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Abstract

Background: Modified median and subgroup-specific gene centering are two essential pre-

processing methods to assign breast cancer molecular subtypes by PAM50. We evaluated the 

PAM50 subtypes derived from both methods in a subset of Nurses’ Health Study (NHS) and 

NHSII participants; correlated tumor subtypes by PAM50 with immunohistochemistry (IHC) 

surrogates; and characterized the PAM50 subtype distribution, proliferation scores and risk of 

relapse with proliferation and tumor size weighted (ROR-PT) scores in the NHS/NHSII.

Methods: PAM50 subtypes, proliferation scores and ROR-PT scores were calculated for 882 

invasive breast tumors and 695 histologically normal tumor-adjacent tissues. Cox proportional 

hazard models evaluated the relationship between PAM50 subtypes or ROR-PT scores/groups with 

recurrence free survival (RFS) or distant RFS.

Results: PAM50 subtypes were highly comparable between the two methods. The agreement 

between tumor subtypes by PAM50 and IHC surrogates improved to fair when Luminal subtypes 
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were grouped together. Using the modified median method, our study consisted of 46% Luminal 

A, 18% Luminal B, 14% HER2-enriched, 15% Basal-like and 8% Normal-like subtypes; 53% of 

tumor-adjacent tissues were Normal-like. Women with the Basal-like subtype had a higher rate of 

relapse within five years. HER2-enriched subtypes had poorer outcomes prior to 1999.

Conclusion: Either pre-processing method may be utilized to derive PAM50 subtypes for future 

studies. The majority of NHS/NHSII tumor and tumor-adjacent tissues were classified as Luminal 

A and Normal-like, respectively.

Impact: Pre-processing methods are important for the accurate assignment of PAM50 subtypes. 

These data provide evidence that either pre-processing method can be used in epidemiological 

studies.
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Introduction

Breast cancer is a heterogeneous disease at both morphological and molecular levels (1,2). 

Given this diversity, many approaches such as MammaPrint (3), Oncotype DX (4) and 

PAM50 (5), have been developed to classify breast tumors to inform prognosis and guide 

treatment. PAM50 is a 50-gene signature that classifies breast cancer into five molecular 

intrinsic subtypes: Luminal A, Luminal B, human epidermal growth factor receptor 2 

(HER2)-enriched, Basal-like and Normal-like (1,5). Each of the five molecular subtypes 

vary by their biological properties and prognoses (6,7). Luminal A generally has the best 

prognosis; HER2-enriched and Basal-like are considered more aggressive diseases. Less 

common subtypes, such as Claudin-low, Interferon-rich and Molecular Apocrine, have also 

been identified using other gene expression profiling assays (8–11).

Molecular subtyping using the PAM50 gene signature can be performed using gene 

expression derived from microarrays, RNASeq or qRT-PCR. Until the recent development of 

Prosigna™, a rapid PAM50-based molecular subtype classifier using the NanoString 

nCounter Dx Analysis System (12), the complexities of using PAM50 and other gene 

signature assays for molecular subtyping have limited their use in clinical practice and led to 

the development of immunohistochemical (IHC) surrogate definitions to classify tumors into 

molecular subtypes (13,14). For example, the immunophenotypic surrogate profile for 

classifying a tumor as Basal-like is one that is estrogen receptor (ER), progesterone receptor 

(PR) and HER2 negative, with positive expression of cytokeratin 5/6 (CK 5/6) and/or 

epidermal growth factor receptor (EGFR) (15). However, studies have reported differences 

in tumor classification when comparing molecular assays and IHC (16,17). There are 

ongoing efforts to refine the IHC definitions to more closely approximate molecular 

subtypes (7,18–21).

In addition to the discrepancies between molecular subtyping using PAM50 and IHC, 

inaccurate pre-processing of gene expression data as well as utilizing non-standard PAM50 

algorithms will result in inconsistent and/or erroneous assignment of molecular subtypes 
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(22–25). In particular, molecular subtype assignment by PAM50 may be affected when the 

clinicopathological distribution (e.g., ER status) of the intended research cohort differs from 

the original cohort used by Parker et al. to derive the PAM50 algorithm. The original cohort 

had an equal distribution of ER+ and ER- tumors (i.e., 50% ER+/50% ER-) (5). To address 

this problem, a modified median gene centering (MMGC) pre-processing method was 

developed (1,2). Later, Zhao et al. proposed a subgroup-specific gene centering (SSGC) pre-

processing method (26).

Although PAM50 subtypes were initially developed to classify breast cancer, molecular 

subtypes can also be reflected in histologically normal tumor-adjacent tissues (henceforth 

referred to as “tumor-adjacent”). Each subtype is associated with a distinct physiological 

response in the tumor-adjacent tissue; and specific gene expression patterns in these tumor-

adjacent regions may be associated with varying risk of recurrence and prognosis (27–30). 

Thus, these prior studies suggest the importance of studying tumor-adjacent tissues in breast 

cancer.

We have previously reported the tumor molecular subtypes using IHC surrogates for 5561 

Nurses’ Health Study (NHS) and NHSII participants diagnosed with breast cancer (31). In 

this study, we describe the tumor and tumor-adjacent PAM50 molecular subtypes in a subset 

of 954 NHS/NHSII participants with gene expression data. Specifically, we:

1. computed and compared breast cancer PAM50 molecular subtypes, proliferation 

scores and risk of relapse with proliferation and tumor size weighted (ROR-PT) 

scores derived from both the MMGC and SSGC pre-processing methods;

2. determined the concordance of tumor molecular subtypes using PAM50 and IHC 

surrogates; and

3. described the tumor PAM50 subtype distribution, proliferation scores and ROR-

PT scores in the NHS/NHSII.

Materials and Methods

Study population

The Human Subjects Committee at Partners Healthcare System and Brigham and Women’s 

Hospital in Boston, MA approved this study. The NHS and NHSII cohorts are ongoing 

prospective studies of US female registered nurses followed biennially by questionnaires to 

query exposures and identify newly diagnosed diseases. NHS was established in 1976 with 

121,700 participants between 30–55 years of age, and NHSII was established in 1989 

(n=116,429, ages 25–42). Written permission was obtained from participants who were 

diagnosed with invasive breast cancer, or their next of kin, to review medical records for 

diagnosis confirmation, retrieval of cancer details, and to collect archival tissue specimens. 

Archival formalin-fixed paraffin embedded (FFPE) breast cancer tissue blocks were 

requested from respective hospitals (32).
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Breast cancer recurrence

Local and distant recurrences were self-reported by NHS/NHSII participants; no medical 

record review was conducted for recurrences. Recurrence-free survival (RFS) is defined as 

time from diagnosis to reported breast cancer recurrence, diagnosis of cancer in common 

sites of recurrence (i.e., liver, lung, brain or bone) or death from breast cancer without 

reported recurrence. Distant recurrence-free survival (DRFS) is defined as time from initial 

diagnosis to diagnosis of cancer in common sites of recurrence (i.e., liver, lung, brain or 

bone) or death from breast cancer without reported recurrence.

Gene expression data

The protocol to obtain RNA from FFPE tissues was previously published (33). Gene 

expression data were obtained in two batches using microarrays performed in 2012–2014 

using the Glue Grant Human Transcriptome Arrays (HTA) 3.0 pre-release version 

(Affymetrix, Santa Clara, CA) (33) and 2015–2018 (HTA 2.0, Affymetrix) by the Molecular 

Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA. Gene expression data 

were normalized, summarized into Log2 values using Robust Multi-array Average and 

annotated. All microarrays and sample information are available at the National Center for 

Biotechnology Information Gene Expression Omnibus (accession number: GSE115577).

Molecular subtyping by PAM50, proliferation scores and ROR-PT scores

Molecular subtyping by PAM50 was carried out separately for tumor and tumor-adjacent 

samples. Gene adjustment factors for tumor-adjacent samples were estimated from tumors. 

After adjusting the gene expression dataset using the MMGC or SSGC method, research-

based PAM50 classification was performed. Proliferation scores and ROR-PT scores are 

additional measures that were subsequently developed to further characterize breast tumors 

and are automatically generated by the PAM50 algorithm (34). Thus, proliferation scores 

and ROR-PT scores were only reported for tumor tissues. Proliferation scores were 

computed using three methods: Log2 expression (no centering), MMGC-adjusted 

expression, and SSGC-adjusted expression. The ROR-PT score is calculated using PAM50 

subtype, proliferation score, and pathological tumor size.

Molecular subtyping using IHC surrogates

IHC data were obtained from tissue microarrays (31,32,35). Missing IHCs for ER, PR and 

HER2 (n=144) were replaced with data from medical records. Tumors were classified into 

Luminal A, Luminal B, HER2-enriched and Basal-like as previously defined (14,31,36). For 

tumors missing Ki-67 IHC data (n=545), histologic grade was used as a proxy in 

classification.

Please refer to the Supplementary Methods for gene expression, pre-processing methods and 

IHC surrogate details.

Statistical methods

Confusion matrices were used to determine the concordance of PAM50 subtypes when gene 

expression data were pre-processed using the MMGC or SSGC method, the concordance of 
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molecular subtypes classified using PAM50 and IHC in tumor tissues, and the concordance 

of subtypes in paired tumor and tumor-adjacent tissues (37). The confusion matrix computes 

summaries such as accuracy (the frequency of agreement), and Cohen’s kappa (a measure 

which accounts for the agreement expected to occur by random chance). Spearman’s rho 

was used to determine the correlation between the two methods used to derive proliferation 

scores and ROR-PT scores in tumor tissues.

RFS and DRFS were evaluated at five and ten years because these time points are generally 

utilized in clinical studies. Thus, crude and adjusted Cox proportional hazard models 

evaluated the relationship between PAM50 subtypes or ROR-PT scores/groups with RFS or 

DRFS within five and ten years in the NHS/NHSII. Individuals were censored for RFS or 

DRFS if they were reported to have death from other causes or end of follow-up. Adjusted 

models included age and year of diagnosis, clinical grade, stage, type of surgery 

(lumpectomy, mastectomy, none and unknown) and type of treatment (chemotherapy, 

hormone therapy, radiotherapy, two or more types of therapies, none, and unknown). When 

evaluating tumor PAM50 subtypes in the Cox proportional hazard models, Luminal A was 

set as the reference group. The proportional hazards assumption was tested through 

evaluation of scaled Schoenfeld residuals (38). All tests of statistical significance were two-

sided. Statistical significance was defined as a p-value <0.05. All analyses were conducted 

using R version 3.4.0. Kaplan-Meier curves were plotted using survminer version 0.4.0 

package in R.

Results

This analysis consisted of gene expression data from 954 women who contributed 882 

tumors and 695 histologically normal tumor-adjacent samples. Of these, there were 623 

paired samples. This subset of 954 women with gene expression data was generally 

representative of the NHS/NHSII population diagnosed with breast cancer (Supplementary 

Table S1). The majority of participants in this study had stage I disease, were clinical grade 

2, ER+ and PR+, and HER2-. NHS women had more IHC HER2+ cases compared to NHSII 

(Supplementary Table S2). Amongst the 882 women who contributed tumor samples, RFS 

and DRFS data were unavailable for six women. At 10 years of follow-up, there were 112 

recurrence and 85 distant recurrence events. ROR-PT scores were computed for 863 cases; 

19 cases were not computed due to missing tumor size. Thus, only 857 women were 

included for ROR-PT and RFS/DRFS analyses.

Comparing PAM50 molecular subtypes, proliferation scores and ROR-PT scores derived 
from the two pre-processing methods

PAM50 subtypes derived by both pre-processing methods were highly agreeable. Figure 1 

shows the concordance of PAM50 subtypes in tumor (accuracy = 0.86, kappa = 0.81) and 

tumor-adjacent tissue (accuracy = 0.82, kappa = 0.74). Most tumors were classified as 

Luminal A (46% using MMGC and 40% using SSGC; Figure 1A). Of the 695 tumor-

adjacent tissues, 53% and 39% were classified as Normal-like by MMGC and SSGC, 

respectively (Figure 1B). More tumor samples were assigned as Luminal B or HER2-

enriched using SSGC compared to MMGC, while MMGC assigned more tumor samples as 
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Normal-like. Further investigation into why there was a shift in tumors classified as Luminal 

B to Luminal A (n=44), and more Normal-like calls (n=36) using MMGC revealed that 

proliferation scores computed using SSGC were slightly higher compared to MMGC 

resulting in these cases being classified into more aggressive molecular subtypes when 

SSGC method was used (Supplementary Figures S1A-S1C). In general, proliferation scores 

of tumors were highly correlated between simple Log2 expression (no centering) and each 

pre-processing method (both p<0.01; Supplementary Figure S2). ROR-PT scores for tumors 

were highly correlated between MMGC and SSGC (Spearman’s rho=0.99, p<0.01).

Comparing PAM50 molecular subtypes derived from the two pre-processing methods and 
IHC surrogates

Figures 2A and 2B display the correlation between Luminal A, Luminal B, HER2-enriched 

and Basal-like as classified by PAM50 and IHC surrogates (MMGC: accuracy = 0.54, kappa 

= 0.32; and SSGC: accuracy = 0.53, kappa = 0.32). With kappa at 0.32, there is poor 

agreement between PAM50 and IHC. When the Luminal subtypes were grouped together, 

the correlation between PAM50 and IHC improved to fair agreement (MMGC: accuracy = 

0.81, kappa = 0.53, Figure 2C; SSGC: accuracy = 0.79, kappa = 0.49, Figure 2D). Very 

similar results were obtained when analyses were restricted to women with Ki-67 IHC data 

(n=337; Supplementary Data).

Molecular subtypes in tumor and tumor-adjacent tissues

Amongst 623 paired samples, the most common pairing was Luminal A tumors and Normal-

like tumor-adjacent tissues using both pre-processing methods (Figures 3A and 3B). Women 

with Luminal A or B tumors were more likely to have Normal-like tumor-adjacent subtype 

than women with HER2-enriched or Basal-like tumors. The agreement between paired 

tumor and tumor-adjacent subtypes was 30% using MMGC and 32% using SSGC.

Tumor PAM50 subtypes, ROR-PT scores and prognosis in the NHS/NHSII

Since there was high concordance in PAM50 subtypes between the two pre-processing 

methods, subsequent main tables in the manuscript will display results derived from the 

MMGC method while supplementary tables display results from SSGC. Luminal A and B, 

and HER2-enriched were generally of clinical grade 2 while 38% of grade 3 tumors were of 

the Basal-like subtype (Table 1). Seventy-six percent of IHC ER+ tumors were Luminal A or 

B, while 54% of ER- tumors were Basal-like. Similarly, 77% of IHC PR+ tumors were 

Luminal subtypes and 49% of PR- tumors were Basal-like. In tumors classified as HER2-

enriched, only 42% were IHC HER2+. The association of PAM50 subtypes computed using 

the SSGC method and NHS/NHSII participants are in Supplementary Table S3.

Women with the Basal-like subtype were significantly more likely to have poorer RFS 

outcomes within five years (Table 2A). Although women with HER2-enriched subtypes 

appear to have significantly poorer RFS and DRFS outcomes at both five and ten years 

compared to women with Luminal A subtypes (Tables 2A and 2B), further analyses showed 

that this finding is generally reflective of women diagnosed prior to the introduction of 

targeted therapy for HER2 (i.e., trastuzumab) in 1999 (Supplementary Table S4A). After 

1999, there was no difference in RFS or DRFS rates among women with HER2-enriched 
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subtypes compared to women with Luminal A subtypes (Supplementary Table S4B). The 

relationships between PAM50 subtypes and RFS or DRFS in the NHS/NHSII are illustrated 

in Supplementary Figures S3A-S3D.

ROR-PT categories (low, medium and high) were automatically stratified by the PAM50 

algorithm and confirmed the expected relationships using both pre-processing methods, 

where women predicted as “low” had the best RFS and DRFS outcomes (Figures 4A-4D). 

ROR-PT scores were also analyzed as a continuous variable per 10-unit change in the Cox 

proportional hazard model. In crude models for MMGC, every 10-unit increase in ROR-PT 

scores corresponded to 24% increase in risk of recurrence (95% CI 1.11–1.39) within five 

years and 19% (95% CI 1.09–1.30) within ten years (Table 2A); and 29% increase risk of 

distant recurrence (95% CI 1.14–1.46) within five years and 23% (95% CI 1.11–1.36) within 

ten years (Table 2B). These findings attenuated in the adjusted models, though not all the 

way to the null. Results were very similar when PAM50 and ROR-PT were computed using 

SSGC (Supplementary Tables S5A-S5D).

Discussion

The discovery of molecular subtypes has created a new tool for clinicians and researchers to 

further understand breast cancer biology (39), etiology, risk factors (40), and evaluate 

response to treatment (34,41,42). Thus, the accurate assignment of molecular subtypes is 

important. The distribution of PAM50 subtypes, proliferation scores, and ROR-PT scores 

were highly comparable when computed using either the MMGC or SSGC pre-processing 

method. Furthermore, the agreement between PAM50 classification by gene expression and 

IHC was fair when Luminal A and B were considered as a single group. The majority of the 

NHS/NHSII participants had Luminal A subtype tumors. There was a higher rate of 

recurrence in women with Basal-like subtypes compared to Luminal A subtypes. ROR-PT 

scores were only prognostic in crude analyses.

The application of a pre-processing step to the gene expression data as well as selecting a 

specific preprocessing method (i.e., MMGC or SSGC) prior to subtyping are critical 

components to establish a reproducible informatics workflow for PAM50 classification. 

MMGC and SSGC generally yielded concordant subtypes and highly correlated 

proliferation scores. The associations between the PAM50 subtypes & ROR-PT scores and 

prognosis were similar when subtypes were computed using either method. It remains 

unclear which pre-processing method should be considered superior as there is no gold 

standard measure to compare with. Both pre-processing methods have practical utility and 

either one may be employed to classify breast tumors. We decided to use the MMGC 

method to report our main results as this method is widely utilized by The Cancer Genome 

Atlas breast cancer study team (1,2). SSGC is an elegant alternative to MMGC that is useful 

as an additional check when performing PAM50 subtyping. Future data analyses should take 

note that proliferation estimates are generally higher when computed by the SSGC method 

compared to MMGC – tumors are more likely to be classified into the more aggressive 

molecular subtypes, and tumor-adjacent tissue is less likely to be classified as Normal-like.
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The 2015 St Gallen International Expert Conference Report published recommended IHC 

definitions to more accurately reflect molecular subtypes (7). There are slight differences in 

the IHC definitions for the Luminal subtypes between our study and St Gallen’s 

recommendations. Our PR were manually graded as 0, >1% and >10% while St Gallen’s 

suggests using >20% to classify PR+. We graded Ki-67 as low (<14%) or high (>14%) 

while St Gallen categorizes Ki-67 into low (<14%), intermediate (14–19%) and high 

(≥20%). Ki-67 staining information was unavailable for about 60% of women; tumor grade 

was used as a proxy for these individuals. This may result in the misclassification of IHC 

subtypes for some individuals, and may in part explain the low agreement between 

molecular subtyping by PAM50 and IHC in our study. If IHC surrogate definitions are still 

to be used, further refinement is needed so that breast tumor classification will more closely 

approximate the PAM50 subtypes.

With technological advances in RNA extraction and the availability of the NanoString 

nCounter Dx Analysis System (12), more studies in the future should be able to obtain 

molecular subtypes derived from gene expression instead of relying on IHC surrogates. The 

difference in molecular subtyping by PAM50 and IHC is further demonstrated by this 

current study. The PAM50 distribution of NHS/NHSII participants in this study was 46% 

Luminal A, 18% Luminal B, 14% HER2-enriched, 15% Basal-like and 8% Normal-like 

while our previous study utilized IHC surrogates to classify 5561 tumors reported higher 

percentages of women classified as Luminal A (55%) and B (27%), and lower percentages 

of HER2-enriched (6%) and Basal-like (10%) with 2.9% unclassified tumors (31).

Gene expression data are only available for a subset of the breast cancer cases in NHS/

NHSII, though this subset is generally representative of the overall NHS/NHSII breast 

cancer population. The majority of NHS participants are white postmenopausal women, 

while NHSII participants are mostly white premenopausal women. Our data showed that the 

prevalence of each PAM50 subtype did not differ by participant menopausal status. Given 

that IHC subtype surrogates have been shown to differ by race, future studies should 

investigate potential differences in the distributions of PAM50 subtypes in minority 

populations (43).

As expected, women with tumors of Basal-like subtypes had poorer RFS outcomes 

compared to women with Luminal A subtypes. Women with tumors of HER2-enriched 

subtype only had significantly poorer RFS outcomes at both five and ten years compared to 

women with Luminal A subtypes before 1999. In contrast to other studies, we did not 

observe poorer prognosis for Luminal B tumors at ten years (41,44). This may be attributed 

to the small number of events among women with Luminal B tumors or different pre-

processing method used for PAM50 subtyping.

Molecular subtyping was specifically developed to classify breast cancers. We applied the 

PAM50 algorithm to classify histologically normal tumor-adjacent tissue into molecular 

subtypes. The histologically normal tissue was classified as Normal-like for 40–50% of 

women, depending on the pre-processing method used. This suggests that histologically 

normal tumor-adjacent tissue may not be biologically normal for all women. Expression of 

an estrogen response signature and in vivo triple-negative signature in tumor-adjacent tissue 
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was found to differ across tumor PAM50 subtypes (30). Future work could identify novel 

molecular subtypes unique to tumor-adjacent tissue and determine if these novel subtypes 

within tumor-adjacent tissue may harbor additional insights to therapy response and 

prognosis (28,29).

In summary, we used two pre-processing methods (MMGC and SSGC) to characterize the 

PAM50 breast cancer molecular subtypes of tumor and histologically normal tumor-adjacent 

samples. We have shown that either pre-processing method may be utilized to derive PAM50 

subtypes for future studies. In the NHS/NHSII, the majority of tumor and tumor-adjacent 

tissues were classified as Luminal A and Normal-like, respectively. Women with Luminal A 

or B tumors were more likely to have Normal-like tumor-adjacent tissues than women with 

HER2-enriched or Basal-like tumors. Women with Basal-like subtypes had poorer prognoses 

compared to Luminal A subtypes. The identification of novel tumor-adjacent molecular 

subtypes in the future may provide new insights into breast cancer therapy response and 

prognosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The correlation of molecular subtypes by PAM50 in tumor (A; accuracy = 0.86, kappa = 

0.81) between modified median or subgroup-specific gene centering pre-processing 

methods. (B) The correlation of molecular subtypes by PAM50 in tumor-adjacent tissue (B; 

accuracy = 0.82, kappa = 0.74) between modified median or subgroup-specific gene 

centering pre-processing methods.
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Figure 2. 
The correlation between the molecular subtypes (Luminal A, Luminal B, HER2-enriched 

and Basal-like) by PAM50 and immunohistochemistry (IHC) surrogates using modified 

median (A) and subgroup-specific (B) gene centering methods. When the Luminal subtypes 

were grouped together, the correlation between PAM50 and IHC improved to fair agreement 

using modified median (C; accuracy = 0.81, kappa = 0.53) and subgroup-specific (D; 

accuracy = 0.79, kappa = 0.49) gene centering methods. IHC surrogates were defined as: 

Luminal A – ER+ and/or PR+, HER2-, and Ki-67 low (or histologic grade 1 or 2); Luminal 

B – ER+ and/or PR+, and HER2+; or ER+ and/or PR+, HER2-, and Ki-67 high (or 

histologic grade 3); HER2-enriched – ER-, PR- and HER2+; Basal-like – ER-, PR-, HER2-, 

and CK 5/6+ and/or EGFR+.
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Figure 3. 
(A) PAM50 subtypes of paired samples using modified median gene centering pre-

processing method. (B) PAM50 subtypes of paired samples using subgroup-specific gene 

centering pre-processing method.
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Figure 4. 
These Kaplan-Meier curves display the relationships between the risk of with proliferation 

and tumor size weighted (ROR-PT) categories (low risk [green lines], medium risk [blue 

lines] and high risk [red lines]) and recurrence-free survival (RFS) or distant recurrence-free 

survival (DRFS) in the Nurses’ Health Studies. ROR-PT was separately computed using the 

modified median (A and B) and subgroup-specific (C and D) gene centering methods. Crude 

hazard ratios are reported in the figures.
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Table 1.

Tumor PAM50 subtypes in the Nurses’ Health Study (NHS)/NHSII cohorts.

Luminal A Luminal B HER2-Enriched Basal-like Normal-like

n 405 157 124 128 68

NHS Cohort, n (%)

 NHS 234 (57.8) 93 (59.2) 81 (65.3) 84 (65.6) 45 (66.2)

 NHSII 171 (42.2) 64 (40.8) 43 (34.7) 44 (34.4) 23 (33.8)

Tumor grade, n (%)

 1: Predominantly well-differentiated 143 (36.4) 21 (13.5) 14 (11.8) 11 (9.4) 22 (36.1)

 2: Moderately differentiated 216 (55.0) 86 (55.1) 72 (60.5) 33 (28.2) 35 (57.4)

 3: Poorly differentiated 34 (8.7) 49 (31.4) 33 (27.7) 73 (62.4) 4 (6.6)

Stage, n (%)

 I 265 (65.6) 89 (56.7) 65 (52.4) 62 (48.8) 47 (69.1)

 II 104 (25.7) 53 (33.8) 40 (32.3) 59 (46.5) 15 (22.1)

 III 32 (7.9) 14 (8.9) 18 (14.5) 6 (4.7) 5 (7.4)

 IV 3 (0.7) 1 (0.6) 1 (0.8) 0 (0.0) 1 (1.5)

Tumor estrogen receptor, n (%)

 Positive 389 (96.5) 150 (96.2) 82 (66.7) 36 (28.3) 52 (76.5)

 Negative 14 (3.5) 6 (3.8) 41 (33.3) 91 (71.7) 16 (23.5)

Tumor progesterone receptor, n (%)

 Positive 382 (95.3) 141 (90.4) 76 (62.3) 33 (26.2) 51 (75.0)

 Negative 19 (4.7) 15 (9.6) 46 (37.7) 93 (73.8) 17 (25.0)

Tumor HER2, n (%)

 Positive 101 (26.5) 40 (27.8) 48 (42.1) 21 (17.8) 14 (23.0)

 Negative 280 (73.5) 104 (72.2) 66 (57.9) 97 (82.2) 47 (77.0)

Tumor Ki-67, n (%)

 High 36 (25.2) 27 (44.3) 19 (38.0) 26 (49.1) 5 (16.7)

 Low 107 (74.8) 34 (55.7) 31 (62.0) 27 (50.9) 25 (83.3)
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