnitriles or phenylthioacetonitrile to aldimines have also been reported by Shibasaki, 

Nakamura and others.9

Enantioselective Mannich reactions with ketimines have been accomplished with activated 

nitriles (Scheme 1a and b).6j,10 To demonstrate the use of α-fluoro-α-substituted nitriles in 

asymmetric catalysis, we chose to investigate the possibility of a Mannich reaction with 

ketimines derived from isatin which affords an important scaffold encountered in many 

natural products and drugs.11 Because this reaction establishes two chirality centers, we also 

recognized the importance of providing convenient access to all four stereoisomeric 

products, preferentially by easily adaptable diastereodivergent protocols.12 We now wish to 

report a (bisphosphine)copper(I) catalyzed direct asymmetric addition of α-fluoro-α-

arylnitriles to isatin ketimines that addresses these challenges (Scheme 1c). Our method 

provides efficient access to multifunctional α-fluoro β-aminonitriles bearing vicinal 

tetrasubstituted stereocenters in high yields and with excellent enantio- and 

diastereoselectivity. Moreover, all four stereoisomers are accessible by suitable selection of 

the chiral copper catalyst and the isatin protecting group. The practical diastereodivergence, 

amenability to upscaling and selective functional group manipulation of the fluorinated α,β-

aminonitrile moiety toward multifunctional β-fluoro-α,γ-diamines, α-fluoro-β-amino 

amides and fluorinated α-amino acid derivatives underscore the synthetic utility of this 

reaction.
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At the beginning of our search for a stereodivergent catalytic asymmetric Mannich reaction, 

we chose α-fluorobenzylnitrile, 1a, and the isatin derived N-Boc ketimines 2a-c as test 

compounds and screened various Cu(I) salts, Segphos and Biphep ligands (L1-L4), solvents 

and base additives (Table 1 and SI). We found that the desired α-fluoro-β-aminonitrile 3aa 
can be obtained from the N-benzyl isatin derived ketimine 2a in 91% yield using catalytic 

amounts of copper(I) triflate, DTBM-Segphos (L1) and diisopropylethylamine as base in 

toluene, albeit with low stereoselectivities (entry 1). The enantio- and diastereoselectivity 

increased significantly to 80% ee and 5.2:1 dr when the N-trityl ketimine 2b was employed 

(entry 2). Extensive variation of bisphosphine and phosphinooxazoline ligands (L1-L8) and 

the introduction of amidine and guanidine bases further improved results (entries 3–13). We 

were pleased to observe almost quantitative formation of anti-3ab with 83% ee and 6.7:1 dr 

using 10 mol% of copper hexafluorophosphate, L1 and BTMG in toluene at room 

temperature (entry 5). A decrease in the reaction temperature finally allowed us to optimize 

the stereoselectivities and we isolated anti-3ab in 95% yield, 90% ee and 12.3:1 dr at −35 °C 

(SI and entry 14). Additional investigation of the reaction outcome revealed that the 

diastereoselectivity can be switched with C1-symmetric bisphosphine ligands L9-L14. 

Using 5 mol% of CuPF6 and BTMG, the opposite diastereomer was favored when 1,2-

ferrocenyl bisphosphines were used as ligands (Table 1, entries 15–19). Poor 

stereoselectivities were initially observed until we resorted to the N-benzyl or N-phenyl 

ketimines and copper catalysts carrying either the Taniaphos ligands L9 and L14 or Walphos 

ligands L11-L13 under otherwise identical reaction conditions. We found that 

(Walphos)Cu(I) favors high diastereoselectivities while the use of Taniaphos as chiral ligand 

leads to superior ee’s. For example, the Mannich reaction between 1a and 2a gave syn-3aa 
in 99% yield with 13.4:1 dr and 70% ee which further increased to 80% when L13 was 

replaced with Taniaphos L14 (entries 20–22). The introduction of the N-phenyl isatin 

derived ketimine 2c resulted in excellent enantioselectivity and we obtained syn-3ac in 94% 

yield with 98% ee and 3.0:1 dr using 5 mol% of L14, CuPF6 and BTMG at −35 °C (entry 

23).

Having optimized the Mannich reaction conditions and with practical stereodivergent 

protocols in hand, we continued with the evaluation of the substrate scope using a variety of 

α-fluoro-α-arylacetonitriles (Scheme 2). The (DTBM-Segphos) Cu(I)/BTMG catalyzed 

reaction with the α-fluoro-arylacetonitriles 1a-1i and ketimine 2b gave quantitative yields 

and high stereoselectivities demonstrating excellent functional group tolerance of electron-

withdrawing and electron-donating substituents in the ortho-, meta-, para-positions of the 

phenyl ring. It is noteworthy that the reaction with the chloro- and bromo-substituted α-

fluorobenzylnitriles 1b and 1c furnished anti-3bb and anti-3cb in 97–98% yield, more than 

35:1 dr and 97% ee. Addition of α-fluoro-3,5-dimethoxybenzylnitrile 1i to ketimine 2b 
produced 83% of anti-3ib with more than 50:1 diastereoselectivity and 91% ee. Excellent 

results were also obtained with fluoroacetonitriles 1j-l carrying 1,3-benzodioxole-5-yl, 2-

naphthyl, or 2-fluorenyl rings. The corresponding α-fluoro-β-aminonitriles anti-3jb-lb were 

produced in high yield and with up to 45:1 dr and 93% ee.

Slow evaporation of a solution of 3ab in ethanol and of 3lb in a hexane/diethyl ether/

dichloromethane (2:2:1) solution led to the formation of single crystals.13 Crystallographic 
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analysis revealed R configuration at the oxindole C3 position and S configuration at the 

fluorinated carbon atom, and NMR and chiral HPLC measurements proved that these single 

crystals relate to the major stereoisomer formed using ((R)-DTBM-Segphos)Cu(I) as 

catalyst. The reactivity substituted N-trityl isatin derived ketimines 2d-2h was also probed 

(Scheme 3). The presence of methyl, ethyl, and methoxy groups in the 5- or 6-position of the 

isatin moiety was well tolerated and we obtained high yields and stereoselectivities. All α-

fluoro-β-aminonitriles were produced in high yields and with up to 34:1 dr and 96% ee.

We then evaluated the substrate scope for the diastereodivergent protocol using 5 mol% of 

((S,Sp)-Taniaphos)Cu(I) as catalyst (Scheme 4). The reaction of five different α-

fluoroarylacetonitriles to the N-phenyl isatin ketimine 2c gave syn-3ac-3kc in 84–99% yield 

and with good to high stereoselectivities ranging from 3:1 to 7:1 dr and 83–97% ee, 

respectively. We obtained a single crystal of 3ic by slow evaporation of a hexanes/ethanol/

chloroform (3:1:1) solution. The crystallographic analysis is in agreement with NMR and 

chromatographic measurements which confirmed the favored formation of the syn-(S,S)-

diastereomer.

Based on NMR analysis and in analogy to previously reported mechanistic studies we 

propose the catalytic cycle and a plausible transition state shown in Scheme 5 (SI).8d,g,9c 

Competition binding experiments revealed preferential binding of the α-fluorobenzylnitrile 

1a to the (Segphos)Cu(I) complex in the presence of the ketimine 2. We then conducted H/D 

exchange and titration experiments and observed that the metal coordination of the nitrile 

significantly accelerates the reversible deprotonation of complex A to the cuprous 

keteniminate complex B. Irreversible C-C bond formation affords C which undergoes proton 

transfer and dissociation to 3, regenerating the free Cu(I) complex and BTMG. In the 

favored transition state, the N-cuprated ketenimine exposes the Si-face for nucleophilic 

attack by the isatin ketimine which is expected to occupy a tilted orientation to minimize 

steric repulsion as the large N-trityl group occupies the bottom left axial space and the N-

carbamoyl resides in the top right axial space. This exposes the Si-face of the ketimine and 

gives the (R,S)-diastereomer as observed.

Finally, the possibility of upscaling and the synthetic utility of the synthesized α-fluoro-β-

aminonitriles were investigated (Scheme 6). We were pleased to find that nearly one gram of 

anti-3ab was produced in quantitative amounts and without compromised stereoselectivities 

using 5 mol% of the (DTBM-Segphos)Cu(I) catalyst. Reduction of compound 3ab with 

NaBH4 in the presence of NiCl2 produced β-fluoro-α,γ-diamine 4 in 65% yield.14 

Hydrolysis of the cyano group in 3ab using a catalytic amount of Pd(OAc)2 and PPh3 with 

acetaldoxime in aqueous EtOH gave the α-fluoro-β-amino amide 5, a fluorinated analogue 

of the cholecystokinin-2 (CCK2)/gastrin receptor antagonist AG-041R,15 in 97% yield.16 

Methanolysis with sodium methoxide opened the oxindole lactam ring in 3ab without 

erosion of the original ee and dr, producing β-fluoro-α-amino acid methyl ester 6, a 

fluorinated unnatural amino acid derivative.17 Simultaneous deprotection of the trityl and 

Boc groups in 3ab gave 76% of 7 in 89% ee and 12:1 dr. Our protocol can also be applied to 

α-alkyl-α-arylnitriles. We obtained 9 from α-methylphenylacetonitrile, 8, in 96% yield and 

with 85% ee and more than 19:1 dr.
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In summary, we have developed an efficient diastereodivergent catalytic enantioselective 

Mannich reaction constructing α-fluoro-β-aminonitriles bearing vicinal tetrasubstituted 

stereocenters via (bisphosphine)copper(I) complex/guanidine catalyzed addition of α-

fluoroarylacetonitriles to isatin derived N-Boc ketimines. The switching of 

diastereoselectivity is very practical and can be conveniently achieved by properly choosing 

the chiral bisphosphine ligand and the isatin N-protecting group. Using either Segphos or 

Taniaphos-derived copper(I) complexes and BTMG as base we have prepared a variety of 

syn- and anti-diastereomers of multifunctionalized 3-aminooxindoles with an adjacent 

quaternary C-F stereocenter in excellent yields and ee’s. The reaction can be conducted at 

the gram scale without compromising yield and stereoselectivity and the general utility of α-

fluoro β-aminonitriles was demonstrated with selective transformations of the nitrile 

functionality and oxindole ring opening.
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Scheme 1. 
Synthesis of chiral β-aminonitriles bearing vicinal tetrasubstituted stereocenters.
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Scheme 2. 
Reaction scope with α-fluoro-α-arylnitriles. The absolute configuration of 3ab and 3lb were 

determined by crystallographic analysis. The configuration of the other compounds was 

assigned by analogy.
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Scheme 3. 
Reaction scope with N-trityl isatin derived N-Boc ketimines.
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Scheme 4. 
Diastereodivergent synthesis syn-α-fluoro-β-aminonitriles from N-phenyl isatin N-Boc 

ketimines using ((S,Sp)-Taniaphos)Cu(I) as catalyst.
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Scheme 5. 
Proposed mechanism.
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Scheme 6. 
Gram scale synthesis, transformations of α-fluoro-β-aminonitrile 3ab and extension of the 

substrate scope to α-alkyl-α-arylnitriles.
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Table 1.

Optimization of the stereodivergent asymmetric Mannich reaction.

Entry Cu(I) source Ligand 2 Conditions Yield (%) dr
a
 (anti/syn) ee

b
 (%)

1 Cu(PhMe)0.5OTf L1 2a DIPEA
c
, 25 °C 91 1.7:1 41

2 Cu(PhMe)0.5OTf L1 2b DIPEA
c
, 25 °C 85 5.2:1 80

3 Cu(PhMe)0.5OTf L2 2b DIPEA
c
, 25 °C 74 4.6:1 75

4 Cu(PhMe)0.5OTf L1 2b BTMG, 25 °C 98 5.8:1 83

5 Cu(MeCN)4PF6 L1 2b BTMG, 25 °C 98 6.7:1 83

6 Cu(MeCN)4PF6 L1 2b DBU, 25 °C 99 6.6:1 73

7 Cu(MeCN)4PF6 L1 2b MTBD, 25 °C 99 5.8:1 83

8 Cu(MeCN)4PF6 L3 2b BTMG, 25 °C 99 2.0:1 26

9 Cu(MeCN)4PF6 L4 2b BTMG, 25 °C 99 4.0:1 79

10 Cu(MeCN)4PF6 L5 2b BTMG, 25 °C 99 1.5:1 50

11 Cu(MeCN)4PF6 L6 2b BTMG, 25 °C 99 1.5:1 31

12 Cu(MeCN)4PF6 L7 2b BTMG, 25 °C 99 1.3:1 40

13 Cu(MeCN)4PF6 L8 2b BTMG, 25 °C 99 1.1:1 47

14 Cu(MeCN)4PF6 L1 2b BTMG, −35 °C 95 12.3:1 90

15
d Cu(MeCN)4PF6 L9 2b BTMG, 25 °C 97 1:1.6 3

16
d Cu(MeCN)4PF6 L9 2a BTMG, 25 °C 99 1:5.7 31

17
d Cu(MeCN)4PF6 L10 2a BTMG, −35 °C 75 1:2.5 4

18
d Cu(MeCN)4PF6 L11 2a BTMG, −35 °C 99 1:7.3 19
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Entry Cu(I) source Ligand 2 Conditions Yield (%) dr
a
 (anti/syn) ee

b
 (%)

19
d Cu(MeCN)4PF6 L12 2a BTMG, −35 °C 99 1:5.6 60

20
d Cu(MeCN)4PF6 L13 2a BTMG, −35 °C 99 1:13.4 70

21
d Cu(MeCN)4PF6 L13 2c BTMG, −35 °C 98 1:8.7 75

22
d Cu(MeCN)4PF6 L14 2a BTMG, −35 °C 94 1:5.7 80

23
d Cu(MeCN)4PF6 L14 2c BTMG, −35 °C 94 1:3.0 98

Reaction condition: 1a (0.055 mmol), 2 (0.050 mmol), Cu(I) source (0.005 mmol), ligand (0.006 mmol) and base in 0.3 mL toluene.

a
Determined by 19F NMR analysis.

b
Determined by chiral HPLC analysis.

c
The base loading was 80 mol%.

d
The Cu complex and base loading were 5 mol%.
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