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Abstract
Key message  The optimization of training populations and the use of diagnostic markers as fixed effects increase the 
predictive ability of genomic prediction models in a cooperative wheat breeding panel.
Abstract  Plant breeding programs often have access to a large amount of historical data that is highly unbalanced, particu-
larly across years. This study examined approaches to utilize these data sets as training populations to integrate genomic 
selection into existing pipelines. We used cross-validation to evaluate predictive ability in an unbalanced data set of 467 
winter wheat (Triticum aestivum L.) genotypes evaluated in the Gulf Atlantic Wheat Nursery from 2008 to 2016. We 
evaluated the impact of different training population sizes and training population selection methods (Random, Clustering, 
PEVmean and PEVmean1) on predictive ability. We also evaluated inclusion of markers associated with major genes as 
fixed effects in prediction models for heading date, plant height, and resistance to powdery mildew (caused by Blumeria 
graminis f. sp. tritici). Increases in predictive ability as the size of the training population increased were more evident for 
Random and Clustering training population selection methods than for PEVmean and PEVmean1. The selection methods 
based on minimization of the prediction error variance (PEV) outperformed the Random and Clustering methods across all 
the population sizes. Major genes added as fixed effects always improved model predictive ability, with the greatest gains 
coming from combinations of multiple genes. Maximum predictabilities among all prediction methods were 0.64 for grain 
yield, 0.56 for test weight, 0.71 for heading date, 0.73 for plant height, and 0.60 for powdery mildew resistance. Our results 
demonstrate the utility of combining unbalanced phenotypic records with genome-wide SNP marker data for predicting the 
performance of untested genotypes.

Introduction

Historical sets of phenotypic data generated by plant breed-
ing programs allow for potential integration of existing 
phenotypic information into genomic selection approaches 
that increase genetic gain through reduced breeding cycle 
times (Hayes et al. 2009; Dawson et al. 2013; Crossa et al. 
2013). The prediction of genomic estimated breeding values 

(GEBVs) for genotypes with limited or no available phe-
notypic data is central to genomic selection approaches. 
GEBVs are estimated using genome-wide marker profiles 
and prediction models based on training populations con-
taining both phenotypic and genotypic information on a set 
of individuals (Meuwissen et al. 2001).

Many cultivars of wheat grown in the USA are devel-
oped by breeding programs located at land grant universities. 
There is interest in incorporating the historical data derived 
from these breeding programs into genomic selection. Public 
programs have a long tradition of germplasm exchange and 
collaborative testing of experimental lines prior to cultivar 
release. Breeders routinely enter advanced lines into col-
laborative testing programs grown in multiple environments 
throughout targeted wheat growing regions within the USA. 
The annual GAWN is an example of one such collabora-
tion. Public university breeding programs located in eight 
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southern states submit and evaluate advanced generation 
breeding lines in the GAWN, and phenotypic data are col-
lected on multiple traits across environments within each 
state. The wealth of phenotypic data available for testing 
programs such as the GAWN could be combined with geno-
typic data to implement genomic selection. These data can 
also be leveraged to evaluate approaches to optimize predic-
tive ability of genomic selection models.

One challenge of using historical datasets in genomic 
selection is their unbalanced nature because few entries 
are present in all years. This situation of unbalanced data 
makes it difficult to train the prediction model accurately. 
However, Bernal-Vasquez et al. (2017) showed that multi-
ple year historical data sets can be effectively used to build 
genomic prediction models even with no overlap of entries 
across years. Incorporating high-density marker data in the 
analysis of unbalanced phenotypic data allows for estima-
tion of a genomic relationship matrix that may be used for 
modeling genetic covariance for related entries tested in dif-
ferent years. Historical breeding trial data have been used 
for genomic prediction in an international wheat breeding 
program (Dawson et al. 2013) and in a rye (Secale cere-
ale L.) breeding program (Auinger et al. 2016). Storlie and 
Charmet (2013) reported genomic selection predictive abili-
ties between 0.2 and 0.5 for grain yield using an unbalanced 
set of elite winter wheat lines evaluated over 11 years at 
different locations in France. Rutkoski et al. (2012, 2015) 
showed the potential value of historical unbalanced data 
to predict GEBVs for resistance to Fusarium head blight 
(caused by Fusarium graminaerum) and stem rust (caused 
by Puccinia graminis f. sp. tritici) of wheat with predictive 
abilities between 0.1 and 0.4.

Determining the appropriate training population size and 
composition is critical for obtaining high prediction accura-
cies especially when we have genotypes from a large genetic 
group as candidates for training. Evaluation of effects of 
training population size on predictive ability has generally 
found that larger training populations are better (Arruda 
et al. 2015; Bentley et al. 2014; Cericola et al. 2017). How-
ever, the optimal training population size will vary with her-
itability of the trait, relatedness of the training population 
and prediction set, and population structure in the training 
and breeding populations. Studies have shown that properly 
accounting for population structure and genetic relatedness 
can increase prediction ability of genomic selection models 
(Crossa et al. 2014; Gou et al. 2014). In an empirical study 
of rice (Oryza sativa L.) and wheat, Isidro et al. (2015) dem-
onstrated that the best method for training population selec-
tion depended on the genetic architecture of the trait and 
the level of population structure present. They determined 
that in the presence of strong population structure in rice, 
cluster analysis followed by stratified sampling strategies 
led to improved prediction accuracies. The effects on model 

predictive ability due to accounting for subpopulations in 
soft winter wheat germplasm require further evaluation. 
Other sampling strategies to optimize the training popula-
tion have been proposed. Rincent et al. (2012) evaluated 
algorithms that minimize prediction error variance of the 
training candidate set and methods utilizing the general-
ized coefficient of determination (PEVmean and CDmean, 
respectively). These methods produced higher reliabilities 
than random selection of training populations with various 
sizes in two diversity panels of maize (Zea mays L.) inbreds. 
Akdemir et al. (2015) developed an alternative algorithm for 
efficient training population selection based on the minimi-
zation of PEVmean of individuals included in the test set 
and demonstrated that this method outperformed random 
training population selection in Arabidopsis thaliana L., 
wheat, rice, and maize. Therefore, we need to consider the 
optimization method suitable for our situation with wheat 
historical data for conducting genomic selection.

The choice of prediction methods is also one of the most 
important factors to determine the accuracy of genomic 
prediction. Of the statistical methods available to estimate 
GEBVs, one of the most utilized in genomic selection is 
ridge regression best linear unbiased prediction (RR-BLUP), 
a penalized regression method where all molecular marker 
effects are estimated from the training population and then 
used to predict GEBVs for individuals for which only geno-
typic data are available. RR-BLUP assumes that markers 
are random effects with common variance and all markers 
are equally shrunk toward zero by the same scaling factor 
(Meuwissen et al. 2001; Piepho 2009; Lorenz et al. 2011; 
de los Campos et al. 2013). Although widely used, the RR-
BLUP approach estimates the effect of many loci with small 
effects simultaneously, resulting in an underestimation of the 
effects of major genes (Bernardo 2014). As an alternative 
to RR-BLUP alone, known major QTL can be modeled as 
fixed effects to account for variability due to major effect 
genes segregating in the germplasm studied (Spindel et al. 
2016). Plant height and heading date of wheat are impor-
tant traits influencing adaptation controlled by a combina-
tion of known major effect genes as well as genes of minor 
effect (Griffiths et al. 2009, 2012; Hanocq et al. 2007; Zanke 
et al. 2014). The dwarfing alleles Rht-B1b and Rht-D1b are 
major determinants of plant height and are each present at 
relatively high frequencies in winter wheat germplasm of 
the Eastern USA (Guedira et al. 2010). Allelic variation 
for important loci controlling heading date has also been 
reported in this winter wheat germplasm, including ver-
nalization duration requirement related to the homeologous 
VERNALIZATION1 genes Vrn-A1 and Vrn-B1 and day 
length response related to the PHOTOPERIOD1 genes Ppd-
A1, Ppd-B1, and Ppd-D1 (Guedira et al. 2014, 2016). Each 
year the USDA-ARS Eastern Regional Small Grains Geno-
typing Laboratory evaluates entries in collaborative wheat 
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breeding nurseries with marker assays that are predictive 
for alleles of these major plant height and heading genes, 
as well as assays for genes conferring resistance to disease 
and affecting end-use quality (https​://triti​ceaet​oolbo​x.org/
wheat​/). As a result, genetic information about the presence 
of major genes affecting agronomic traits is available to the 
breeder. However, the effect of these markers for causal loci 
on predictive ability of genomic selection models for plant 
height and heading date has not been reported.

Several other traits in wheat controlled by both major 
and minor effect loci segregate within breeding program 
germplasm for which trait-linked or casual markers remain 
unavailable. Identification of major effect loci for consid-
eration as fixed effects could lead to improvement in pre-
dictive ability of genomic selection models. Markers linked 
to major QTL associated with important agronomic traits 
may be detected through association analyses. The effect of 
the markers identified by association analysis can then be 
considered as fixed effects when building genomic selec-
tion models while maintaining all other marker effects as 
random. Bernardo (2014) used simulation to examine the 
effect of modeling major QTL as fixed effects on prediction 
models and suggested that QTL explaining more than 10% 
of the variation associated with the trait should be included 
as model fixed effects. The entries in the GAWN provide an 
appropriate test case to evaluate the identification and inclu-
sion of markers associated with resistance to wheat powdery 
mildew as fixed effects in genomic selection models for this 
trait. Although phenotypic variability for reaction to pow-
dery mildew is present in the germplasm, the genetic basis 
of this variation is not known.

The primary objective of this study was to evaluate the 
use of a historical unbalanced data set to train genomic 
selection models in wheat. As selection of the appropriate 
training population is critical to obtaining accurate genomic 
predictions, we examined the effects of selecting training 
populations of different sizes using a strategy that considered 
population structure based on cluster analysis and strategies 

utilizing the PEVmean algorithm. In addition, we evaluated 
the effect of modeling known major genes for plant height 
and heading date and newly identified markers affecting 
resistance to powdery mildew as fixed effects in models for 
the respective traits. Overall, our goal was to determine how 
these factors affect the predictive ability of genomic selec-
tion models in this set of winter wheat germplasm.

Materials and methods

Plant material

A set of 483 soft red winter wheat elite lines in the F8 or later 
generations plus nine cultivars serving as checks were evalu-
ated in field environments from 2008 to 2016. All lines were 
included in the phenotypic data analysis. The experiments 
were part of the annual GAWN cooperative testing program 
and represented elite germplasm from public breeding pro-
grams at the University of Arkansas (UA), University of 
Florida (UF), University of Georgia (UG), Louisiana State 
University (LSU), North Carolina State University (NCSU), 
Clemson University (CU), Texas A&M AgriLife Research 
(TAMU) and Virginia Polytechnic Institute and State Uni-
versity (VPI). The data set was balanced for individual years 
where the same set of genotypes was evaluated across differ-
ent locations and unbalanced between years. The number of 
entries per year varied between 44 and 82, and the number of 
genotypes entered by each breeding program varied across 
the historical series (Table 1). Although entries developed 
at CU were evaluated in 2008 through 2012, the field evalu-
ation was not conducted in CU. Also, the GAWN was evalu-
ated at Farmersville, TX in all years; however, entries devel-
oped by the TAMU breeding program were submitted only 
in 2015 and 2016. Besides the check cultivars, the number of 
entries evaluated for grain yield and test weight in more than 
one year was 36. Overlap of entries evaluated for different 
traits across years is indicated in S. Table 1 and S. Table 2.

Table 1   Test year, entries per 
cooperating state breeding 
programs and total numbers 
of check cultivars and elite 
advanced line entries in the 
Gulf Atlantic Wheat Nursery 
from 2008 to 2016

Test year Breeding programs Check cultivars Total by year

UA UF UG LSU NCSU CU TAMU VPI

2008 12 7 12 12 12 12 0 12 3 82
2009 13 0 12 10 12 12 0 12 3 74
2010 12 1 12 11 12 12 0 12 3 75
2011 0 0 12 12 12 4 0 12 4 56
2012 12 1 12 11 12 12 0 12 4 76
2013 12 1 12 11 12 0 0 12 4 64
2014 5 0 7 6 6 0 0 10 4 38
2015 6 0 6 6 6 0 6 10 4 44
2016 4 0 6 7 9 0 6 10 3 45
Total by program 76 10 91 86 93 52 12 102

https://triticeaetoolbox.org/wheat/
https://triticeaetoolbox.org/wheat/
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Phenotypic data collection and analyses

The GAWN was evaluated at one location in up to seven 
states per year from 2008 to 2016: Arkansas (Stuttgart or 
Marianna), Florida (Citra or Quincy), Georgia (Plains), Lou-
isiana (Winnsboro), North Carolina (Kinston), Texas (Farm-
ersville), and Virginia (Warsaw). Experimental designs at 
each environment were randomized complete block designs 
with two to three replications, although data for some traits 
were recorded on only one replication. Plot sizes across loca-
tions varied but were typical of yield trial plots for wheat in 
the region and were a minimum of 1.3 m wide and 3.1 m 
long. Data were obtained from four to seven locations annu-
ally, with an average of 5.9 locations per year over the nine 
seasons. Historical data consisted of plot-level data for grain 
yield and means for test weight, plant height, heading date 
and reaction to powdery mildew. Out of a total of 63 poten-
tial location-year combinations (environments, S. Table 3), 
data for grain yield were available for 49, test weight for 49, 
heading date for 53, plant height for 44 and powdery mildew 
resistance for 19.

During the 2015–2016 growing season, an additional 
experiment was conducted to collect data for heading date, 
plant height, and reaction to a natural epidemic of powdery 
mildew in a common environment (this experiment is not 
included in Table 1). A total of 391 lines for which adequate 
seed was available were grown in Raleigh, North Carolina, 
in a randomized complete block design experiment with 
two blocks. Four common checks were repeated every 80 
rows. Plots were 1-m rows spaced 30 cm apart. Heading 
date was recorded as day of year when 50% of the plants in 
a plot were with the spike emerged (Zadoks growth stage 
55, Zadoks et al. 1974). Plant height was recorded as the 
distance in cm from soil level to the tip of the spike, exclud-
ing awns. Powdery mildew reaction was recorded using a 
0–9 scale, incorporating both height and intensity of conidia 
in the canopy. A value of 0 indicated complete absence of 
conidia in the canopy, and a value of 9 indicated conidia 
throughout the canopy and on the flag leaf. These data were 
included in the analysis to determine if addition of measure-
ments from a common environment would improve model 
predictive ability.

The following linear mixed model was utilized for the 
analysis of grain yield, for which plot-level data were 
available:

where yijkl was the phenotypic observation of genotype l 
in the ith year in the jth location in the kth block, was the 
overall mean, Yi was the year effect, Lj was the location 
effect, B(YL)ijk was the block effect nested within year 

yijkl = � + Yi + Lj + B(YL)ijk + YLij + Gl + YGil

+ LGjl + YGLijl + �ijkl

and location, Gl was the genotypic effect, YLij, YGil, LGjl, 
YLGijl were the interaction terms representing year by loca-
tion, genotype by year, genotype by location and genotype 
by year by location, respectively, and ijkl, represented the 
residual term. The overall mean and the genotypic effects 
were considered fixed and all the remaining terms random. 
The error variance component for this trait was allowed to 
be heterogeneous across environments (Yi and Lj combina-
tions), but IID within environments. All other random effects 
had independent, identical normal distributions with mean 
zero and common variance for all effects of a given factor.

Only a single mean value for each line-environment combi-
nation was available for test weight, heading date, plant height 
and powdery mildew resistance. Therefore, the following lin-
ear mixed model was fit to the data for test weight, heading 
date, and plant height:

where terms are identical to the grain yield model, but block 
and YGL interaction effects are not included in the model, 
and the residual effect represents a confounded term of YGL 
interaction and residual effects of within-environment mean 
values. Furthermore, for these traits, a homogeneous resid-
ual error variance term was fitted: ε ~ IID N(0, �2

e
 ) due to the 

lack of replications within each environment.
Finally, powdery mildew was measured in only 19 environ-

ments, insufficient to estimate the all the variance parameters 
in the previous model. Therefore, for powdery mildew only, 
the effects of year and location were combined into a single 
term called environment:

The models were implemented using ASReml-R (Butler 
et al. 2009). Best linear unbiased estimates (BLUE) of each 
genotype were calculated as the estimated genotypic effect 
plus overall mean and used as the values of a dependent vari-
able in a genomic prediction model. Estimates of broad sense 
heritability on a plot basis for each trait were calculated using 
a statistical model similar to the model previously described 
but with the overall mean as a fixed effect and all other terms 
random. The residual variance was uniform across environ-
ments in the analysis of each trait. The broad sense heritability 
on a per plot basis of each trait was computed according to 
Holland et al. (2003) as:

where �2
g
 represents genotypic variance, �2

gy
 , �2

gl
 , �2

gyl
 , are the 

variance components due to the genotype by year, genotype 
by location and genotypes by location by year, respectively, 
and �2

e
 is the variance associated with the residual term.

yijl = � + Yi + Lj + YLij + Gl + YGil + LGjl + �ijl,

yijl = � + Eij + Gl + �ijl

H2 =
�2
g

�2
g
+ �2

gy
+ �2

gl
+ �2

gyl
+ �2

e
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Genotypic data

Genotyping by sequencing (GBS, Elshire et al. 2011) using 
the protocol described by Poland et al. (2012) was conducted 
for 467 of the 492 lines that were phenotyped, including elite 
genotypes and check cultivars. Seeds of 25 of the older lines 
were no longer available. Ninety-six individual samples were 
pooled into a single library, and each library was sequenced 
on an Illumina HiSeq 2500. Single nucleotide polymorphism 
(SNP) calling on raw sequence data was done with Tassel-
5GBSv2 pipeline version 5.2.35 (Glaubitz et al. 2014) with 
alignment to the International Wheat Genome Sequencing 
Consortium (IWGSC) RefSeq1.0 assembly (https​://wheat​
-urgi.versa​illes​.inra.fr/Seq-Repos​itory​/Assem​blies​) using 
Burrows-Wheeler aligner (BWA) version 0.7.12 (Li and 
Durbin 2009). SNP with ≤ 50% missing data, ≥ 5% minor 
allele frequency and ≤ 10% of heterozygous calls per marker 
locus were retained and imputation performed using Beagle 
in the R package Synbreed (Wimmer et al. 2012; Browning 
and Browning 2016). After imputation, redundant SNP less 
than 64 bp apart were removed from the data set. The final 
number of SNP utilized for analyses was 34,095.

All lines were evaluated with kompetitive allele specific 
PCR (KASP) assays diagnostic for genes having major 
effects on plant height and heading date that are routinely 
used for characterization of lines in southeastern breed-
ing programs. These included assays associated with plant 
height (Rht-B1 and Rht-D1), vernalization requirement 
duration (Vrn-A1 and Vrn-B1), and photoperiod (Ppd-A1, 
Ppd-B1, Ppd-D1). In addition, assays that detect alien trans-
locations including the t1AL:1RS and t1BL:1RS transloca-
tions from rye, the t2BS:2GS·2GL:2BL translocation from 
Triticum timopheevii and the translocation t2AS:2NS from 
Triticum ventricosum were screened (S. Table 4). These data 
are available for download at the T3 database (https​://triti​
ceaet​oolbo​x.org/wheat​/).

Genomic information was organized in a matrix where 
data for genotypes were organized in rows and marker scores 
for the 34,095 SNP from GBS plus the KASPs assays were 
arranged in columns. All marker data were coded 0, 1 or 2 
according to the number of copies of the minor allele. Prin-
cipal components analysis of this matrix was implemented 
with the prcomp function in R version 3.3.1 (R Core Team 
2016).

Training population and validation set

The predictive ability of genomic selection models for each 
of the five traits was measured as mean Pearson correlations 
between BLUEs and GEBVs across 50 iterations of cross-
validation. For cross-validation, we selected 50 different val-
idation sets of size 60 (the average number of unique entries 
evaluated each year) as a random sample of genotypes from 

the 467 wheat lines with phenotypic and genotypic data. The 
same 50 validation sets were consistently utilized throughout 
the experiment to ensure accurate comparisons between dif-
ferent genomic selection methods. Data for each validation 
set were masked when we built a prediction model.

The effect of training population size on the predictive 
ability of the genomic selection model was assessed using 
seven different population sizes (50, 100, 150, 200, 250, 
300, and 350). For each population size, we implemented 
four approaches for comparison of the training population 
selection:

Random

Random training population selection was utilized as the 
reference method to compare with the other three methods of 
training population optimization. For this method, a random 
sample of individuals was selected as training population 
for each validation set according to the size of the training 
population.

Clustering

Benson et al. (2012) demonstrated that chromosomal translo-
cations involving related genomes segregating in soft winter 
wheat germplasm were associated with subpopulation dif-
ferentiation. In this study, we identified population structure 
associated with the translocation t2BS:2GS·2GL:2BL. Thus, 
we attempted to optimize the training population design by 
assigning the same proportion of individuals with and with-
out the translocation in the training population and in each 
validation set. For each validation set randomly selected 
from the 467 genotypes, the proportion of individuals with 
the translocation was determined. The remaining individuals 
(potential training population candidates) were split based 
on the presence or absence of the translocation, and sample 
sizes for each group were chosen so that the translocation 
group frequencies were the same between training and vali-
dation sets. A random sample of the individuals required in 
each translocation set was selected and merged to form the 
training population. The same procedure was utilized across 
the 50 different validation sets and for each training popula-
tion size.

PEVmean

This approach utilized a training population optimization 
algorithm for each validation set that minimized the mean 
prediction error variance (Rincent et al. 2012; Akdemir et al. 
2015). The PEVmean algorithm used genomic information 
from all genotypes to measure the reliability of the GEBVs 
for individuals in the validation set. An optimal training 
population from all genotypes available was selected to 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
https://triticeaetoolbox.org/wheat/
https://triticeaetoolbox.org/wheat/
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minimize the mean prediction error variance in the vali-
dation set. We used the approach suggested by Akdemir 
et al. (2015) for an efficient approximation to the prediction 
error variance using the first 100 principal components of 
the genotypes to estimate the genomic relationship matrix. 
The PEVmean strategy was implemented using the func-
tion GenAlgForSubsetSelection from the R package STPGA 
with optimality criterion: “PEVMEAN” (Akdemir 2016). 
Principal components were estimated from genotypic data, 
and the first 100 principal components were chosen for error 
variance estimation. The best training population for each of 
the 50 validation sets for each of the seven different popula-
tion sizes was selected after 300 iterations of the genetic 
algorithm parameter, while other parameters in the function 
were set with default values.

PEVmean1

This was a modification of the previously described 
PEVmean training population optimization design whereby 
we identified the optimum training population that mini-
mized the prediction error variance for every individual in 
the validation set. This procedure was implemented in the 
R package STPGA as described above for each individual 
genotype in the validation set with the goal of identifying 
the best training population to predict a single genotype. In 
PEVmean1, the same GenAlgForSubsetSelection function 
was used in the STPGA package with only one genotype in 
the validation set. Thus, we obtained 60 optimized training 
sets for each cross-validation step that were used to inde-
pendently predict each genotype in the validation set. The 
procedure was repeated for each of the 50 validation sets and 
for the different training population sizes.

Genomic selection and association analysis

The RR-BLUP model described by (Meuwissen et al. 2001; 
Piepho 2009) was used to estimate GEBV. The model was 
specified as follows:

where y was a vector of BLUEs for each wheat genotype 
obtained for one trait, β was a vector of fixed effects which 
included the overall mean and fixed covariates (major gene 
and association mapping markers), X and Z were the design 
matrices for fixed and random effects, u was a vector of 
random marker effects, and e was a vector representing the 
residual terms. The variance–covariance structure associated 
with the random term was u ~ N (0, I�2

u
 ) and for the residual 

term was e ∼ N (0, I�2
e
 ). The estimates of u were obtained 

from the mixed.solve function using the package rrBLUP 
in R (Endelman 2011).

y = X� + Zu + e

The impact of incorporating markers previously associ-
ated with one or more major effect locus as fixed effects in 
the genomic selection model was measured as the change 
in predictive ability of models with and without markers as 
fixed effects in the model. When a marker entered the model 
as a fixed effect, the same marker was removed from the 
matrix of markers as random effects. Markers predictive of 
the dwarfing alleles Rht-D1b and Rht-B1b were used as fixed 
effects in models to predict plant height. Polymorphisms in 
exon 4 of Vrn-A1 (Díaz et al. 2012; Yan et al. 2015; Guedira 
et al. 2016) and the first intron of Vrn-B1 (Guedira et al. 
2014, 2016) associated with differences in duration of ver-
nalization requirement and heading date in winter wheat 
were included as fixed effects in models to predict heading 
date. In addition, an assay predictive of the insensitive allele 
Ppd-D1a of the major photoperiod locus on chromosome 2D 
(Beales et al. 2007) was also included as a fixed effect in the 
models to predict heading date.

Association analysis using a mixed linear model imple-
mented in the R package GAPIT (Lipka et al. 2012; Tang 
et al. 2016) was performed to identify significant markers 
for grain yield, test weight and powdery mildew resistance. 
To avoid bias in the calculation of predictive ability for the 
genomic selection model, the identification of markers to 
use as fixed effects was based on genome-wide association 
study (GWAS) specific to each training set of lines only. The 
first three principal components and the genomic relation-
ship matrix were utilized for GWAS to account for popula-
tion structure and degree of relatedness between individuals 
in the population to avoid spurious associations (Yu et al. 
2006). Markers were declared significant based on the Bon-
ferroni corrected p value at α = 0.01. We planned to use the 
detected markers as fixed effects in prediction models.

Comparing effects on genomic selection prediction 
accuracy

Pairwise comparisons of predictive ability for different train-
ing population optimization methods and for the addition of 
markers as fixed effects in genomic selection models were 
performed for different training population sizes and traits 
considered in the analysis. The effect of different predic-
tion methods was tested using a one-way ANOVA using 
the model:

where r is the vector of predictive abilities with a z-transfor-
mation to avoid lack of normality in the error term, µ is the 
overall mean predictive ability, Treatment is the fixed effect 
of different training population optimization methods or the 
different models including fixed effects and error represents 
the residual term in the model.

r = � + Treatment + error
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Results

Phenotypic summary

Nine years of phenotypic data for grain yield, test weight, 
heading date, plant height, and powdery mildew resistance 
from a historical data set of the GAWN were curated and 
analyzed. The total number of data points (GxLxY) available 
for analysis were 7028 for grain yield, 5075 for test weight, 
4861 for heading date, 4780 for plant height and 2246 for 
powdery mildew reaction. The effect of genotype was sig-
nificant for all traits analyzed (Table 2). Genotype by envi-
ronment interactions was significant for all traits except plant 
height, for which genotype by year and genotype by location 
interactions were not significant. Broad sense heritability on 
a per plot basis was low for grain yield (0.14), intermediate 
for test weight (0.28), and higher for heading date, plant 
height and powdery mildew resistance (0.49–0.57). Line 
means for grain yield ranged from 0.42 to 8.27 Mg ha−1, 
with a mean of 4.24 Mg ha−1.

Genotypic data and population structure

The final marker data set consisted of 34,095 bi-allelic SNP 
markers from GBS and 12 KASP markers on the panel of 
467 genotypes. The level of polymorphism detected by GBS 
varied for each genome with 13,190 SNP detected in the A 

genome, 16,522 SNP detected in the B genome, and 4575 
SNP detected in the D genome (S. Table 5). Evaluation with 
KASP markers determined that most lines in the population 
were semi-dwarf having either Rht-D1b (74%) or Rht-B1b 
(20%) while the remaining 6% did not possess either semi-
dwarfing allele. Twenty-one percent of lines possessed a 
winter allele at Vrn-A1 associated with short vernalization 
duration requirement, 28% possessed the short vernalization 
requirement allele at Vrn-B1 and 63% of the lines had the 
Ppd-D1 allele for photoperiod insensitivity (Table 5).

Two distinct clusters were observed on the first prin-
cipal component axis that were related to the presence 
of the t2BS:2GS·2GL:2BL translocation derived from T. 
timopheevii (Fig. 1). The correlation between the first princi-
pal component and the scores of the diagnostic KASP assay 
based on SNP marker IWA8068 that resides in the translo-
cation was 0.89. Of the 467 genotypes in the data set, 145 
possessed the translocation. Analysis of the marker matrix 
identified many chromosome 2B SNP having alleles exclu-
sive to genotypes possessing the translocation. Although a 
separation of lines into two clusters based on the presence/
absence of the alien translocation was observed, the first 
principal component explained less than 8% of the total vari-
ation in the data set based on markers. Within the cluster of 
genotypes lacking the translocation, there was some separa-
tion of lines developed by programs in the more southern 
states of GA and SC, compared to lines developed in the 
Mid-Atlantic programs in VA and NC (Fig. 1). Lines from 

Table 2   Summary of 
phenotypic information for 
grain yield, test weight, heading 
date, plant height and powdery 
mildew resistance, including 
number of environments where 
each trait was evaluated, number 
of data points for the analysis of 
each trait, descriptive statistics, 
variance components estimates, 
and broad sense heritability 
estimate calculated on a per plot 
basis

*Significant at α = 0.05

Traits

Grain yield Test weight Heading date Plant height Powdery mildew

Mg ha−1 kg m−3 Days cm 0–9 scale

No. environments 49 49 53 44 19
No. data points 7028 5075 4861 4780 2446
Minimum 0.42 41.70 63.00 53.34 0.00
Mean 4.24 57.05 105.56 88.34 2.16
Maximum 8.27 65.80 131.00 137.16 9.00
Standard deviation 1.30 6.60 11.91 11.07 2.01
Variance components estimates
 Location (L) 52.60* 3.12* 37.95* 3.24* 0.60*
 Year (Y) 53.82 0.97 43.26* 2.82*
 YL 142.09* 5.41* 21.67* 4.05*
 Rep (YL) 3.76* 0.07* 0.08* 0.15* 0.10*
 Genotype (G) 19.84* 1.07* 14.42* 4.85* 1.66*
 GY 6.54* 0.41* 1.26* 0.13 0.62*
 GL 26.24* 0.32* 5.39* 0.06
 GYL 50.71* 1.26* 4.12* 1.10*
 Residual 39.65 0.80 1.45 2.42 1.03

Heritability 0.14 0.28 0.54 0.57 0.49
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GA were noticeable for their diversity on both the first and 
the second principal components.

Effect of training population size and optimization 
on predictive ability of genomic selection models

Predictive ability of genomic selection models varied with 
training population sizes and optimization methods (Fig. 2). 
Mean predictive abilities from cross-validation for grain 
yield (0.40–0.64) and test weight (0.31–0.56) were particu-
larly encouraging given the importance of these traits as pri-
mary selection goals in wheat breeding. Slightly higher pre-
dictive abilities were observed for heading date (0.44–0.70) 
and plant height (0.47–0.64). Predictive ability for powdery 
mildew resistance ranged from 0.36 to 0.57.

The effect of incorporating Raleigh 2016 as a common 
environment for measurement of plant height, heading date 
and powdery mildew resistance increased the mean pre-
dictive ability of heading date when selecting the training 
population at random and using the PEVmean selection cri-
teria (Table 3). For plant height and powdery mildew resist-
ance, the effect of data from a common environment on the 
overall mean predictive ability of the models was marginal 
or null. Based on observed improvements for heading date 

predictions, the Raleigh 2016 data were retained in subse-
quent analyses.

Model predictive ability generally increased as the size of 
the training population increased. In the Random and Clus-
tering methods, the magnitude of increase in predictive abil-
ity for all the traits was greatest between training population 
size 50–250, while increases in the population sizes over 250 
individuals did not have a significant impact. When using 
methods based on minimizing the PEV, an increase in the 
training population size beyond 150 did not increase predic-
tive ability for the all traits except heading date. Increasing 
training population size beyond 200 did not increase predic-
tive ability for heading date. It was noteworthy that for grain 
yield, when using training population selection PEVmean 
and PEVmean1, there was a high predictive ability even 
when the training population size was 50, and there was no 
substantial increase in predictive ability for any other train-
ing population size. Predictive ability for training population 
optimization method PEVmean at training population size of 
100 was lower than training population size 50 for all traits 
but still outperformed training population selection methods 
Random and Clustering.

Optimization of the training population by methods that 
minimize the prediction error variance of the individuals 
in the validation set (PEVmean, PEVmean1) outperformed 

Fig. 1   Scatter plot of the first 
two principal components from 
analysis of 467 winter wheat 
genotypes based on the full data 
set of 34,107 markers. Points 
are color coded according to 
the origin of genotypes: AR, 
University of Arkansas; FL, 
University of Florida; GA, 
University of Georgia; LA, 
Louisiana State University; NC, 
North Carolina State University; 
SC, Clemson University; VA, 
Virginia Tech; TX, Texas A&M 
AgriLife Research. Different 
shapes represent the number 
of copies of the allele of SNP 
marker IWA8068 located in the 
t2BS:2GS·2GL:2BL translo-
cation from T. timopheevii. 
Percentages in each axis repre-
sent the proportion of variance 
explained by each principal 
component
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models that used a purely random approach (Random) or 
a combination of clustering and random sampling (Clus-
tering, Fig. 2). This trend was observed for all traits and 
at all training population sample sizes. Significant differ-
ences between optimization methods were found for train-
ing population sizes between 50 and 300, while for training 
population size 350, the different methods tended to con-
verge. PEVmean and PEVmean1 had predictive abilities 
that were significantly higher (p < 0.05) than Clustering 
and Random for sample sizes from 50 to 200 genotypes. 

Although, PEVmean and PEVmean1 performed better at 
training population sample sizes from 250 to 350, in most 
cases the difference in predictive ability with the other meth-
ods were not significant.

Effect of fixed effect markers on predictive ability

Investigation into the impact on genomic selection model 
predictive ability through inclusion of markers for major 
genes as fixed effects versus random effects utilized two 

Fig. 2   Comparison of mean 
predictive ability (Mean Pred. 
Ability) for grain yield (a), test 
weight (b), heading date (c), 
plant height (d) and powdery 
mildew resistance (e) using four 
training population optimization 
methods: Clustering (Weighted 
proportion of translocation 
t2BS:2GS·2GL:2BL in the train-
ing population and validation 
set), PEVmean (training popula-
tion selected by minimization of 
the PEV mean in the validation 
set), PEVmean1 (training popu-
lation selected by minimization 
of the PEV of each individual in 
the validation set) and Random 
(random training population 
selection). All methods were 
evaluated for seven different 
training population sizes. Error 
bars represent ± one standard 
error of the mean



1256	 Theoretical and Applied Genetics (2019) 132:1247–1261

1 3

training population selection methods, PEVmean and Ran-
dom, for the seven different training population sizes. For 
heading date and plant height, markers in previously identi-
fied major genes were used as fixed effects. No significant 
markers were identified for grain yield and test weight after 
association analyses, so models having fixed effects derived 
from major QTL were not evaluated for these traits. The 

most significant marker trait association for powdery mildew 
resistance varied depending on the independent training set 
utilized for association analysis. However, for all training 
sets, the most significant markers were in the terminal region 
of the long arm of chromosome 7A indicative of a gene of 
major effect on powdery mildew resistance in this region (S. 
Table 6). For these analyses, only the single most significant 
marker identified in each independent association analysis 
was utilized as a fixed effect for prediction of the respective 
validation set to make the number of fixed effects in the 
model uniform in all cross-validation sets.

Overall, we observed that including markers associated 
with major effect genes or QTL as fixed effects increased 
the predictive ability similarly for both TP selection meth-
ods when compared with models without fixed effects (S. 
Fig. 1, S. Fig. 2, S. Fig. 3). Results based on the random 
model with and without fixed effects are shown in Table 4 
for different traits, markers, and TP sizes. Markers for head-
ing date utilized as fixed effects were based on polymor-
phisms in the Vrn-A1, Vrn-B1, and Ppd-D1 loci that are 
known to be important determinants of flowering time in 
wheat. The addition of the marker for Vrn-A1 had the largest 
impact on predictive ability when markers as fixed effects 
were evaluated individually (Table 4). Using a combination 
of markers in the Vrn-A1, Vrn-B1, and Ppd-D1 genes, the 
predictive ability increased with all population sizes and 
was significantly different from models that considered 

Table 3   Mean predictive ability after 50 cycles of cross-validation 
using two TP optimization methods (Random and PEVmean) for 
heading date, plant height and powdery mildew resistance calculated 
and averaged across seven TP sizes. Genomic selection models used 
only phenotypic data available from the historical series or incorpo-
rated phenotypic data from a common environment (Raleigh 2016) 
along with the historical series

**Significant at α = 0.01

All locations Historical data

Heading date
 Random 0.59** 0.53
 PEVmean 0.66** 0.58

Plant height
 Random 0.57 0.57
 PEVmean 0.62 0.62

Powdery mildew resistance
 Random 0.48 0.48
 PEVmean 0.53 0.52

Table 4   Comparison of mean predictive ability across 50 cycles of 
cross-validation for heading date, plant height and powdery mildew 
resistance according to genomic selection models having no marker 
as fixed effects with models that consider the addition of trait asso-
ciated markers as fixed effects. Analyses used the Random training 
population selection method and different training population sizes. 

Combinations of diagnostic markers for loci associated with heading 
date (Ppd-D1, Vrn-A1, Vrn-B1) and plant height (Rht-B1, Rht-D1) 
were utilized, while for powdery mildew resistance the most signifi-
cant SNP detected in GWAS for each validation cycle was utilized as 
the fixed effect

*, **Significantly different from the no fixed marker model at α = 0.05 and α = 0.01, respectively

Training population size

TP050 TP100 TP150 TP200 TP250 TP300 TP350

Heading date
 No fixed marker 0.46 0.53 0.56 0.61 0.63 0.67 0.68
 Ppd-D1 0.42* 0.54 0.58 0.62 0.64 0.68 0.69
 Vrn-A1 0.51** 0.58** 0.60** 0.63* 0.65* 0.68 0.69
 Vrn-B1 0.49 0.56 0.59 0.63 0.64 0.67 0.68
 Vrn-A1_Ppd-D1 0.51** 0.59** 0.62** 0.65** 0.67** 0.70** 0.70**
 Vrn-A1_Vrn-B1_Ppd-D1 0.56** 0.61** 0.64** 0.67** 0.68** 0.71** 0.71**

Plant height
 No fixed marker 0.49 0.53 0.55 0.58 0.60 0.61 0.63
 Rht-B1 0.47 0.52 0.55 0.58 0.60 0.61 0.62
 Rht-D1 0.56** 0.60** 0.62** 0.64** 0.66** 0.67** 0.68**
 Rht-B1_Rht-D1 0.59** 0.64** 0.67** 0.69** 0.71** 0.72** 0.73**

Powdery mildew resistance
 No fixed marker 0.36 0.44 0.48 0.51 0.52 0.53 0.55
 Most significant SNP 0.42** 0.50** 0.53** 0.56** 0.56** 0.57** 0.60**
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one marker only. However, the impact of adding markers 
as fixed effects in the model decreased as training popula-
tion size increased. When training populations contained 
300 or more individuals, the only models that differed from 
the random model (no marker as fixed effect) were those that 
included multiple markers. Given a training population size 
of 50, an average of 10% increase in model predictive abil-
ity was observed when markers in the Vrn-A1, Vrn-B1, and 
Ppd-D1 genes were included as fixed effects in the model, 
compared with the random model. The improvement in pre-
dictive ability when adding markers as fixed effect was 3% 
when the training population size was 350. Genomic selec-
tion models for plant height included genotypes at SNP in 
the reduced height genes Rht-B1 and Rht-D1 indicative of 
the semi-dwarfing alleles. The effect of the Rht-D1b allele in 
the genomic selection models was greater than that observed 
for Rht-B1b (Table 5). The genomic selection models that 
included alleles at Rht-B1 as a fixed effect did not increase 
predictive ability across different training population sizes, 
whereas the model with alleles at Rht-D1 treated as fixed 
effects significantly increased predictive ability over all 
training population sizes (Table 4). Including both diagnos-
tic markers as fixed effects in the model produced increases 
in the predictive ability compared with models having only 
Rht-D1. Predictive ability of models having Rht-D1 and Rht-
B1 ranged from 9 to 17% higher compared with the models 
without markers as fixed effects across the different training 
population sizes evaluated.

For powdery mildew resistance, we used the most sig-
nificant SNP marker, detected by association analysis in 
each training set. Each time the GWAS was conducted, 
the data for individuals in the 50 different validations sets 
was masked to avoid biases in the estimation of the marker 
effect on predictive ability. The six different SNP markers 
selected as fixed effects are detailed in S. Table 6. The num-
ber of times that an individual SNP was declared the most 
significant in the 50 independent GWAS evaluated ranged 
from 1 to 25. The effect on model predictive ability of using 

the single most significant SNP detected in each independ-
ent GWAS as a fixed effect was significant for all training 
population sizes compared with models without fixed effects 
(Table 4). Given a training population size of 50, an average 
of 14% increase in predictive ability (from 0.36 to 0.42) was 
observed when the most significant SNP was included as a 
fixed effect in the model, compared with the random model. 
The improvement in predictive ability when adding the SNP 
as fixed effect was 8% when the training population size was 
350 (0.55–0.60).

Discussion

Questions concerning material to be utilized in the train-
ing population and how to optimize prediction ability of the 
model based on the germplasm available arise when breed-
ers integrate genomic selection into an ongoing cultivar 
development program. This study reported the utility of a 
historical unbalanced data set for elite wheat lines from eight 
public breeding programs evaluated across the southeastern 
USA for genomic selection. These public programs collabo-
rate to develop commercial cultivars of soft red winter wheat 
for the region, thus the study provides valuable empirical 
results on the use of genomic selection to predict the average 
genotypic value of genotypes across a wide area.

Overall, cross-validation results from this study were 
encouraging regarding the use of unbalanced historical data 
for genomic selection predictions, even for highly polygenic 
and complex traits like grain yield and test weight. The mean 
predictive ability for grain yield was 0.64 for a training 
population size of 350 individuals while using the training 
population optimization method PEVmean. The model pre-
dictability from our cross-validation results for grain yield in 
wheat were higher than the 0.40–0.50 reported by of Storlie 
and Charmet (2013), who used historical unbalanced data 
of 318 lines grown over an 11-year period in France and the 

Table 5   Allele frequency, SNP position, and mean allelic effect for trait associated markers utilized as fixed effects for heading date and plant 
height

a Position of SNP in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq1.0 assembly
b Calculated as the average effect of the marker estimated from 50 different training populations of size 350 selected at Random to predict 
GEBVs in each of the 50 validation set for a model that included all diagnostic markers associated with the trait simultaneously

Trait Locus Chromosome Positiona (Mbp) Freq. of 
early/dwarf 
allele

Dwarf/early allele Reference allele Mean effectb Std deviationb

Plant height (cm) Rht-B1 4B 30.86 0.20 T C − 3.78 0.14
Rht-D1 4D 18.78 0.74 T G − 5.38 0.15

Heading date 
(days)

Vrn-A1 5A 587.42 0.21 C T − 1.37 0.14
Vrn-B1 5B 573.81 0.18 C G − 1.28 0.20
Ppd-D1 2D 33.96 0.63 Deletion Non-deleted − 0.91 0.14
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0.28–0.45 reported by Poland et al. (2012) in a panel of 254 
wheat lines evaluated in Mexico during 2010.

While grain yield is a primary goal for improvement in 
wheat cultivar development programs, it is not the only tar-
get as quality parameters and resistance to abiotic and biotic 
stress are also of paramount importance. For the onetime 
cost of genotyping, the marker information is available to 
predict any trait, including complex traits such as grain yield 
and grain quality as well as resistance to disease and insect 
pests if genotypic and phenotypic data are available for a 
suitable training population. Multi-location data for grain 
yield, test weight, heading date, plant height, and powdery 
mildew resistance were collected for the GAWN nursery. 
Cross-validation results for test weight, heading date, plant 
height and powdery mildew resistance showed moderate to 
high prediction ability for these traits, which reinforces the 
potential of the unbalanced GAWN nursery as a training 
population. Furthermore, we demonstrated that for heading 
date, the inclusion of an additional one-year evaluation for 
most lines in a common environment increased the predic-
tion ability by up to 8%. Although heritability of heading 
date was moderately high in this study (0.54 on a plot mean 
basis), it was nonetheless influenced by the year-to-year vari-
ation in winter and early spring temperatures experienced in 
southern USA locations. Significant genotype by environ-
ment interaction was observed for heading date (Table 2). 
The addition of data from a common environment did not 
positively affect predictive ability for plant height, as this 
trait was less influenced by genotype by environment inter-
actions. Similarly, addition of data from a common envi-
ronment for reaction to powdery mildew did not improve 
predictive ability.

Selection of training populations containing individuals 
more closely related with the validation set should lead to 
an increase in the precision of the GEBV estimates. Evalu-
ation of population structure in our data set indicated there 
were two subpopulations associated with the presence or 
absence of the t2BS:2GS·2GL:2BL translocation derived 
from T. timopheevii. Thus, population differentiation was 
likely an artifact of the presence of a large segment of alien 
chromatin having many SNP in high levels of linkage dis-
equilibrium, rather than strong population structure on the 
whole genome level. When the translocation was utilized as 
a criterion to optimize the design of the training population 
(Clustering method), predictive abilities were not different 
from the Random training population selection method. 
Thus, accounting for that population structure associated 
with the alien translocation did not improve trait predic-
tion accuracy above the Random model. In our study, the 
first principal component explained only 7.6% of variation. 
Isidro et al. (2015) observed a slightly higher level of vari-
ation (12.7%) explained by the first principal component in 
a study of 1127 wheat genotypes. However, they also did 

not observe significant increases in model prediction ability 
when comparing random training population selection with 
clustering methods based on origin of wheat genotypes to 
optimize training populations. Overall, we did not find the 
clustering approach very useful.

In contrast, methods of training population design based 
on reduction of PEV mean of the validation set (PEVmean 
and PEVmean1) were more accurate compared with meth-
ods that selected individuals at random. This was especially 
true with small training population sizes, because they better 
accounted for the relationship between the individuals in 
the training population and the validation set (Habier et al. 
2013). Significant increases in model predictive ability with 
increased population size were not observed for population 
size greater than 200, suggesting that not all individuals in 
the training population need to be utilized to get adequate 
levels of predictive ability in the model. Similar findings 
were reported with different populations of wheat (Isidro 
et al. 2015; Rutkoski et al. 2015), rice (Akdemir et al. 2015; 
Isidro et al. 2015), arabidopsis (Akdemir et al. 2015), and 
maize (Rincent et  al. 2012; Akdemir et  al. 2015). The 
PEVmean1 and PEVmean methods were different at train-
ing population size 100 where PEVmean had a lower model 
predictive ability. Akdemir et al. (2015) also found a decay 
or stagnation in model predictive ability for training popu-
lation size of 100 individuals in a highly structured maize 
population when using PEVmean and Random training 
population selection when compared with training popula-
tion of sizes ranging from 50 to 200. This result may be 
related with changes in the degree of genetic relationship 
between training populations and validation sets at smaller 
population sizes.

Other genomic selection studies using fixed effects asso-
ciated with major QTL have been published (Arruda et al. 
2016; Hoffstetter et al. 2016). Bian and Holland (2017) 
conclude that adding SNP associated with the trait as fixed 
effects in genomic predictions models yield higher predic-
tive abilities when compared with models that only treat 
SNP as random effects. We used two approaches to avoid 
the potential bias in selecting markers for inclusion as fixed 
effects. For plant height and heading date, we assayed poly-
morphisms in major genes known to affect these traits. For 
powdery mildew, we identified the most significant SNP 
marker in each training set associated with powdery mildew 
resistance after masking the phenotypic data of individuals 
in each of the 50 different validation sets. The addition of 
markers as fixed effects in the genomic selection models 
was demonstrated to be useful for each of these traits across 
the complete range of training population sizes evaluated, 
reinforcing the utility of the addition of fixed effects in the 
models when available. These results agreed with Bernardo 
(2014) who pointed out that the predictive ability of genomic 
selection models can be increased by adding major genes 
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as fixed effects when they represent a large proportion of 
the total variance associated with the trait under considera-
tion (≥ 10%). However, in our study relative improvement in 
model predictability when adding fixed effects varied with 
population size. As training population size increased the 
influence of the fixed effects for heading date and powdery 
mildew in the model were reduced. The lower influence 
of the fixed effect in the models could be due to a greater 
proportion of the total variance associated with the trait 
explained by the random portion of the model as the number 
of genotypes increases.

The trend of increasing the predictive ability of the model 
was also observed when a combination of markers was 
included in the model as fixed effects. This was observed 
for different population sizes, and in some cases, the com-
bination of markers outperformed the predictive ability for 
models with the addition of only one marker. Heading date, 
plant height, and powdery mildew resistance are highly her-
itable traits in comparison with grain yield and test weight, 
where the identification of a major effect QTL is complex 
due to the polygenic genetic architecture. The impact of add-
ing fixed effects for these highly heritable traits was never 
worse than the model considering all markers as random 
effects. The maximum response observed was the effect of 
combining Rht-D1 and Rht-B1 for plant height with an aver-
age of 11% predictive ability increase in comparison with 
a model without fixed effects across all training population 
sizes considered.

Conclusion

Use of historical unbalanced phenotypic data from coop-
erative testing among different southeastern USA breeding 
programs was a reliable and accurate way to incorporate 
genomic selection predictions into a collaborative breeding 
pipeline, even for a highly polygenic trait like grain yield. 
The training population optimization algorithm that reduced 
PEV increased model predictive ability for each trait ana-
lyzed, particularly for small population sizes. We demon-
strated that adding markers associated with large effect genes 
or QTL as fixed effects in the model increased the overall 
model predictive ability for most training population sizes 
evaluated. Our results have implications for the use of train-
ing populations from 50 to 350 individuals. For all traits, 
minimization of PEV in the validation set and/or the addition 
of data for markers closely linked to or representing causal 
polymorphisms in genes affecting the traits had the greatest 
positive impact on predictive ability when training popu-
lation size was between 50 and 150 individuals. In some 
cases, breeders may have genotyped representatives of the 
germplasm to be predicted and would like to target a small 
population of lines as a training set. In this scenario, training 

population optimization and targeted phenotyping of a small 
number of lines for expensive and/or difficult phenotyping 
could be done. Nonetheless, the observed predictive abilities 
for all training population selection methods tended to con-
verge as training population sizes increased to 350 individu-
als. Even if phenotypic records for potential breeding lines 
are highly unbalanced across years or locations, utilizing 
the unbalanced data while incorporating markers associated 
with the trait of interest as fixed effects can lead to high 
prediction ability for important agronomic traits in wheat.
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