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Abstract

Background: Human microbiota have many functions that could contribute to cancer initiation 

and/or progression at local sites, yet the relation of the lung microbiota to lung cancer prognosis 

has not been studied.

Methods: In a pilot study, 16S rRNA gene sequencing was performed on paired lung tumor and 

remote normal samples from the same lobe/segment in 19 non-small cell lung cancer patients. We 

explored associations of tumor or normal tissue microbiome diversity and composition with 

recurrence-free and disease-free survival, and compared microbiome diversity and composition 

between paired tumor and normal samples.

Results: Higher richness and diversity in normal tissue were associated with reduced recurrence-

free survival (richness p=0.08, Shannon index p=0.03) and disease-free survival (richness p=0.03, 

Shannon index p=0.02), as was normal tissue overall microbiome composition (Bray-Curtis 

p=0.09 for recurrence-free and p=0.02 for disease-free survival). In normal tissue, greater 

abundance of family Koribacteraceae was associated with increased recurrence-free and disease-

free survival, while greater abundance of families Bacteroidaceae, Lachnospiraceae, and 

Ruminococcaceae were associated with reduced recurrence-free or disease-free survival (p<0.05). 

Tumor tissue diversity and overall composition were not associated with recurrence-free or 

disease-free survival. Tumor tissue had lower richness and diversity (p≤0.0001) than paired normal 

tissue, though overall microbiome composition did not differ between paired samples.

Conclusions: We demonstrate, for the first time, a potential relationship between the normal 

lung microbiota and lung cancer prognosis, which requires confirmation in a larger study.

Impact: Definition of bacterial biomarkers of prognosis may lead to improved survival outcomes 

for lung cancer patients.
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INTRODUCTION

Lung cancer is the most common cancer, excluding non-melanoma skin cancer, and the most 

common cause of cancer death in the world, with approximately 1.8 million diagnoses and 

1.6 million deaths per year (1). While incidence rates for lung cancer have been declining in 

the U.S. due to reductions in smoking, challenges in early detection have left lung cancer as 

the leading cause of U.S. cancer death (5-year survival rate 18% on average in the U.S.) (2). 

Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is typically 

treated at the early stages with surgical resection, with or without chemotherapy or 

chemoradiotherapy (3); these early stage cancers have better 5-year survival rates (50–90%), 

however a substantial proportion of patients still die of disease recurrence (4). Improvements 

in early detection with low-dose computed tomography (CT) (5) will inevitably increase the 

identification of early stage lung cancers and offer more opportunities for curative resection, 

making it extremely timely to investigate factors contributing to long-term disease-free 

survival following resection. Better identification of early stage patients at high risk of 

recurrence can improve survival by indicating which patients may benefit from increased 

surveillance and/or adjuvant therapy.

The healthy human lung is host to a unique and dynamic bacterial community, determined 

by bi-directional movement of non-sterile air and mucus in and out of the airways (6). In 

lung disease, regional changes in the lung environment create permissive niches for bacterial 

growth, resulting in significant differences in community composition between healthy and 

diseased lungs (7). Studies have explored the oral or airway microbiome in lung cancer cases 

compared with controls (8–12), noting lower microbial diversity and altered abundance of 

specific bacterial groups in cases. However, few studies have characterized the microbiome 

in lung tumor tissue (13,14), and no studies have explored the relationship between the 

microbiome of resected lung tissue and lung cancer prognosis. Bacteria have many functions 

that could contribute to cancer initiation and/or progression at local sites, including 

genotoxic pathways, bacterial metabolite signaling, and induction of host inflammatory 

pathways (15). Investigation of potential bacterial involvement in lung cancer prognosis may 

lead to new biomarkers and therapies to improve survival outcomes for lung cancer patients.

We conducted a pilot study of paired tumor and remote normal lung tissue samples from 19 

NSCLC patients at NYU Langone Health, 17 of them with prospective follow up. Using 16S 

rRNA gene sequencing, we explored whether the tumor or normal lung microbiome was 

associated with recurrence-free and disease-free survival, and compared the lung 

microbiome of paired tumor and normal samples.
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MATERIALS AND METHODS

Patients and sample collection.

Samples were selected from the NYU Thoracic Surgery Archives (NTSA). Established in 

2006, the NTSA has prospectively collected serum, plasma, buffy coat, peripheral blood 

mononuclear cells, along with lung cancer and matching normal lung specimens under the 

IRB approved 8896 protocol. Patients identified on pre-operative workup as having a 

pulmonary nodule suspicious for lung cancer were consented for collection of blood and 

snap frozen tissues (tumor and remote lung from the same lobe/segment) in the operating 

room at the time of their resection. Lung and matching tumor are sterilely cut at the 

operating room table, transferred to pre-labeled nunc vials and immediately snap frozen in 

liquid nitrogen within 10 minutes of resection. Samples are de-identified for storage at 

−80°C until use. Since these specimens remain sterile and are immediately frozen, they are 

ideal for microbiome analysis, as immediate freezing does not impact microbiome 

composition (16). Less is known regarding long-term (i.e. years) storage at −80°C, which 

may impact certain aspects of the microbiome (17,18); however, length of storage time in 

our samples was not associated with overall microbiome diversity and composition (α- and 

β-diversity).

Clinical and pathologic demographics are recorded in an encrypted Research Electronic 

Data Capture (REDCap) spreadsheet. Patients are seen at 3 month intervals for 2 years, and 

then at 6 month intervals for 1 year, and then annually, with CT scans performed for 

surveillance in order to document any systemic and loco-regional recurrences, or the 

development of a second primary tumor. The 19 patients’ samples included in this study 

were originally chosen as pilot samples to test whether sufficient material was available for 

DNA extraction from tumor and matching normal lung. The samples were also chosen to 

represent patients with different stages of NSCLC and patients with recurrence, to explore 

the lung microbiome in relation to these factors.

Definitions.

Endpoints were defined according to the consensus agreement in Punt et al. (19). Disease-

free survival (DFS) includes recurrences (loco-regional and systemic), new primaries (same 

or other cancer), and death from any cause as events. Recurrence-free survival (RFS) 

includes recurrences (loco-regional and systemic) and death from any cause as events, 

ignoring new primaries as events. For both endpoints, person time is defined as time from 

surgery to event or loss to follow-up (censored).

Microbiome assay.

Lung tissue samples underwent 16S rRNA gene sequencing at the Environmental Sample 

Preparation and Sequencing Facility at Argonne National Laboratory. DNA extraction and 

amplification steps occurred in two batches (batch 1: 10 samples and batch 2: 28 samples; 

tumor-normal pairs from same patient kept together), but all samples were sequenced in the 

same batch. DNA was extracted from tissue using the Mo Bio PowerSoil DNA isolation kit, 

following the manufacturer’s protocol. This protocol uses mechanical bead beating and 

chemical methods to achieve sample homogenization and cell lysis, ensuring that sample 
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features do not interfere with DNA extraction. The V4 region of the 16S rRNA gene was 

PCR amplified with the 515F/806R primer pair, which included sequencer adapter 

sequences used in the Illumina flowcell and sample-specific barcodes (20,21). Each 25 µL 

PCR reaction contained 9.5 µL of Mo Bio PCR Water (Certified DNA-Free), 12.5 µL of 

QuantaBio’s AccuStart II PCR ToughMix (2x concentration, 1x final), 1 µL Golay barcode 

tagged Forward Primer (5 µM concentration, 200 pM final), 1 µL Reverse Primer (5 µM 

concentration, 200 pM final), and 1 µL of template DNA. The conditions for PCR were as 

follows: 94 °C for 3 minutes to denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C 

for 60 s, and 72 °C for 90 s; with a final extension of 10 min at 72 °C. PCR products were 

quantified using PicoGreen (Invitrogen) and a plate reader (Infinite 200 PRO, Tecan). Each 

batch included 2 extraction blanks and 10 amplification blanks, all of which did not amplify. 

Additionally, amplification levels for samples were in the same range for both batches. 

Sample PCR products were then pooled in equimolar amounts, purified using AMPure XP 

Beads (Beckman Coulter), and then quantified using a fluorometer (Qubit, Invitrogen). 

Molarity was then diluted to 2 nM, denatured, and then diluted to a final concentration of 

6.75 pM with a 10% PhiX spike for sequencing on the Illumina MiSeq. Amplicons were 

sequenced on a 151bp x 12bp x 151bp MiSeq run (21).

Sequence read processing.

Sequence reads were processed using QIIME 2 (22). Briefly, sequence reads were 

demultiplexed and paired-end reads were joined, followed by quality filtering as described in 

Bokulich et al. (23). Next the Deblur workflow was applied, which uses sequence error 

profiles to obtain putative error-free sequences, referred to as “sub” operational taxonomic 

units (s-OTU) (24). s-OTUs were assigned taxonomy using a naïve Bayes classifier pre-

trained on the Greengenes (25) 13_8 99% OTUs, where the sequences have been trimmed to 

only include 250 bases from the 16S V4 region, bound by the 515F/806R primer pair. A 

phylogenetic tree was constructed via sequence alignment with MAFFT (26), filtering the 

alignment, and applying FastTree (27) to generate the tree. One tumor sample without 

detectable s-OTUs was dropped, leaving 37 samples (19 normal, 18 tumor) from 19 patients 

for final analysis. The number of sequence reads per sample prior to the Deblur workflow 

was similar in tumor compared to normal tissue samples (Wilcoxon signed-rank p = 0.61), 

and marginally higher in batch 1 compared to the batch 2 (Wilcoxon rank-sum p = 0.08) 

(Supplementary Figure 1). Due to amplification of human mitochondrial DNA in these 

tissue samples, the majority of sequence reads belonged to human mitochondria and were 

dropped when not matching to the bacterial 16S database during Deblur. The number of 

sequence reads per sample after the Deblur workflow was marginally lower in tumor 

compared to normal tissue samples (Wilcoxon signed-rank p = 0.09), and higher in batch 1 

compared to batch 2 (Wilcoxon rank-sum p = 0.001) (Supplementary Table 1, 

Supplementary Figure 1).

α-diversity.

α-diversity (within-sample microbiome diversity) was assessed using richness (number of s-

OTUs) and the Shannon diversity index, calculated in 100 iterations for rarefied s-OTU 

tables (63 sequence reads per sample [lowest sequencing depth among samples]) using the 

QIIME 2 diversity plugin. Rarefaction curves suggested that this depth reflected the general 
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ranking of community richness and diversity of the samples (Supplementary Figure 2). We 

used Cox proportional hazards models to determine whether α-diversity was associated with 

recurrence-free and disease-free survival. We examined whether α-diversity differed 

between paired tumor and normal samples using the Wilcoxon signed-rank test.

β-diversity.

β-diversity (between-sample microbiome diversity) was assessed using unweighted and 

weighted UniFrac distances (28), the Bray-Curtis dissimilarity, and the Jaccard index. 

Principal coordinate analysis (PCoA) (29) was used for visualization. The community-level 

test of association between the microbiota and survival times (MiRKAT-S) (30) and the 

optimal microbiome-based survival analysis test (OMiSA) (31) were used to test the 

association of overall bacterial composition with recurrence-free and disease-free survival. 

We also assigned samples to clusters by applying Ward’s Hierarchical Agglomerative 

Clustering method (32) to the distance matrices, and then tested whether these clusters were 

related recurrence-free and disease-free survival using log-rank tests. Permutational 

multivariate analysis of variance (PERMANOVA) (33) was used to examine statistically 

whether overall bacterial composition differed between paired tumor and normal samples, 

using patient ID as strata. We also compared between-pair distances in overall bacterial 

composition for tumor and normal tissue sample pairs with distances for all possible pairings 

of tumor and normal samples from different subjects (i.e. true pairs vs. not true pairs) using 

the Wilcoxon rank-sum test, to determine whether true sample pairs are more similar to each 

other than random pairings. These analyses were performed with and without rarefying s-

OTU tables to an even depth (63 sequence reads per sample), as β-diversity can be sensitive 

to sequencing depth (34).

Differential abundance.

Relative abundance of s-OTUs (total sum scaling) was calculated, and s-OTUs were 

agglomerated to phylum, class, order, family, genus, and species levels. We filtered taxa to 

include in analysis only those present in 25% of the samples. We used Cox proportional 

hazards models to assess whether taxa centered log ratio (clr) transformed (35,36) 

abundance or carriage was associated with recurrence-free and disease-free survival. We 

used the Wilcoxon signed-rank test and McNemar’s test to assess differences in taxon 

relative abundance and carriage, respectively, between paired tumor and normal samples. P-

values were adjusted for the false discovery rate (FDR).

Sensitivity analyses.

We checked whether results for overall α-diversity and β-diversity were consistent when 

restricting to adenocarcinoma cases only, restricting to patients in the larger extraction batch 

(batch 2), excluding stage 3–4 cases, excluding current smokers, and excluding samples with 

low sequencing depths (≤124 reads/sample). We did not perform analyses within other 

histology groups or the smaller extraction batch due to small sample size (n=4 squamous 

cell carcinoma, n=1 sarcomatoid carcinoma, n=5 in batch 1).
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RESULTS

Patient characteristics.

Demographic and clinical characteristics of the 19 patients are presented in Table 1. The 

average patient age was 71.6 years old, and 37% were male, 100% were white, and 95% 

formerly or currently smoked. The majority of patients had lung adenocarcinomas (74%), 

while a minority had other histologic types (squamous cell carcinoma 21%; sarcomatoid 

carcinoma 5%). Two patients with no follow up due to postoperative death were excluded 

from survival analysis; of the remaining 17 patients, 3 had new primaries and 9 had 

recurrences (loco-regional or systemic) during follow up (follow up times ranged from 1–12 

years).

Normal lung tissue microbiome diversity and composition is associated with recurrence-
free and disease-free survival.

Patients with recurrence or a new primary during follow up had greater bacterial richness (p 

= 0.01) and diversity (p = 0.06), in their normal lung tissue, than disease-free patients, at the 

evenly rarefied depth of 63 sequences per sample (Figure 1; Supplementary Table 2). 

Consistently, higher richness and diversity in normal tissue were significantly associated 

with reduced recurrence-free and disease-free survival in Cox proportional hazards models 

(RFS: p = 0.08 for richness, p = 0.03 for Shannon index; DFS: p = 0.03 for richness, p = 

0.02 for Shannon index; Supplementary Table 2). Results remained largely consistent in the 

sensitivity analyses (Supplementary Table 3).

Overall microbiome composition in normal lung tissue was associated with recurrence-free 

and disease-free survival according to several distance measures with the MiRKAT-S test 

(RFS p≤0.09 and DFS p≤0.04 for unweighted and weighted UniFrac distances, Bray-Curtis 

dissimilarity, and Jaccard index; Supplementary Table 4), though not with the OMiSA test 

(RFS p = 0.20, DFS p = 0.12). Results were similar in the sensitivity analyses 

(Supplementary Table 3). Results were also similar when rarefying to an even depth for the 

UniFrac distances, but somewhat attenuated for the Bray-Curtis dissimilarity and Jaccard 

index (Supplementary Table 4). Principal coordinate analysis of the Bray-Curtis 

dissimilarity from normal tissue revealed clustering of patients by recurrence status (Figure 

2a–b); results were similar for the unweighted and weighted UniFrac distances and the 

Jaccard index (Supplementary Figure 3). We grouped patients into four discrete clusters 

based on the Bray-Curtis dissimilarity in normal tissue (Figure 2c), and observed that these 

clusters were significantly related to recurrence-free and disease-free survival as well (RFS p 

= 0.03, DFS p = 0.015; Figure 2d–e).

We observed several taxa in normal tissue for which relative abundance and/or carriage were 

associated with both recurrence-free and disease-free survival in Cox proportional hazards 

models at p<0.05 (Supplementary Table 5; Figure 3); these taxa were not significant after 

FDR adjustment. Greater abundance of family Koribacteraceae in normal tissue was 

associated with increased recurrence-free and disease-free survival, while greater abundance 

of family Lachnospiraceae, and genera Faecalibacterium and Ruminococcus (from 

Ruminococcaceae family), and Roseburia and [Ruminococcus] (from Lachnospiraceae 
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family) were associated with reduced recurrence-free and disease-free survival. Taxa 

associated only with recurrence-free survival (p<0.05) included family S24–7 (increased 

recurrence-free survival), and family Bacteroidaceae and genus Bacteroides (reduced 

recurrence-free survival). Taxa associated only with disease-free survival (p<0.05) included 

family Sphingomonadaceae and genus Sphingomonas (increased disease-free survival), and 

family Ruminococcaceae (reduced disease-free survival). A heatmap of these 12 taxa in 

normal tissue clustered patients somewhat by recurrence status (Figure 3).

Lung tumor tissue microbiome is not associated with survival.

Tumor tissue richness and diversity were not associated with recurrence status or with 

recurrence-free and disease-free survival (Supplementary Figure 4; Supplementary Table 2), 

and this was consistent in the sensitivity analyses (Supplementary Table 3). Additionally, 

tumor overall microbiome composition was not associated with recurrence-free or disease-

free survival (Supplementary Table 4; Supplementary Figure 5), and this was consistent 

when rarefying to an even depth and in the sensitivity analyses (Supplementary Table 3; 

Supplementary Table 4). In tumor tissue, only families Koribacteraceae and Lachnospiraceae 

were associated with reduced recurrence-free and disease-free survival (p<0.05; 

Supplementary Table 5).

Lung tumor tissue microbiome is less diverse than, but compositionally similar to, paired 
normal tissue microbiome.

Tumor tissue samples had significantly lower bacterial richness (observed OTUs; p = 

0.0001) and diversity (Shannon index; p < 0.0001) than paired normal tissue samples at the 

evenly rarefied depth of 63 sequences per sample (Figure 4; Supplementary Table 6). 

Significance remained at higher sequencing depths despite dropped samples with lower 

depths (15 tumor/normal pairs at 124 sequence reads per sample: p = 0.02 for number of 

OTUs, p < 0.0001 for Shannon index). Results were consistent when restricting to 

adenocarcinoma histology, restricting to patients in batch 2, excluding stage 3–4 cases, or 

excluding current smokers (p<0.05).

Overall microbiome composition did not differ significantly between paired lung tumor and 

normal samples according to unweighted and weighted UniFrac distance, Bray-Curtis 

dissimilarity, or the Jaccard index (Supplementary Figure 6; Supplementary Table 6). 

Results were consistent when rarefying to an even depth and when restricting to 

adenocarcinoma histology, restricting to patients in batch 2, excluding stage 3–4 cancers, 

excluding current smokers, or excluding samples with low sequencing depth. Moreover, 

paired tumor and normal samples were significantly more alike than random pairings of 

tumor and normal samples from different patients, according to the unweighted and 

weighted UniFrac distance, Bray-Curtis dissimilarity, and Jaccard index (all p≤0.02). Lung 

tumor samples had higher abundance of family Veillonellaceae, lower abundance of genus 

Cloacibacterium, and lower carriage of family Erysipelotrichaceae, than paired normal 

samples (p<0.05; Figure 5; Supplementary Table 7); these taxa were not significant after 

FDR adjustment.

Peters et al. Page 7

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

In this pilot study of the lung microbiome and lung cancer prognosis, we showed, for the 

first time, that increased diversity and altered composition of the normal lung tissue was 

associated with reduced disease-free and recurrence-free survival. This important novel 

observation suggests that the microbiome of normal lung tissue may be used as a biomarker 

of lung cancer prognosis, which could guide clinical practice to improve survival outcomes 

for lung cancer patients. We also observed a clear reduction in bacterial richness and 

diversity in lung tumor samples compared to paired normal tissue samples, indicating 

dysbiosis of the lung tumor microbiome.

Few studies have reported on the microbiome in lung cancer, and even fewer characterized 

the microbiome in actual lung tumor tissue. We have reported that lower airway brushes of 

lung cancer patients (n=39) were enriched in Veillonella and Streptococcus compared to 

benign lung disease patients (n=36) and healthy controls (n=10) (9). A study of lung cancer 

attributed to household coal burning in China found that sputum samples of lung cancer 

cases (n=8) had lower diversity and enrichment of Granulicatella, Abiotrophia, and 

Streptococcus compared with healthy controls (n=8) (10). Similarly, another study from 

China reported decreased diversity and increased Streptococcus abundance in bronchial 

brush specimens from cancerous lung sites compared to paired non-cancerous lung sites 

(n=24) and healthy controls (n=18) (8). A third report from China found family 

Veillonellaceae and genera Veillonella, Capnocytophaga, and Selenomonas were more 

abundant in saliva of lung cancer patients (n=20) compared to controls (n=10) (12). A study 

in Korea observed that Veillonella and Megasphaera were more abundant in bronchoalveolar 

lavage fluid from lung cancer patients (n=20) compared to patients with benign lung mass-

like lesions (n=8) (11). A study of Italian lung cancer patients found lower bacterial diversity 

in lung tumor tissue samples (n=31) compared to non-malignant lung tissue (n=165), and no 

differences in overall composition (β-diversity) between the tumor and non-malignant 

samples (13). Finally, a recent study of lung tissue samples from lung cancer patients (tumor 

and adjacent normal) and hospital controls observed increased bacterial diversity in tumor 

and adjacent normal tissue from lung cancer patients compared with the controls (14).

From this previous literature, it is apparent that the airway and lung microbiome is perturbed 

in lung cancer patients, which may have implications for prognosis. We observed that 

greater bacterial diversity and greater abundance of families Bacteroidaceae, 

Lachnospiraceae, and Ruminococcaceae, and genera Bacteroides, Faecalibacterium, 

Roseburia, [Ruminococcus], and Ruminococcus in normal lung tissue were associated with 

reduced survival, while greater abundance of Koribacteraceae and Sphingomonadaceae were 

associated with increased survival. Interestingly, the majority of our findings were similar 

for the recurrence-free and disease-free survival outcomes; this may suggest that the normal 

lung microbiome is related to both recurrences and new primary cancers. Members of 

Lachnospiraceae and Ruminococcaceae, particularly Roseburia and Faecalibacterium, are 

known to produce anti-inflammatory short-chain fatty acids (e.g. butyrate) (37), making the 

association of these bacteria with reduced survival unexpected. Bacteroides abundance in the 

gut has been associated with impaired antitumor immune responses in melanoma patients 

(38), and may play a similar cancer-promoting role in the lungs. Though our conclusions are 
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limited by small sample size, these valuable preliminary results suggest that bacteria in 

resected normal lung tissue may serve as biomarkers of recurrence risk in early stage 

NSCLC. Moreover, if these identified microbiota are determined to be causally related to 

cancer recurrence in future investigations, they may serve as novel targets for therapeutic 

intervention (7) to improve recurrence-free survival in lung cancer patients.

The results of our analysis comparing paired tumor and normal samples are similar to the 

previous literature in that we observed significant reductions in bacterial diversity and 

enrichment of Veillonellaceae in lung tumor compared to normal lung tissue, which has been 

observed by many (8–13), but not all (14), studies comparing lung cancer cases to controls. 

It is not clear from our observational study whether the identified bacterial differences are 

causally related to lung carcinogenesis, or are merely reflective of disease processes in the 

lung. However, there are several mechanisms by which the lung microbiota could contribute 

to lung carcinogenesis, including genotoxic pathways, bacterial metabolite effects, and 

induction of host inflammatory pathways (15). For example, intranasal administration of 

lipopolysaccharide (a membrane component of Gram-negative bacteria) in a mouse model of 

lung cancer significantly enhanced pulmonary inflammation and lung tumorigenesis (39). 

We previously showed in a human study that airway Veillonella and Streptococcus were 

associated with upregulation of ERK and PI3K signaling pathways in the airway, pathways 

regulating cell proliferation, survival, and differentiation which are upregulated in lung 

cancer patients (9). Interestingly, we have previously reported that these two genera are 

enriched in the mouths of current smokers compared to never smokers (40), suggesting a 

further mechanism by which smoking causes lung cancer. Taken together, there is 

accumulating support for specific bacteria as biomarkers of lung cancer presence; further 

study of the causal role of these bacteria in lung carcinogenesis may provide therapeutic 

targets for lung cancer prevention.

In summary, we showed in a small pilot study that diversity and composition of the normal 

lung tissue microbiome may be associated with recurrence-free and disease-free survival, 

and observed differential microbiome signatures between lung tumor and normal tissue that 

were consistent with previous research. The strengths of our study include the availability of 

fresh-frozen tumor and normal lung tissue for paired analysis, and prospective long-term 

follow-up for survival analysis. However, our study conclusions were limited by small 

sample size and lack of a replication dataset, and therefore findings will require confirmation 

in a larger study. Additionally, though the 16S rRNA gene sequencing assay provides a 

snapshot of what bacteria are present in the normal and lung tumor samples, localization of 

bacteria in these tissue samples (e.g. using fluorescence in situ hybridization (41)) could 

provide additional insight into bacterial mechanisms of action in lung cancer. Continued 

study of the role of the lung microbiome in lung cancer may yield several promising future 

applications, including biomarkers of lung cancer risk, recurrence, and prognosis, and 

therapeutic targets for lung cancer primary and tertiary prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. α-diversity in normal lung tissue and survival.
(a) Distribution of number of OTUs at an even depth of 63 sequence reads per sample in 

normal lung tissue by recurrence status of patients (p-values are from Kruskal-Wallis tests). 

(b-c) Recurrence-free and disease-free survival curves for patients grouped in tertiles of 

number of OTUs at an even depth of 63 sequence reads per sample in normal lung tissue (p-

values are from log-rank tests for trend). (d) Distribution of the Shannon index at an even 

depth of 63 sequence reads per sample in normal lung tissue by recurrence status of patients 

(p-values are from Kruskal-Wallis tests). (e-f) Recurrence-free and disease-free survival 

curves for patients grouped in tertiles of the Shannon index at an even depth of 63 sequence 

reads per sample in normal lung tissue (p-values are from log-rank tests for trend).
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Figure 2. β-diversity in normal lung tissue and survival.
Principal coordinate analysis of the Bray-Curtis dissimilarity, with samples annotated 

according to recurrence status, histology, and person days: (a) non-rarefied, (b) rarefied to an 

even depth of 63 sequence reads per sample. (c) Unsupervised clustering (ward.D2 method) 

of the Bray-Curtis dissimilarity grouped patients into four clusters. These clusters were 

significantly related to (d) recurrence-free survival (log-rank p = 0.031) and (e) disease-free 

survival (log-rank p = 0.015).
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Figure 3. Taxa in normal lung tissue associated with recurrence-free or disease-free survival.
Heatmap shows relative abundance of families and genera (F: family, G: genus) with p≤0.05 

from Cox proportional hazards models of clr-transformed abundance or carriage 

(Supplementary Table 4). Heatmap was generated with average linkage clustering, and the 

Manhattan distance method; samples are annotated with recurrence status and Bray-Curtis 

cluster (from Figure 2).
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Figure 4. α-diversity in relation to lung tissue type (tumor vs. normal).
(a) Number of OTUs for tumor/normal pairs by patient ID at an even depth of 63 sequence 

reads per sample. (b) Distribution of number of OTUs at 63 sequence reads per sample for 

normal and tumor samples (P-values are from Wilcoxon signed-rank test). (c) Shannon 

index for tumor/normal pairs by patient ID at an even depth of 63 sequence reads per 

sample. (d) Distribution of the Shannon index at 63 sequence reads per sample for normal 

and tumor samples (P-values are from Wilcoxon signed-rank test).
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Figure 5. Taxa associated with lung tissue type (tumor vs. normal).
Heatmap shows relative abundance of (a) families, (b) genera, and (c) species in paired 

normal (N) and tumor (T) samples (only taxa present in >25% of samples are shown). 

Normal and tumor samples are sorted left to right by patient ID. Taxa with * indicate p<0.05 

from Wilcoxon signed-rank test for pair difference in relative abundance, or McNemar’s test 

for pair difference in carriage (Supplementary Table 6).
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Table 1.

Characteristics of 19 lung cancer patients.

Characteristic All
(n=19)

Disease-free
(n=5)

Recurrence
(n=9)

New primary
(n=3)

Age, mean ± SD 71.6 ± 6.7 73.6 ± 6.3 73.6 ± 6.3 64.3 ± 6.3

Male, n (%) 7 (36.8) 3 (60.0) 2 (22.2) 0 (0)

White, n (%) 19 (100.0) 5 (100.0) 9 (100.0) 3 (100.0)

Smoking status, n (%)

  Never 1 (5.3) 1 (20.0) 0 (0) 0 (0)

  Former 16 (84.2) 4 (80.0) 8 (88.9) 2 (66.7)

  Current 2 (10.5) 0 (0) 1 (11.1) 1 (33.3)

Histology, n (%)

  Adenocarcinoma 14 (73.7) 4 (80.0) 9 (100.0) 1 (33.3)

  Squamous cell carcinoma 4 (21.1) 0 (0) 0 (0) 2 (66.7)

  Sarcomatoid carcinoma 1 (5.3) 1 (20.0) 0 (0) 0 (0)

Stage, n (%)

  I 10 (52.6) 3 (60.0) 4 (44.4) 2 (66.7)

  II 5 (26.3) 2 (40.0) 2 (22.2) 1 (33.3)

  III 2 (10.5) 0 (0) 1 (11.1) 0 (0)

  IV 2 (10.5) 0 (0) 2 (22.2) 0 (0)
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