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Abstract
Background: BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk.
Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear.
Methods: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk,
using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation
carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a
BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI
with breast cancer risk using weighted Cox models. All statistical tests were two-sided.
Results: Observed height was positively associated with breast cancer risk (HR ¼ 1.09 per 10 cm increase, 95% confidence
interval [CI] ¼ 1.0 to 1.17; P¼1.17). Height genetic score was positively associated with breast cancer, although this was not
statistically significant (per 10 cm increase in genetically predicted height, HR ¼ 1.04, 95% CI ¼ 0.93 to 1.17; P¼ .47). Observed
BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR ¼ 0.94, 95% CI ¼ 0.90 to 0.98; P¼ .007). BMI
genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI,
HR ¼ 0.87, 95% CI ¼ 0.76 to 0.98; P¼ .02). BMI was primarily associated with premenopausal breast cancer.
Conclusion: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in
BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve
cancer management.
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Breast cancer is the most common cancer in women and a lead-
ing cause of cancer deaths globally (1). Inheritance of a BRCA1 or
BRCA2 mutation is associated with an increased lifetime risk of
breast cancer (2,3). However, penetrance of BRCA1/2 mutations
is likely modified by lifestyle, reproductive factors, and genetic
variants (4–8). Multiple genes have been found to modify the as-
sociation between BRCA1/2 and breast cancer risk (9–11).
Accurate breast cancer risk prediction in BRCA1/2 mutation car-
riers is crucial in preventing morbidity and mortality, while op-
timizing primary and secondary prevention.

The relationship between anthropometric characteristics
such as height or body mass index (BMI) and breast cancer risk
has been extensively studied (12,13). Adult height was found to
be positively associated with breast cancer risk (14). Higher BMI
is positively associated with postmenopausal breast cancer, but
inversely associated with premenopausal breast cancer (15).
However, the associations of height and BMI with breast cancer
risk in BRCA1/2 mutation carriers remain unclear. Retrospective
studies are subject to potential biases, whereas prospective
studies are often underpowered.

Notably, both height and BMI have a strong genetic basis.
Genome-wide association studies (GWAS) (16–18) have identi-
fied variants that are associated with either trait. In aggregate,
these variants explain a sizable proportion of the variation in
each trait.

Mendelian randomization (MR) is a method to assess the as-
sociation between an exposure and a disease using genetic
markers associated with the exposure as instrumental varia-
bles. Because genes are inherited randomly, MR can be used to
minimize the effects of recall bias, reverse causation, measure-
ment error, and residual confounding (19). The assumptions un-
derlying MR include the following: genetic variants are
associated with the exposure of interest, variants only affect
the outcome through the exposure, and variants are weakly or
not associated with confounders in the exposure-outcome
pathway (20,21). A causal relationship between exposure and
disease could be concluded if these assumptions are held. In
this study, we used MR approaches to evaluate the association
between height and BMI and breast cancer, using data from the
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA),
including 22 588 women, with 14 676 BRCA1 and 7912 BRCA2
mutation carriers.

Methods

Information about CIMBA and genotyping protocols can be
found in the Supplementary Methods (available online) and pre-
vious publications (9–11). All participants provided written in-
formed consent in accordance with the local institutional
review boards.

Single-Nucleotide Polymorphism Selection

Single-nucleotide polymorphisms (SNPs) associated with height
and BMI were identified from the Genetic Investigation of
Anthropometric Traits publications (16,17). SNPs achieving
genome-wide statistical significance (P< 5� 10�8) with height or
BMI were eligible. We excluded SNPs with an imputation quality
of less than 0.5. For height, we included 586 SNPs (85 genotyped)
(Supplementary Table 1, available online). For BMI, we included
93 SNPs (12 genotyped) (Supplementary Table 2, available
online).

Statistical Analysis

We calculated weighted genetic scores (GS) for height and BMI
using methods described previously, based on a polygenic addi-
tive model (ie, ignoring interactions between variants) (14,22).
We calculated each GS using the formulas

GSheight ¼
X586

i¼1

biSNPi and GSBMI ¼
X93

i¼1

biSNPi;

where bi is the reported per-allele effect of the ith SNP for height
and BMI (16,17) and SNPi is the effect allele dosage (0, 1, 2) of the
ith SNP. We rescaled GSs to calculate the genetically predicted
height and BMI by performing linear regressions of observed
height and BMI on the corresponding GS in noncases. For
height, we obtained from the regression equation b0 (inter-
cept¼ 165.648) and b1 (slope¼ 5.119). The corresponding values
for BMI were b0 (22.058) and b1 (6.408). We used these values to
calculate the scaled height-GS and BMI-GS using this equation:
Scaled-GS¼ b0 þ b1GS. We estimated the variation explained by
each GS and the association between each GS and traditional
breast cancer risk factors, using linear regressions for continu-
ous variables and logistic regressions for categorical variable.

Next, we modeled height-GS and BMI-GS with breast cancer
risk using weighted Cox models. The primary outcome was breast
cancer diagnosis. Observations were censored at ovarian cancer
diagnosis, prophylactic mastectomy/salpingo-oophorectomy,
death, or end of follow-up, whichever came first. Time to event
was computed from birth to age at breast cancer diagnosis or cen-
soring. Mutation carriers were not randomly selected and those
with breast cancer had a higher probability of being identified. To
account for nonrandom sampling, we applied a weighted cohort
approach (23). Weights were assigned based on observed inci-
dence rates of breast cancer for BRCA1/2 carriers (24). To account
for interdependence between carriers from the same family, we
used a robust sandwich variance estimation approach. Stratified
analyses were performed by BRCA1/2 or menopausal status.
Menopausal status was modeled as a time-varying covariate: The
variable was coded as premenopausal from birth until age at cen-
soring and was switched to postmenopausal at the age of natural
menopause or bilateral salpingo-oophorectomy. If age at natural
menopause or bilateral salpingo-oophorectomy was missing, we
imputed the mean age as 46 years, because the mean and median
ages at natural menopause in this population were 46 and 48
years, respectively. These ages were broadly consistent with those
from a prior registry study of mutation carriers (25). Imputing
missing age at menopause as 50 did not materially change the
results. The analyses were also adjusted for the first eight princi-
pal components (as a proxy for population structure and ethnic-
ity), birth cohort, and country of enrollment.

We also examined the association between height and BMI
with breast cancer by modeling individual height and BMI var-
iants separately. We assessed the direct association between
each SNP and height and BMI (bXG) and its association with
breast cancer risk (bYG). bXG for each SNP was extracted from
prior GWAS and represents the per-allele effect on height or
BMI. bYG was calculated using multivariable-adjusted weighted
Cox model for each SNP using data from CIMBA, ie, breast can-
cer � bYGX (where X¼ 0, 1, 2 for the allele corresponding to in-
creased height or BMI), principal components, birth cohort,
mutated gene, and country of enrollment. We statistically com-
bined these two effect estimates to measure the association be-
tween height and BMI and breast cancer risk (bYX) (26,27). The
causal effect (bYX) was calculated using the Wald estimator bYX
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¼ bYG/bXG. The standard error for this estimate was estimated
using the method proposed by Burgess (27):

SEYX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEYG

bXG

� �2

:

s

bYX can be interpreted as the log hazard ratio (HR) for breast
cancer per 1 unit increase in genetically determined height and
BMI. We then combined the effects of individual height- and
BMI-associated variants using an inverse-variance fixed-effects
meta-analysis. We also used the Egger test to assess for possible
pleiotropic effects of the variants (ie, the effects are not medi-
ated via the exposure), one of the assumptions for MR (28).

In a subset of participants with observed height or BMI (34%),
we performed a formal instrumental variable analysis to esti-
mate the unbiased effect of height and BMI on breast cancer risk
using two-stage residual inclusion regression (29). In stage 1,
we conducted a linear regression of observed height or BMI on
corresponding GS, principal components, birth cohort, coun-
try, mutation status, and residuals. In stage 2, we used a Cox
model to fit breast cancer risk against height and BMI, birth co-
hort, country, mutation status, and residuals from stage 1. We
performed 10 000 bootstraps to obtain the variance estimates.

Lastly, we examined the association between observed height
and BMI and breast cancer risk in participants with measure-
ments using weighted Cox models, adjusted for traditional breast
cancer risk factors including birth cohort, menopausal status, age
at menarche (continuous), and parity (continuous). BMI was
reported at date of questionnaire (baseline), usually close to the
date of genetic testing and recalled for young adulthood (age 18).
The BMI-GS mentioned above was rescaled to BMI reported at
baseline because previous GWAS were based on adult BMI.

The proportional hazards assumption was tested by adding
an interaction term of age and either height-GS or BMI-GS. In
models with menopausal status as the time-varying variable,
test for heterogeneity by menopausal status was also a test for
proportional hazard assumption. Analyses were performed us-
ing SAS 9.4 (SAS Institute, Cary, NC) and Stata 14.0 (StataCorp,
College Station, TX). All statistical tests were two-sided and a
P value less than .05 was considered statistically significant un-
less stated otherwise. For association tests of individual SNPs,
Bonferroni adjustment was conducted.

Results

Baseline Characteristics

Table 1 presents the baseline characteristics of the 22 588 partic-
ipants (14 676 BRCA1 and 7912 BRCA2 mutation carriers) with ge-
notype information. There were 11 451 cases of breast cancer in
the overall consortium. The mean age of individuals at the time
of breast cancer diagnosis (cases) was similar to the age of indi-
viduals who did not develop breast cancer at the time of censor-
ing (controls). However, the birth year of cases tended to be
earlier than controls. Height was available in 7657 participants
(4502 BRCA1 carriers and 3155 BRCA2 carriers) and BMI at date of
questionnaire was available in 7516 participants (4401 BRCA1
carriers and 3115 BRCA2 carriers).

Height Analysis

Observed height was positively associated with breast cancer
risk (HR per 10 cm ¼ 1.09, 95% CI ¼ 1.02 to 1.17, P¼ .02) (Table 2).
In stratified analysis, we found that height was a stronger

predictor of risk in BRCA2 carriers (HR¼ 1.17, 95% CI ¼ 1.04 to
1.31) than in BRCA1 carriers (HR¼ 1.06, 95% CI ¼ 0.97 to 1.16), but
the interaction was not statistically significant. The country-
specific estimates showed low levels of heterogeneity
(Supplementary Figure 1A, available online).

We found that height-GS was strongly associated with ob-
served height by case/control and mutation status (all P< 10–93)
(Table 3). The height-GS explained 13.4% of the variation in
height (Supplementary Figure 2A, available online). As shown in
Supplementary Figure 3A (available online), there was a strong
correlation (r¼ 0.44) between the estimated effect size for indi-
vidual variants in our study and those reported in previous
GWAS. Height-GS was positively associated with weight, base-
line age, and age at menarche but the associations were weak.

Height-GS was positively associated with breast cancer risk
with an effect weaker than that for observed height, although it
was not statistically significant (HR ¼ 1.04 per 10-cm increase in
genetically predicted height, 95% CI ¼ 0.93 to 1.17; P¼ .47)
(Table 4). Effect was not different when stratified for meno-
pausal or mutation status.

Table 1. Baseline characteristics of participants in the CIMBA con-
sortium with genotype information*

Variable
BRCA1 carriers BRCA2 carriers

N¼ 14 676 N¼ 7912

Case participants, n 7360 4091
Year of birth, median (IQR) 1956 (1948–1964) 1954 (1945–1961)
Age at diagnosis,

mean (SD), y
41.1 (9.3) 44.2 (10.0)

Control participants, n 7316 3821
Year of birth, median (IQR) 1963 (1953–1972) 1962 (1950–1971)
Age at censoring,

mean (SD), y
42.0 (12.5) 44.0 (13.5)

Ethnicity, n (%)
Caucasian, not otherwise

specified
13 435 (91.5) 7126 (90.1)

Ashkenazi Jewish 1241 (8.5) 786 (9.9)
Height in cm, n 4502 3155

Mean (SD) 164.8 (6.8) 164.5 (6.9)
Weight at date of questionnaire

in kg, n
4436 3133

Mean (SD) 68.1 (13.9) 69.0 (14.5)
BMI at date of questionnaire

in kg/m2, n
4401 3115

Mean (SD) 25.1 (5.1) 25.6 (5.2)
Weight in early adulthood

in kg, n
3152 2296

Mean (SD) 57.6 (9.2) 57.9 (9.6)
BMI in early adulthood

in kg/m2, n
3134 2283

Mean (SD) 21.2 (3.3) 21.4 (3.3)
Age at menarche in years, n 4425 3034

Mean (SD), y 13.0 (1.5) 13.0 (1.5)
Parous, n (%)

Yes 3914 (77.8) 2681(79.7)
No 1117 (22.2) 682 (20.3)

Age at first live birth in years, n 3711 2579
Mean (SD), y 25.3 (4.9) 25.3 (4.9)

Menopausal status, n (%)
Premenopausal 2330 (47.4) 1610 (46.4)
Postmenopausal 2588 (52.6) 1858 (53.6)

Age at menopause, mean (SD), y 44.7 (6.0) 45.6 (6.0)

*BMI ¼ body mass index; CIMBA ¼ Consortium of Investigators of Modifiers of

BRCA1/2; IQR ¼ interquartile range.
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When combining the breast cancer risk estimates for indi-
vidual height variant using inverse-variance meta-analysis, the
result was similar (HR ¼ 1.05, 95% CI ¼ 0.93 to 1.19; P¼ .42)
(Table 4). There was low heterogeneity among SNPs (I2¼17.0%).
The Egger test for small-study effects was not statistically sig-
nificant (P¼ .61, Supplementary Figure 4A, available online), so
we failed to reject the assumption of no pleiotropic effects for
MR analysis. The two-stage residual inclusion analysis found a
similar risk estimate to that for observed height (HR ¼ 1.09, 95%
CI ¼ 0.93 to 1.27; P¼ .27).

BMI Analysis

For reported BMI at date of questionnaire, we found an inverse
association with breast cancer risk after multivariable adjust-
ment (HR per 5-kg/m2 increase ¼ 0.94, 95% CI ¼ 0.90 to 0.98;

P¼ .007) (Table 5). The inverse association was stronger in
BRCA2 vs BRCA1 carriers [HR ¼ 0.90 (95% CI ¼ 0.84 to 0.97) vs 0.96
(95% CI ¼ 0.91 to 1.01)] and for premenopausal vs postmeno-
pausal breast cancer [HR ¼ 0.92 (95% CI ¼ 0.87 to 0.97) vs 0.97
(95% CI: 0.91 to 1.04), but there was no statistically significant in-
teraction (Pinteraction> .05 for each comparison). We found a
stronger inverse association of BMI in young adulthood with
breast cancer risk (HR ¼ 0.83, 95% CI ¼ 0.76 to 0.90; P¼ 2.1� 10–5).
The country-specific estimates showed moderate levels of het-
erogeneity (Supplementary Figure 1B, available online).

BMI-GS was strongly associated with reported BMI at date of
questionnaire among controls and cases (each P< 10–14)
(Table 6). BMI-GS accounted for 2.6% of the variation in BMI at
date of questionnaire (Supplementary Figure 2B, available on-
line). We found a strong correlation between the effect on BMI
by individual variants in prior reported GWAS and in CIMBA

Table 2. Association of height and breast cancer risk using observed height, among 7657 participants

N/events HR (95% CI) P*

Per 10-cm increase in observed height
All participants (confounding adjustment sequentially)

Unadjusted 7657/3653 1.14 (1.06 to 1.22) 2.0 � 10-4

Adjusted for principal components 7657/3653 1.15 (1.07 to 1.23) 1.6 � 10-4

Additionally adjusted for country 7657/3653 1.17 (1.09 to 1.26) 1.3 � 10-4

Additionally adjusted for birth cohort 7657/3653 1.09 (1.01 to 1.17) .02
Additionally adjusted for mutation status 7657/3653 1.09 (1.02 to 1.17) .01
Additionally adjusted for menopausal status 7657/3653 1.09 (1.02 to 1.17) .02
Additionally adjusted for parity and age at menarche 7090/3383 1.10 (1.02 to 1.18) .01

By mutation status†
BRCA1 carrier 4502/2154 1.06 (0.97 to 1.16) .19
BRCA2 carrier 3155/1499 1.17 (1.04 to 1.31) .007
Pinteraction .18

By menopausal status‡
Premenopausal 7657/2197 1.10 (1.01 to 1.20) .03
Postmenopausal 3076/1402 1.07 (0.95 to 1.19) .26
Pinteraction‡ .64

*P values were calculated from weighted Cox models. All P values are two-sided. HR ¼ hazard ratio; CI ¼ confidence interval.

†Adjusted for principal components, birth cohort, country of enrollment, and menopausal status.

‡Adjusted for principal components, mutation status, birth cohort, and country of enrollment.

Table 3. Associations of the height genetic score (height-GS) with height and traditional breast cancer risk factors*

Variable Number of participants Summary effect SE P† % variation explained

Measured height, cm
All participants 7657 1.012 0.029 7.0 � 10�241 13.4

BRCA1 carriers 4502 1.025 0.038 3.8 � 10�149 14.0
BRCA2 carriers 3155 0.996 0.047 2.5 � 10�94 12.6

Case participants 3653 1.028 0.041 2.6 � 10�128 14.7
Control participants 4004 1.000 0.042 1.1 � 10�116 12.3

Traditional risk factors
BMI, kg/m2 7516 �0.010 0.024 .66 –
Weight, kg 7569 0.813 0.065 2.7 � 10�35 –
Age at baseline, y 8578 0.123 0.036 7.3 � 10�4 –
Age at menarche, y 7459 0.028 0.007 9.3 � 10�5 –
Parous, yes vs no 8394 �0.010 0.011 .35 –
Age at first live birth, y 6290 �0.014 0.025 .58 –
Menopausal status, pre vs post 8386 0.011 0.009 .20 –
Age at menopause, y 4336 �0.082 0.037 .03 –

*Regression coefficient is presented for continuous variables and natural log-scale odds ratio for binary variables, per unit increase of the H-GS. BMI ¼ body mass index;

SE ¼ standard error.

†P values were calculated from linear regression models for all variables except for parity and menopausal status (logistic regression models). All P values are two-sided.
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(r¼ 0.52, Supplementary Figure 3B, available online). Similarly,
the BMI-GS was associated with reported BMI in young adult-
hood, with stronger effects among controls (P< 10–15, r2¼ 2.3%).
The BMI-GS was positively associated with height and inversely
associated with age at menarche.

In the analysis of BMI-GS and breast cancer risk, each 5-kg/m2

increment in genetically predicted BMI was associated with a
13% reduction in breast cancer risk (HR ¼ 0.87, 95% CI ¼ 0.76 to
0.98; P¼ .02) (Table 7). The association was slightly stronger
among BRCA2 mutation carriers and for premenopausal breast
cancer, although there was no statistically significant interaction
(Pinteraction> .05 for each).

When we statistically combined the effect of individual BMI
variants on breast cancer risk, we found a similar association
(HR ¼ 0.87, 95% CI ¼ 0.76 to 0.98, P¼ .03) (Table 7). There was low
overall heterogeneity (I2 ¼ 3.5%). The Egger test was not statisti-
cally significant (P¼ .44, Supplementary Figure 4B, available
online), suggesting that pleiotropic effects may not exist. The
two-stage residual inclusion method yielded similar results
(HR ¼ 0.86, 95% CI ¼ 0.70 to 1.07; P¼ .18).

Individual Height- and BMI-Associated Variants

Of the 586 height-related variants, 50 were found to be associ-
ated with breast cancer risk at P less than .05 (Table 8). Of the 93
BMI-related variants, seven were associated with breast cancer

risk. One SNP (rs10744956) was statistically significant after
Bonferroni adjustment.

Discussion

Using data from a large international study of women with a
BRCA1/2 mutation and analyzed by several MR methods, we
found that both observed and genetically predicted BMI were
associated with a reduced risk of breast cancer whereas ob-
served and genetically predicted height were associated with an
increased risk of breast cancer.

We found that each 10-cm increment in observed height
was associated with a 9% increase in breast cancer risk,
whereas a 10-cm increment in genetically predicted height
was associated with a 4%–8% increase in risk in BRCA1/2 muta-
tion carriers. Our findings are broadly consistent with previous
studies in the general population (14,20). A recent meta-
analysis of prospective studies of height reported a relative
risk (RR) of 1.17 per 10-cm increase, and the MR analysis using
168 height-associated variants found an odds ratio (OR) of 1.22
per 10-cm increase in genetically predicted height (14). A sub-
sequent MR analysis with 423 height-associated variants
reported a similar result (OR¼ 1.19) (20). One study of height in
719 BRCA1/2 mutation carriers showed a statistically nonsig-
nificant positive relationship with premenopausal breast can-
cer and a statistically significant positive relationship with

Table 4. Association of height genetic score and breast cancer risk in 22 588 participants in CIMBA, per 10-cm increase in genetically predicted
height

Breast cancer group N/events HR (95% CI) P* Heterogeneity (I2)

Height-GS†
All participants (confounding adjustment sequentially)

Unadjusted 22 588/11 451 1.11 (1.00 to 1.23) .05 –
Adjusted for principal components 22 588/11 451 1.04 (0.93 to 1.17) .48 –
Additionally adjusted for country 22 588/11 451 1.03 (0.92 to 1.16) .57 –
Additionally adjusted for birth cohort 22 588/11 451 1.04 (0.92 to 1.16) .56 –
Additionally adjusted for mutation status 22 588/11 451 1.04 (0.93 to 1.17) .45 –
Additionally adjusted for menopausal status 22 588/11 451 1.04 (0.93 to 1.17) .47

By mutation status‡
BRCA1 carrier 14 676/7360 1.03 (0.91 to 1.18) .62 –
BRCA2 carrier 7912/4091 1.07 (0.87 to 1.32) .50 –
Pinteraction .95

By menopausal status§
Premenopausal 22 588/7410 1.09 (0.96 to 1.24) .20 –
Postmenopausal 8459/3926 0.95 (0.79 to 1.13) .55 –
Pinteraction .18

Meta-analysis method§
All participants 22 588/11451 1.05 (0.93 to 1.19) .42 17.0%

BRCA1 carrier 14 676/7360 1.04 (0.90 to 1.20) .57 11.8%
BRCA2 carrier 7912/4091 1.09 (0.87 to 1.36) .45 6.6%
Pinteraction .75

Two-stage residual inclusion method
All participants 7657/3653 1.09 (0.93 to 1.27) .27 –

BRCA1 carrier 4502/2154 1.16 (0.96 to 1.40) .13 –
BRCA2 carrier 3155/1499 1.05 (0.80 to 1.37) .74 –

*P values were calculated using weighted Cox models. All P values are two-sided. CIMBA ¼ Consortium of Investigators of Modifiers of BRCA1/2; H-GS ¼ height genetic

score; HR ¼ hazard ratio; CI ¼ confidence interval.

†H-GS combining 586 height-associated single-nucleotide polymorphisms (SNPs).

‡Adjusted for principal components, birth cohort, country of enrollment, and menopausal status.

§Adjusted for principal components, mutation status, birth cohort, and country of enrollment.

kHazard ratios were calculated using inverse-variance meta-analysis and rescaled to the corresponding units by calculating the height measurements per z score

among controls. Effect estimates for breast cancer for each SNP were calculated from weighted Cox model adjusting for principal components, birth cohort, country of

enrollment, menopausal status, and mutation status.
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postmenopausal breast cancer (30). Thus, height is likely a
predictor for breast cancer risk in BRCA1/2 mutation carriers
and the general population.

Several studies have examined the relationship between
BMI and breast cancer risk in BRCA1/2 carriers (5,30,31) with in-
consistent findings, possibly because of limited sample size. In
the general population, every 5-kg/m2 increase in BMI was posi-
tively associated with postmenopausal breast cancer (RR¼ 1.12)
and inversely associated with premenopausal breast cancer
(RR¼ 0.92) (15). We found that for BRCA1/2 carriers observed BMI
at date of questionnaire was inversely associated with preme-
nopausal breast cancer but was not statistically significantly as-
sociated with postmenopausal breast cancer. Our MR analysis
found that a 5-kg/m2 increase in genetically predicted BMI was
associated with a 16% reduction in premenopausal breast can-
cer. Similarly, a MR analysis in the general population found
that each 5-kg/m2 increase in genetically predicted BMI had an
OR of 0.65, with consistent effects across menopausal status
(22). Altogether, there is strong evidence for the protective effect
of higher BMI on premenopausal breast cancer in both the gen-
eral population and BRCA1/2 mutation carriers. Unlike with MR,
the association with observed BMI is potentially subject to recall
bias or reverse causation. Conversely, BMI-GS may only capture

early-life body weight and cannot predict weight changes later
in life, which are influenced by lifestyle factors. The association
between BMI at age 18 and premenopausal breast cancer
(HR¼ 0.83) was quite similar to that for BMI-GS and premeno-
pausal breast cancer (HR¼ 0.84), supporting the notion that
early-life BMI/adiposity play a role in breast carcinogenesis. The
seemingly inconsistent findings for observed BMI and postmen-
opausal breast cancer might reflect differences in study popula-
tions and methodology. Our study may be underpowered to
assess the impact of observed and genetically predicted BMI on
postmenopausal breast cancer, given the smaller number of
cases. An ongoing prospective consortium of BRCA1/2 carriers
may clarify the relationship between BMI and postmenopausal
breast cancer. Hence higher BMI, particularly genetically pre-
dicted BMI, is associated with lower risk of premenopausal
breast cancer, although the relationship with postmenopausal
breast cancer remains inconclusive.

There are several potential mechanisms for the associations
between height or BMI and breast cancer. For height, early-life
exposures including nutritional and hormonal status could af-
fect obtained height and account for the association between
height and breast cancer risk (32,33). The insulin-like growth
factor (IGF) signaling pathway has been implicated in the

Table 5. Association of BMI and breast cancer risk using observed body mass index (BMI)

Breast cancer group N/events HR (95% CI) P*

Per 5-kg/m2 increase in BMI at date of questionnaire
All participants (confounding adjustment sequentially)

Unadjusted 7516/3594 0.92 (0.88 to 0.97) 4.3 � 10-4

Adjusted for principal components 7516/3594 0.93 (0.89 to 0.97) 7.3 � 10-4

Additionally adjusted for country 7516/3594 0.92 (0.88 to 0.96) 3.1 � 10-4

Additionally adjusted for birth cohort 7516/3594 0.94 (0.90 to 0.98) .003
Additionally adjusted for mutation status 7516/3594 0.95 (0.91 to 0.99) .01
Additionally adjusted for menopausal status 7516/3594 0.94 (0.90 to 0.98) .007
Additionally adjusted for parity and age at menarche 6964/3331 0.93 (0.89 to 0.98) .003

By mutation status†
BRCA1 carrier 4401/2114 0.96 (0.91 to 1.01) .11
BRCA2 carrier 3115/1480 0.90 (0.84 to 0.97) .003
Pinteraction‡ .26

By menopausal status§
Premenopausal 7516/2153 0.92 (0.87 to 0.97) .001
Postmenopausal 3029/1389 0.97 (0.91 to 1.04) .40
Pinteraction‡ .14

Per 5-kg/m2 increase in BMI in young adulthood
All participants (confounding adjustment sequentially)

Unadjusted 5417/2520 0.83 (0.76 to 0.91) 3.1 � 10-5

Adjusted for principal components 5417/2520 0.83 (0.76 to 0.91) 5.4 � 10-5

Additionally adjusted for country 5417/2520 0.81 (0.74 to 0.88) 2.8 � 10-6

Additionally adjusted for birth cohort 5417/2520 0.81 (0.74 to 0.88) 1.8 � 10-6

Additionally adjusted for mutation status 5417/2520 0.83 (0.76 to 0.90) 1.7 � 10-5

Additionally adjusted for menopausal status 5417/2520 0.83 (0.76 to 0.90) 2.1 � 10-5

Additionally adjusted for parity and age at menarche 5210/2436 0.82 (0.75 to 0.90) 2.7 � 10-5

By mutation status†
BRCA1 carrier 3134/1462 0.87 (0.78 to 0.97) .01
BRCA2 carrier 2283/1058 0.74 (0.63 to 0.85) 4.5 � 10-5

Pinteraction .06
By menopausal status‡

Premenopausal 5417/1519 0.85 (0.78 to 0.94) .002
Postmenopausal 2181/977 0.79 (0.69 to 0.91) .001
Pinteraction .35

*P values calculated using weighted Cox models. All P values are two-sided; HR ¼ hazard ratio; CI ¼ confidence interval.

†Adjusted for principal components, birth cohort, country of enrollment, and menopausal status.

‡Adjusted for principal components, mutation status, birth cohort, and country of enrollment.
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pathogenesis of multiple malignancies, with possibly stronger
effects on premenopausal breast cancer (34,35). Recent investi-
gations have also implicated the LIN28B–let-7 microRNA path-
way, which affects adult height, mammalian body size, and
carcinogenesis (36–38). Furthermore, potential mechanisms
that could account for the association between BMI and reduced
risk of breast cancer include circulating IGF-1 (15), greater likeli-
hood of having anovulatory cycles, and lower circulating levels
of estradiol/
progesterone (39).

Several SNPs included in the present analysis were reported
to be statistically significantly associated with breast cancer
risk in the general population. Guo et al. (22) reported rs7903146
near TCF7L2 (OR¼ 0.96) and rs1558902 (OR¼ 0.93) near FTO. Our
findings were similar. Interestingly, rs7903146 is in weak link-
age disequilibrium (r2¼ 0.45) with rs7904519 near TCF7L2, which
was reported in a previous GWAS (40). Moreover, rs1558902 was
in strong linkage disequilibrium (r2¼ 0.92) with rs17817449
near FTO (40,41).

The strengths of our study include a large sample size, inclu-
sion of numerous height and BMI variants, an MR approach that
reduces confounding, and consistent findings between ob-
served and genetically predicted phenotypes. Our study has
several limitations. Observed height and BMI for breast cancer
cases were typically measured approximiately 5–6 years after
initial diagnosis. Whereas height is unlikely to be affected by
breast cancer diagnosis, changes in weight after diagnosis may
affect the relationship between observed BMI and breast cancer
risk. The height-GS explained 13.4% of height variation, com-
pared with 15.9% in previous GWAS (17). The BMI-GS accounted
for 2.6% of BMI variation, compared to 2.7% in previous GWAS
(16,17). Although both GSs had sufficient strength to be valid in-
strumental variables (F statistic >> 10), they are not very strong,

leading to wide CIs in the MR analysis. Although the GSs were
correlated with some breast cancer risk factors, these associa-
tions were much weaker compared with height or BMI, suggest-
ing minimal residual confounding and upholding MR
assumptions. Another limitation is that our study only included
women of European ancestry, which limits generalizability to
women of other racial/ethnic groups.

Our study suggests that for BRCA1/2 mutation carriers, a
higher BMI is associated with lower risk of premenopausal
breast cancer, whereas greater height may be associated with
increased risk of overall breast cancer. The inconsistent find-
ings between observed and genetically predicted BMI and post-
menopausal breast cancer warrants future studies. These
findings may have implications for risk stratification to help
carriers and their physicians to decide age-appropriate risk-
tailored interventions, including increased surveillance and
prophylactic surgeries. Future studies could elucidate the bio-
logical mechanisms underlying these associations.
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BRCA2 carrier 3115 0.903 0.094 2.1 � 10-21 2.9
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Table 7. Association of body mass index genetic score (BMI-GS) and breast cancer risk among 22 588 participants in CIMBA, per 5-kg/m2 in-
crease in genetically predicted BMI

Breast cancer group N/events HR (95% CI) P* Heterogeneity (I2)

BMI-GS†
All participants (confounding adjustment sequentially)

Unadjusted 22 588/11 451 0.93 (0.81 to 1.05) .24
Adjusted for principal components 22 588/11 451 0.89 (0.78 to 1.01) .07
Additionally adjusted for country 22 588/11 451 0.90 (0.79 to 1.03) .13
Additionally adjusted for birth cohort 22 588/11 451 0.88 (0.77 to 0.999) .049
Additionally adjusted for mutation status 22 588/11 451 0.88 (0.78 to 0.99) .04
Additionally adjusted for menopausal status 22 588/11 451 0.87 (0.76 to 0.98) .02

By mutation status‡
BRCA1 carrier 14 676/7360 0.88 (0.76 to 1.02) .09
BRCA2 carrier 7912/4091 0.83 (0.65 to 1.05) .11
Pinteraction .63

By menopausal status§
Premenopausal 22 588/7410 0.84 (0.73 to 0.98) .02
Postmenopausal 8459/3926 0.89 (0.72 to 1.09) .26
Pinteraction .68

Meta-analysis methodk
All participants 22 588/11 451 0.87 (0.76 to 0.98) .03 3.5%

BRCA1 carrier 14 676/7360 0.88 (0.76 to 1.03) .10 15.7%
BRCA2 carrier 7912/4091 0.82 (0.65 to 1.04) .10 0.0%
Pinteraction .63

Two-stage residual inclusion method
All participants 7516/3594 0.86 (0.70 to 1.07) .18 –

BRCA1 carrier 4401/2114 0.93 (0.69 to 1.23) .61 –
BRCA2 carrier 3115/1480 0.82 (0.61 to 1.12) .23 –

* P values were calculated using weighted Cox models. All P values are two-sided. CIMBA ¼ Consortium of Investigators of Modifiers of BRCA1/2; SE ¼ standard error;

HR ¼ hazard ratio; CI ¼ confidence interval.

†BMI-GS was constructed by combining 93 BMI-associated single-nucleotide polymorphisms (SNPs).

‡Adjusted for principal components, birth cohort, country of enrollment, and menopausal status.

§Adjusted for principal components, mutation status, birth cohort, and country of enrollment.

kHazard ratios were calculated using inverse-variance meta-analysis and rescaled to the corresponding units by calculating the BMI measurements per z score among

controls. Effect estimates for breast cancer for each SNP were calculated from weighted Cox model adjusting for principal components, birth cohort, country of enroll-

ment, menopausal status, and mutation status.
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Table 8. Height or body mass index (BMI) single-nucleotide polymorphisms (SNPs) statistically significantly associated (P< .05) with breast can-
cer risk in CIMBA

Rsid Chromosome Position
Nearest

gene

Reference
allele in
CIMBA

Effect
allele in
CIMBA

Effect allele
frequency
in CIMBA

Imputation
quality*

Association with
breast cancer in CIMBA

HR† SE P‡

Height
rs10744956 15 51 269 629 AP4E1 A G 0.80 0.98 0.096 0.023 3 � 10-5

rs7740107 6 130 374 461 L3MBTL3 T A 0.75 1 0.081 0.021 1 � 10-4

rs10995319 10 52 762 887 PRKG1 T C 0.23 0.96 0.075 0.022 6 � 10-4

rs8058684 16 53 515 118 RBL2 G A 0.32 1 0.061 0.019 .001
rs11049611 12 28 600 244 CCDC91 C T 0.28 1 �0.065 0.020 .002
rs8103992 19 19 665 643 PBX4 A C 0.78 0.98 �0.064 0.022 .004
rs11618507 13 30 172 751 SLC7A1 G T 0.20 1 0.061 0.023 .007
rs11244750 10 127 673 877 FANK1 C T 0.35 0.83 0.055 0.021 .009
rs7701414 5 131 585 958 PDLIM4 A G 0.46 1 0.047 0.018 .01
rs7733195 5 172 994 624 FAM44B G A 0.37 1 0.049 0.019 .01
rs2306694 12 56 680 636 CS A G 0.06 1 0.096 0.038 .01
rs6435143 2 203 194 256 NOP5/NOP A C 0.56 0.84 0.050 0.020 .01
rs2284746 1 17 306 675 MFAP2 C G 0.50 0.84 �0.049 0.020 .01
rs1797625 3 112 826 415 C3orf17 A T 0.36 0.91 �0.049 0.020 .01
rs10495098 1 218 516 310 TGFB2 G T 0.41 0.84 �0.051 0.021 .01
rs301901 5 37 046 626 NIPBL A G 0.45 0.93 �0.046 0.019 .02
rs42039 7 92 244 422 CDK6 C T 0.26 1 0.051 0.021 .02
rs1576900 9 18 629 792 ADAMTSL1 G A 0.30 0.91 0.048 0.020 .02
rs891088 19 7 184 762 INSR A G 0.27 0.83 0.052 0.022 .02
rs273945 7 137 611 566 CREB3L2 A C 0.58 1 �0.042 0.018 .02
rs2682587 19 44 082 429 XRCC1 C A 0.18 1 0.053 0.023 .02
rs1257763 9 96 893 945 PTPDC1 A G 0.96 0.72 �0.118 0.053 .03
rs2888877 7 92 228 400 CDK6 T C 0.79 0.96 �0.050 0.022 .03
rs8042424 15 101 762 539 CHSY1 C T 0.24 0.82 �0.052 0.024 .03
rs7716219 5 54 955 071 SLC38A9 T C 0.70 0.97 �0.044 0.020 .03
rs7727731 5 64 674 446 ADAMTS6 C T 0.12 0.67 �0.076 0.035 .03
rs16964211 15 51 530 495 CYP19A1 G A 0.06 0.99 �0.085 0.040 .03
rs11880992 19 2 176 403 DOT1L G A 0.42 0.95 �0.040 0.019 .03
rs2302580 4 8 608 634 CPZ C T 0.44 1 �0.040 0.019 .03
rs12538407 7 23 521 316 IGF2BP3 A G 0.39 0.99 0.040 0.019 .03
rs2300921 3 185 651 001 SFRS10 T C 0.41 0.98 0.041 0.019 .03
rs897080 2 44 774 202 C2orf34 C T 0.79 0.90 �0.050 0.024 .03
rs4357716 11 69 163 161 MYEOV C T 0.14 1 0.055 0.026 .03
rs11659752 18 77 222 862 NFATC1 T G 0.30 0.82 �0.045 0.021 .04
rs2166898 2 121 612 659 GLI2 G A 0.17 0.55 0.067 0.032 .04
rs6020202 20 48 634 821 SNAI1 G A 0.24 1 0.045 0.022 .04
rs3760318 17 29 247 715 CENTA2 G A 0.37 1 �0.039 0.019 .04
rs6746356 2 174 815 898 SP3 A C 0.24 0.79 0.050 0.024 .04
rs9428104 1 118 855 587 SPAG17 A G 0.75 1 0.044 0.021 .04
rs2834442 21 35 690 786 KCNE2 T A 0.66 0.98 �0.040 0.019 .04
rs1546391 3 114 697 457 ZBTB20 C G 0.09 0.97 �0.069 0.033 .04
rs12926008 16 2 488 211 CCNF T C 0.65 0.53 0.054 0.026 .04
rs2123731 19 4 929 473 UHRF1 A G 0.27 0.70 �0.049 0.024 .04
rs2289195 2 25 463 483 DNMT3A G A 0.41 0.65 0.046 0.023 .04
rs16834765 1 32 371 442 PTP4A2 C T 0.05 0.82 0.091 0.045 .04
rs10958476 8 57 095 808 PLAG1 T C 0.20 1 0.045 0.022 .045
rs17369123 1 172 355 841 DNM3 C T 0.16 0.98 0.049 0.025 .046
rs1415701 6 130 345 835 L3MBTL3 G A 0.26 1 0.041 0.021 .047
rs11152213 18 57 852 948 MC4R A C 0.23 0.99 �0.043 0.022 .047
rs4802134 19 38 346 685 SIPA1L3 A G 0.75 1 �0.041 0.021 .049

BMI
rs13107325 4 103 188 709 SLC39A8 C T 0.09 0.76 0.101 0.037 .007
rs10182181 2 25 150 296 ADCY3 A G 0.45 0.64 �0.056 0.023 .02
rs7903146 10 114 758 349 TCF7L2 C T 0.30 1 0.044 0.020 .03

(continued)
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Table 8. (continued)

Rsid Chromosome Position
Nearest

gene

Reference
allele in
CIMBA

Effect
allele in
CIMBA

Effect allele
frequency
in CIMBA

Imputation
quality*

Association with
breast cancer in CIMBA

HR† SE P‡

rs9925964 16 31 129 895 KAT8 A G 0.39 0.99 �0.040 0.019 .03
rs4740619 9 15 634 326 C9orf93 T C 0.46 0.97 0.040 0.019 .03
rs1558902 16 53 803 574 FTO T A 0.42 1.00 �0.038 0.018 .04
rs2207139 6 50 845 490 TFAP2B A G 0.16 0.99 0.049 0.024 .04

*Imputation quality of 1 indicates genotyped SNPs. Rsid ¼ Reference SNP cluster ID; CIMBA ¼ Consortium of Investigators of Modifiers of BRCA1/2; HR ¼ log hazard ratio;

SE¼ standard error.

†Per-allele association with breast cancer was adjusted for principal components, birth cohort, menopausal status, age at menopause, country of enrollment, and mu-

tation status in weighted Cox models.

‡P values were calculated using weighted Cox models. All P values are two-sided.
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Thiery, Matthias Nüchter, Ronny Baber). We thank all partici-
pants, clinicians, family doctors, researchers, and technicians
for their contributions and commitment to the DKFZ study and
the collaborating groups in Lahore, Pakistan (Muhammad U.
Rashid, Noor Muhammad, Sidra Gull, Seerat Bajwa, Faiz Ali
Khan, Humaira Naeemi, Saima Faisal, Asif Loya, Mohammed
Aasim Yusuf) and Bogota, Colombia (Diana Torres, Ignacio
Briceno, Fabian Gil). Genetic Modifiers of Cancer Risk in BRCA1/
2 Mutation Carriers (GEMO) study is a study from the National
Cancer Genetics Network UNICANCER Genetic Group, France.
We wish to pay tribute to Olga M. Sinilnikova, who with
Dominique Stoppa-Lyonnet initiated and coordinated GEMO
until she sadly passed away on June 30, 2014. The team in Lyon
(Olga Sinilnikova, M�elanie L�eon�e, Laure Barjhoux, Carole Verny-
Pierre, Sylvie Mazoyer, Francesca Damiola, Val�erie Sornin) man-
aged the GEMO samples until the biological resource center was
transferred to Paris in December 2015 (Noura Mebirouk,
Fabienne Lesueur, Dominique Stoppa-Lyonnet). We want to
thank all the GEMO collaborating groups for their contribution
to this study: Coordinating Centre, Service de G�en�etique,
Institut Curie, Paris, France: Muriel Belotti, Oph�elie Bertrand,
Anne-Marie Birot, Bruno Buecher, Sandrine Caputo, Anaı̈s
Dupr�e, Emmanuelle Fourme, Marion Gauthier-Villars, Lisa
Golmard, Claude Houdayer, Marine Le Mentec, Virginie
Moncoutier, Antoine de Pauw, Claire Saule, Dominique Stoppa-
Lyonnet; and Inserm U900, Institut Curie, Paris, France:
Fabienne Lesueur, Noura Mebirouk. Contributing Centres: Unit�e
Mixte de G�en�etique Constitutionnelle des Cancers Fr�equents,
Hospices Civils de Lyon - Centre L�eon B�erard, Lyon, France:
Nadia Boutry-Kryza, Alain Calender, Sophie Giraud, M�elanie
L�eone. Institut Gustave Roussy, Villejuif, France: Brigitte
Bressac-de-Paillerets, Olivier Caron, Marine Guillaud-Bataille.
Centre Jean Perrin, Clermont–Ferrand, France: Yves-Jean
Bignon, Nancy Uhrhammer. Centre L�eon B�erard, Lyon, France:
Val�erie Bonadona, Christine Lasset. Centre François Baclesse,
Caen, France: Pascaline Berthet, Laurent Castera, Dominique
Vaur. Institut Paoli Calmettes, Marseille, France: Violaine
Bourdon, Catherine Noguès, Tetsuro Noguchi, Cornel Popovici,
Audrey Remenieras, Hagay Sobol. CHU Arnaud-de-Villeneuve,
Montpellier, France: Isabelle Coupier, Pascal Pujol. Centre Oscar
Lambret, Lille, France: Claude Adenis, Aur�elie Dumont,
Françoise R�evillion. Centre Paul Strauss, Strasbourg, France:

A
R

T
IC

LE

362 | JNCI J Natl Cancer Inst, 2019, Vol. 111, No. 4
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