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Abstract
Key message  Genomic selection had a higher selection response for FHB resistance than phenotypic selection, while 
association mapping identified major QTL on chromosome 3B unaffected by plant height and flowering date.
Abstract  Fusarium head blight (FHB) is one of the most destructive diseases of durum wheat. Hence, minimizing losses 
in yield, quality and avoiding contamination with mycotoxins are of pivotal importance, as durum wheat is mostly used for 
human consumption. While growing resistant varieties is the most promising approach for controlling this fungal disease, 
FHB resistance breeding in durum wheat is hampered by the limited variation in the elite gene pool and difficulties in 
efficiently combining the numerous small-effect resistance quantitative trait loci (QTL) in the same line. We evaluated an 
international collection of 228 genotyped durum wheat cultivars for FHB resistance over 3 years to investigate the genetic 
architecture and potential of genomic-assisted breeding for FHB resistance in durum wheat. Plant height was strongly posi-
tively correlated with FHB resistance and led to co-localization of plant height and resistance QTL. Nevertheless, a major 
QTL on chromosome 3B independent of plant height was identified in the same chromosomal interval as reported for the 
prominent hexaploid resistance QTL Fhb1, though haplotype analysis highlighted the distinctiveness of both QTL. Com-
parison between phenotypic and genomic selection for FHB resistance revealed a superior prediction ability of the former. 
However, simulated selection experiments resulted in higher selection responses when using genomic breeding values for 
early generation selection. An earlier identification of the most promising lines and crossing parents was feasible with a 
genomic selection index, which suggested a much faster short-term population improvement than previously possible in 
durum wheat, complementing long-term strategies with exotic resistance donors.

Introduction

Durum wheat (Triticum durum (Desf.)) is susceptible to 
pathogenic fungi of the Fusarium genera such as Fusarium 
graminearum and Fusarium culmorum, which cause Fusar-
ium head blight (FHB), one of the most destructive diseases 
of wheat worldwide. FHB leads to significant yield losses, 
but the major concern is the contamination of the crop with 
mycotoxins. Durum wheat is mostly used for human con-
sumption, and the risk of toxin-contaminated grain entering 
the food chain is consequently particularly high. During the 
past few years, FHB on small-grain cereals has significantly 
increased due to changes in crop management practices, 
minimum or reduced tillage and intensification of maize in 
the crop rotation and weather patterns with more humidity 
and warm temperatures during anthesis (McMullen et al. 
2012; Juroszek and von Tiedemann 2015). The increase in 
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demand for pasta products has also led to an expansion of 
durum wheat production to non-traditional growing regions, 
like Austria, Germany and France with more humid climatic 
conditions (UNAFPA 2015). These factors resulted in a 
higher risk of FHB infections, which is reflected by toxin 
contamination found in worldwide bread and pasta wheat 
samples: 57% of 11,022 collected samples were tested posi-
tive for the major mycotoxin deoxynivalenol (DON), while 
7% exceeded a DON content of 750 μg/kg (Schothorst and 
van Egmond 2004). In response to this development, the 
European Commission enacted maximum tolerance levels 
for DON and other Fusarium toxins in cereals and cereal-
based products, including unprocessed durum wheat, bran, 
wheat flour and pasta (EFSA 2007; Visconti and Pascale 
2010).

The development of resistant varieties is the most effec-
tive approach for controlling FHB. Resistance breeding in 
durum wheat has been hampered by the limited genetic vari-
ation in its elite gene pool, with most elite durum wheat cul-
tivars being moderately to highly susceptible (Clarke et al. 
2010; Miedaner and Longin 2014). For example, in an inter-
national collection of 7500 T. durum lines comprising acces-
sions from the International Maize and Wheat Improvement 
Center (CIMMYT) and the International Center for Agricul-
tural Research in the Dry Areas (ICARDA) only five moder-
ately resistant Tunisian lines were detected (Elias et al. 2005; 
Huhn et al. 2012). A number of studies have thus been con-
ducted for finding sources of resistance in wild or cultivated 
relatives, e.g. T. dicoccoides, T. dicoccum and T. carthlicum 
(Buerstmayr et al. 2003; Oliver et al. 2007, 2008; Ruan et al. 
2012; Zhang et al. 2014; Zhu et al. 2016), but compared 
to the reported major FHB resistance QTL in bread wheat 
(Buerstmayr et al. 2009) only few minor-effect QTL have 
been identified in tetraploid wheat (Prat et al. 2014; Zhang 
et al. 2014; Miedaner et al. 2017). The effect of these few 
QTL is though much smaller in comparison to the strong 
QTL detected in hexaploid wheat, such as Fhb1 and Fhb5 
that were discovered in the Chinese cultivar Sumai-3 and 
derivatives (Anderson et al. 2001; Buerstmayr et al. 2002). 
Prat et al. (2017) and Zhao et al. (2018) reported recently 
the successful introgression of the hexaploid resistance QTL 
Fhb1, Qfhb.ndwp-5A and Qfhb.ndwp-7A into durum wheat 
resulting in improved resistance. Nevertheless, durum wheat 
breeders are often very cautious in introducing ‘exotic’ 
resistance genes from wild or cultivated relatives into their 
elite material due to the accompanied linkage drag, which 
hampers their deployment in modern cultivars.

Despite the lack of highly resistant durum lines, the effi-
cient use of ‘native’ resistance sources present in the elite 
durum gene pool by combining the numerous small-effect 
resistance conferring alleles in the same breeding line might 
be another strategy to achieve acceptable FHB resistance 
levels. The common practice to pyramid minor resistance 

QTL by phenotypic selection has been successfully applied 
in European winter wheat breeding programmes (Kollers 
et al. 2013) and can nowadays be accelerated by genomic-
assisted breeding approaches. Given the decreasing costs 
of genotyping and sophisticated statistical methods, several 
new tools are now available to plant breeders for predicting 
complex traits such as FHB resistance in order to support 
selection decisions (Crossa et al. 2017). Marker-assisted 
prediction with few significant marker–trait associations is 
thereby especially suited for traits controlled by a low num-
ber of major QTL, while genomic prediction with a large 
number of genome-wide distributed markers is capable to 
additionally target the multitude of minor QTL present in 
the gene pool (Poland and Rutkoski 2016). Prediction mod-
els are thereby trained on a population of phenotyped and 
genotyped individuals. The estimated marker effects can 
subsequently be used to predict so-called genomic breeding 
values for new untested but already genotyped individuals 
(Whittaker et al. 2000; Meuwissen et al. 2001). The ridge 
regression best linear unbiased prediction (RR-BLUP) and 
its equivalent the genomic best linear unbiased prediction 
(G-BLUP) model are commonly used for practical genomic 
prediction applications in plant breeding, while the latter 
model uses a genomic relationship matrix for estimating 
genomic breeding values directly (Piepho 2009). The appli-
cation of these predictions for a marker-assisted or genomic 
selection for FHB resistance breeding has been demonstrated 
by several studies in hexaploid wheat with the latter show-
ing usually a higher prediction accuracy. Some differences 
were found depending on the studied FHB resistance trait, 
resistance sources used and the presence of major QTL as 
well as the population size that is used for training predic-
tion models (Rutkoski et al. 2012; Arruda et al. 2015, 2016; 
Jiang et al. 2015; Mirdita et al. 2015; Hoffstetter et al. 2016; 
Poland and Rutkoski 2016). Low prediction accuracies for 
FHB resistance (r < 0.2) were obtained for marker-assisted 
selection with few significant markers in an extensive study 
of 2325 European winter wheat lines where no large effect 
QTL could be detected. However, employing genomic selec-
tion increased prediction accuracies to 0.6 (Mirdita et al. 
2015). In addition to increasing the marker number (Jiang 
et al. 2015; Arruda et al. 2015), exploiting prior informa-
tion on correlated traits and modelling major QTL as fixed 
effects have been shown to improve prediction accuracies 
for FHB related traits in hexaploid wheat (Rutkoski et al. 
2012; Arruda et al. 2016), while genetic relationship is also 
an important driving force of genomic prediction for FHB 
resistance both in wheat (Hoffstetter et al. 2016) as well as 
barley (Lorenz et al. 2012; Lorenz and Smith 2015).

Implementation of genomic selection in durum wheat 
breeding programmes has recently gained interest for yield 
and quality traits, with prediction abilities obtained from 
cross-validation varying between r = 0.34 and r = 0.78 
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(Crossa et al. 2016; Fiedler et al. 2017; Sukumaran et al. 
2018; Haile et al. 2018). In a recent study, Miedaner et al. 
(2017) detected many small-effect FHB resistance QTL by 
genome-wide association mapping with a diversity panel 
of winter durum lines in accordance with previous linkage 
mapping studies (Prat et al. 2014). Targeting this trait by 
genomic selection could be a valuable option for improv-
ing FHB resistance in durum wheat besides classical recur-
rent phenotypic selection and give breeders the opportunity 
to identify lines that combine FHB resistance with other 
desired traits such as semolina quality in early breeding 
stages (Fiedler et al. 2017). Such a multi-trait selection 
has though also to take unfavourable relationships between 
agronomic traits and FHB severity into account, as it has, 
for example, been found that shorter plants are often more 
susceptible to FHB and vice versa (Kollers et al. 2013; Mie-
daner and Longin 2014; Miedaner et al. 2017; Schulthess 
et al. 2018). The aims of this study were thus (1) to investi-
gate the genetic architecture of FHB resistance in the elite 
durum wheat gene pool, (2) assess the accuracy when using 
phenotypic and genomic selection strategies for the improve-
ment of FHB resistance in the scope of its negative trade-
off with plant height and (3) get more insight into possible 
genomic selection strategies and their response to selection 
in order to accelerate the genetic improvement of durum 
wheat.

Materials and methods

Plant material and phenotypic data

A diverse population of genetically fixed 228 spring durum 
lines (Triticum durum Desf.) from Northern America, the 
Mediterranean, Central Europe and Australia as well as 
from the CIMMYT international durum wheat breeding 
programme was analysed in this study. The 228 lines were 
chosen from a larger diversity panel of 269 released varie-
ties and advanced breeding lines, which was assembled by 
Maccaferri et al. (2006), to obtain a population that was 
agronomical more homogeneous with regard to plant height 
and had a narrower range in flowering date (Maccaferri et al. 
2011; Liu et al. 2017). The diversity panel was evaluated 
at the experimental station of the Department of Agrobio-
technology in Tulln (16°04, 16′E, 48°19, 08′N and 177 m 
above sea level) in 3 years from 2011 to 2013. All three 
trials were laid out as randomized complete block designs 
with two replicates, and replicates were sown approximately 
1–2 weeks apart resulting in a 1–3 days difference in anthe-
sis between replications. The lines were tested in double 
rows of 1 m length at 17 cm spacing and inoculated with 
the DON-producing Fusarium culmorum isolate Fc91015. 
Spray inoculations were performed individually on each 

plot when 50% of the plants had reached anthesis and were 
repeated 2 days later. Inoculum was applied with a backpack 
sprayer at a conidial concentration of 2.5 × 104 ml−1, which 
corresponded to an amount of 100 ml m−2 of conidia suspen-
sion. A mist irrigation system provided an adequate moisture 
level for 20 h after each inoculation in order to promote 
spore germination and fungal infection (Buerstmayr et al. 
2002). FHB symptoms were visually scored as percentage 
of infected spikelets within each plot on days 14, 18, 22 
and 26 after the particular plot reached the flowering stage. 
The area under the disease progress curve (AUDPC) of the 
four FHB scorings was finally used as an integrated measure 
of FHB severity. Flowering date records were converted in 
days after May 1, and plant height was finally measured in 
centimetre at the end of each season when plants reached 
the ripening stage.

Statistical analysis of phenotypic data

Phenotypic analysis for the population of 228 lines was con-
ducted separately for each trial by trait combination using a 
linear mixed model of the form:

where yik are the phenotypic records for either FHB severity, 
plant height or flowering date and � is the grand mean. The 
effect of the kth replicate rk was modelled as random, and eik 
designates the residual effect with � ∼ N

(
0, ��2

e

)
 . The effect 

gi of the ith line was firstly modelled as random to estimate 
the genetic variance �2

G
 to determine the heritability and 

subsequently fixed to derive best linear unbiased estimates 
(BLUEs) in order to avoid a double-shrinkage when training 
marker-assisted and genomic prediction models. The herit-
ability of each trial by trait combination was determined 
according to Piepho and Möhring (2007):

where �2
G

 is the genetic variance and MVD the mean vari-
ance of a difference of the BLUEs. A one-step approach was 
subsequently employed for the analysis across trials for each 
trait of interest:

where yijk are again the phenotypic records for each trait, 
respectively, � the grand mean, and gi the effect of the ith 
line with � ∼ N

(
0, ��2

g

)
 . The effect of the jth trial tj was 

fixed, while the effect of the kth replicate within the jth trial 
rjk , the genotype-by-trial interaction gtij and the residual 
effect eijk were modelled as random. The across-year herit-
ability was again estimated by formula (2), and BLUEs for 
each trait were obtained by modelling a fixed line effect. All 
phenotypic analyses were conducted using the statistical 

(1)yik = � + gi + rk + eik

(2)h2 = �2
G
∕
(
�2
G
+

1

2
MVD

)

(3)yijk = � + gi + tj + gtij + rjk + eijk
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package ASReml 3 for the R programming environment (R 
Core Team 2017).

Genotypic data and population structure

All 228 lines were genotyped using the 90K iSelect wheat 
SNP assay (Wang et al. 2014). Quality control was applied 
by filtering out markers with more than 10% missing data 
and a minor allele frequency < 10%. The random forest algo-
rithm was employed for a chromosome-wise imputation of 
missing data using the R package missForest (Stekhoven and 
Bühlmann 2012), which led to a set of 12,293 polymorphic 
markers. The pair-wise correlation between markers was 
used as an ad hoc measure of linkage disequilibrium, and 
one marker from each marker pair that had a r2 = 1.0 was 
dropped at random to remove strongly correlated predic-
tor variables for genomic predictions giving a final set of 
8275 markers. The high-density map for tetraploid wheat 
by Maccaferri et al. (2015) was employed to determine the 
chromosomal position of these markers, resulting in an aver-
age coverage of one marker every 0.99 cM. SSR markers for 
the known semi-dwarfing gene Rht-B1 and photoperiodic 
sensitivity locus Ppd-B1 were additionally included in both 
marker subsets.

All 228 durum lines were furthermore genotyped for the 
major resistance QTL Fhb1 identified in hexaploid wheat 
(Anderson et al. 2001). Both exons of the pore-forming 
toxin-like (PFT) gene were analysed which has been found 
as the causal FHB resistance gene behind Fhb1 (Rawat et al. 
2016). Primer sequences for exon 1 and exon 2 of the PFT 
gene were as follows:

exon 1: PFT-1F: 5′ATC​CAG​ACC​GAC​CTC​AAC​GT; 
PFT-1R: 5′CCT​TAC​TCT​CCA​GCT​TGA​GAACT; exon 2: 
PFT-2F: 5′GAA​AAC​AAG​CCA​CGA​CCC​ATTC; PFT-2R: 
5′TGT​CAA​CCA​GCA​GGG​ATA​CAG.

The Fhb1 carrier ‘CM-82036’ derived from the well-
known resistance source Sumai-3 was used as reference for 
the sequence comparison at the PFT locus (Buerstmayr et al. 
2002). To distinguish between PCR failure and null alleles, 
a multiplex PCR protocol was employed that simultaneously 
amplified the respective locus in the Fhb1 interval and the 
transcription elongation factor 1 as reference gene in a single 
PCR with the given primer sequence for the PCR control 
gene TEF-F: 5′ATG​CAC​CAT​GAG​TCT​CTC​C; TEF-R: 5′ 
CTT​GAT​GAC​ACC​AAC​AGC​C. In addition, allelic diversity 
was evaluated for the Fhb1-specific marker TaHRC-KASP 
(Su et al. 2018).

Population structure was analysed by obtaining ances-
try estimates based on a non-negative matrix factorization 
algorithm that has been shown to provide highly accurate 
estimates in populations with fully inbred lines (Frichot 
et al. 2014). The optimal number of subpopulations was 
determined by minimizing a cross-entropy criterion, where 

marker genotypes of 25% of the lines were initially masked 
and subsequently predicted in a cross-validation manner 
with 100 replicates for a range of K = 1–10 subpopulations 
(Frichot et al. 2014). The population structure analysis was 
thereby based on the R package LEA (Frichot and Francois 
2015), while a principal components analysis using either 
the 8275 markers or the BLUEs from the across-trial analy-
sis was also conducted.

Genome‑wide association mapping and marker 
validation

Firstly, we divided the 228 lines into a mapping popula-
tion of 180 lines and a validation population of the leftover 
48 lines. The entire set of 228 lines was therefore clustered 
using the partitioning around medoids method with FHB 
severity, plant height and flowering date from the across-trial 
analysis as input variables. A predetermined number of 48 
clusters were set, and the lines that constituted the medoids 
were subsequently sampled into the validation population. 
The clustering aimed to sample a diverse sample of lines 
representing the entire spectrum of phenotypic values with 
regard to FHB severity, plant height and flowering date into 
this validation population. Genome-wide association map-
ping was afterwards conducted within the mapping popula-
tion of 180 lines based on a linear mixed model following 
Yu et al. (2006):

where � is an N × 1 vector of BLUEs obtained in the phe-
notypic analysis. The fixed effects matrix � and its corre-
sponding vector � modelled the grand mean, while � was a 
vector for the marker effect and � the incidence matrix of 
+ 1, − 1, and 0 coding for homozygous major, minor and 
heterozygous, respectively. Population structure and familial 
relationship were considered by modelling principal com-
ponents � with a corresponding matrix � as fixed effects as 
well as integrating an N × 1 vector � of random line effects 
with the genetic variance �2

G
 and � ∼ N

(
0,��2

G

)
 and ran-

dom effect design matrix � into the model. The residual 
variance �2

e
 finally followed � ∼ N

(
0, ��2

e

)
 . The necessary 

genomic relationship matrix � was computed according to 
Endelman and Jannink (2012):

where � is a centred N × M marker matrix of the i lines 
with Wik = Zik + 1 − 2pk and pk being the allele frequency 
at the kth locus. A preliminary analysis revealed though no 
appreciable effect of modelling principal components (Fig. 
S1) with the given population structure (Fig. S4); thus, for 
all subsequent genome-wide association mapping analyses, 
model (4) was reduced to:

(4)� = �� +�� + �� + �� + �

(5)� = ��T∕2�
(
pk − 1

)
pk
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retaining the above-described designations and assumptions. 
A first analysis was carried out with all 180 lines in the 
mapping population with the BLUEs from the across-trial 
analysis (3), and marker–trait associations that exceeded an 
exploratory threshold of − log10 p value = 3 were declared 
significant, while the most promising marker per locus was 
chosen by a stepwise regression based on Akaike’s informa-
tion criterion. A permutation test was subsequently carried 
out by randomly reshuffling the phenotypes 1000 times in 
order to obtain a null distribution that was used to determine 
an experiment-wise significance threshold with α ≥ 5% for 
each trait. The Bonferroni correction resulted in a thresh-
old of − log10 p value = 5.22 at α ≥ 5% and is reported as 
the most conservative significance threshold in this study. 
Finally, all markers passing the exploratory significance 
threshold were fitted simultaneously in a linear model for 
each trait separately in the decreasing order of their − log10 
p value beginning with the strongest marker–trait association 
(Würschum et al. 2015). The sum of squares of an analysis 
of variance (ANOVA) from the linear model was then used 
to compute the proportion of explained genetic variance by 
�G(%) = 100 ×

(
SSM∕SSTotal

)
×
(
h2
)−1 with SSM being the 

sum of squares for the individual marker, SSTotal the total 
sum of squares and (h2)−1 the inverse of the heritability. 
Genome-wide association mapping was conducted with the 
R package sommer (Covarrubias-Pazaran 2016).

Comparison of marker‑assisted, genomic 
and phenotypic prediction

Following genome-wide association mapping, there was some 
interest in comparing the potential of marker-assisted selection 
based on the found marker–trait associations with genomic 
and phenotypic selection. Therefore, a training population of 
N = 160 lines was sampled from the mapping population to 
predict the performance of V = 40 lines sampled from the vali-
dation population in a cross-validation manner. The sampling 
was repeated 50 times, and prediction models were trained 
with data from one trial to predict the validation population 
in the two other trials at a time. Hence, a cross-validation that 
sampled both genotypes and environments was applied for the 
comparison of the different prediction models. Marker-assisted 
selection was conducted by using the three most significant 
markers for each trait with marker effects being estimated by 
a ridge regression best linear unbiased prediction (RR-BLUP) 
model for each trait separately:

where � is a N × 1 vector of BLUEs from the phenotypic 
analysis, � is a vector of fixed effects and � its correspond-
ing design matrix. � is a N × M matrix that contained the 

(6)� = �� +�� + �� + �

(7)� = �� + �� + �

marker coding for the M candidate markers of each trait, 
respectively, and the random marker effects were assumed to 
follow a normal distribution � ∼ N

(
0, ��2

u

)
 with variance �2

u
 

and � ∼ N
(
0, ��2

e

)
 . Genomic breeding values for a genomic-

based selection were obtained from a genomic best linear 
unbiased prediction (G-BLUP) model:

where � is again the vector of phenotypic records, while � is 
an (N + V) × 1 vector of line effects with the genetic variance 
�2
G

 and � ∼ N
(
0,��2

G

)
 as well as the random effect design 

matrix � . The fixed effect matrix � and the corresponding 
vector � modelled merely the grand mean in the G-BLUP 
model, whereas in the weighted genomic best linear unbi-
ased prediction (W-BLUP) model for an enhanced genomic-
based selection also contained a fixed effect for the most 
promising candidate marker from genome-wide association 
mapping in the mapping population (Bernardo 2014; Zhao 
et al. 2014). In these cases, the genomic breeding value of 
each line was estimated by:

with gi being the random genetic effect of the ith line, uj the 
estimated effect of the jth marker, and xij being the marker 
allele of the ith line at the jth marker. Model (8) was also 
employed to estimate kinship enhanced phenotypic breed-
ing values (K-BLUP) assuming that phenotypic records of 
the selection candidates in the validation population were 
already available for a genomic-assisted selection (Michel 
et al. 2017). The prediction ability of all genomic models 
and phenotypic selection was assessed by the correlation 
between breeding values and phenotypic records with 
BLUEs obtained from the single trial analysis by model (1). 
Ridge regression models were fitted with rrBLUP (Endel-
man 2011), while all other models in this section were based 
on sommer (Covarrubias-Pazaran 2016) for R (R Core Team 
2017).

Multi‑trait prediction models and genomic selection 
indices

A further option to improve the accuracy of genomic breed-
ing values would be the application of phenotypic impu-
tation (Jia and Jannink 2012) or trait-assisted selection 
(Fernandes et al. 2017) with multi-trait genomic prediction 
models containing pre-existing information of one or several 
correlated traits that could be measured earlier, easier or 
more cost-efficient than the main trait of interest. Hence, the 
genomic relationship matrix � was utilized again for fitting a 
multi-trait mixed linear model, which contained plant height 

(8)� = �� + �� + �

(9)GEBVi = gi +

n∑
j=1

xijuj
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or flowering date as well as both as correlated traits and the 
FHB severity as main trait of interest:

where �
t
 is a N × t vector of BLUEs for t traits obtained in 

the phenotypic analysis, �
t
 is the vector of N × t line effects 

with the corresponding random effect design matrix �
t
 and 

�
t
∼ MVN(0,

∑
g ⊗�) with the completely unstructured 

variance–covariance matrix 
∑

g of the form:

where �2
gFHB

 , �2
gPH

 and �2
gFD

 are the genetic variance of the FHB 
severity, plant height and flowering date, respectively, and 
values on the off-diagonal genetic represent covariances 
between the traits. The variance of the residual effect fol-
lowed �

t
∼ MVN

�
0,
∑

e ⊗�
N

�
 where �

N
 is an identity matrix 

of dimension N × N and 
∑

e the completely unstructured vari-
ance–covariance matrix for the residual effect analogues to 
(11) though with residual variances and covariance between 
traits. The fixed effect part �

t
�
t
 of model included a fixed 

effect �
t
 with three levels for the respective traits. The matri-

ces 
∑

g and 
∑

e were accordingly modified if plant height, 
flowering date or both traits were assumed to be known 
beforehand for lines in the validation population. A training 
population of N = 160 lines was again sampled from the 
mapping population to predict the performance of V = 40 
lines sampled from the validation population for an across-
trial prediction as beforehand, while the pre-existing infor-
mation about plant height and flowering date came only from 
the trial that was employed for training the multi-trait predic-
tion models.

The obtained genomic breeding values were employed 
to conduct a simultaneous selection for multiple agronomic 
traits and FHB resistance, which might often be challenging 
especially due to the frequently observed negative correlation 
between FHB severity and plant height. A genomic selection 
index was calculated by utilizing the weights of a desired gain 
index that was modified to a restriction index with three traits 
to account for this negative trade-off (Pesek and Baker 1969, 
1970):

where � are the index weights, � is a vector of desired gains 
given by � =

(
aFHB, aPH, aFD

)T , and �−1 is the inverse of 
the genotypic variance–covariance matrix between the 
three traits estimated by the multi-trait model (12). Aim-
ing to improve FHB resistance and holding the other two 
traits constant, i.e. identifying lines that have a high FHB 
resistance relative to their plant height and heading date, the 

(10)�
t
= �

t
�
t
+�

t
�
t
+ �

t

(11)

⎛
⎜⎜⎜⎝

�2
gFHB

�gFHB;PH
�gFHB;FD

�gFHB;PH
�2
gPH
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desired gains for FHB severity, plant height and flowering 
date were aFHB = 1 , aPH = 0 and aFD = 0 , respectively. The 
matrix � was alternatively derived from the Pearson cor-
relation between the genomic breeding values of the three 
involved traits in order to investigate an alternative to the 
calculation of the variance–covariance matrix from a multi-
trait model, which has a high computational demand. Both 
genomic selection indices with a matrix � derived either 
from a multi-trait model or the Pearson correlation between 
genomic breeding values were furthermore calculated based 
on all lines in the respective training and validation popu-
lation, which was compared with a variant that calculates 
genomic selection indices solely with lines in the validation 
population that are relevant for pending selection decisions. 
The ability to predict FHB severity was assessed by the cor-
relation between multi-trait predictions and genomic selec-
tion indices with the observed phenotypic values obtained 
from the across-trial analysis, while the relationship of these 
predictors with plant height and flowering date was also 
recorded to measure the correlated response to selection. 
Linear mixed models for multi-trait prediction and genomic 
selection indices were again fitted with the R package som-
mer (Covarrubias-Pazaran 2016).

Phenotypic and genomic selection strategies

Phenotypic and genomics-assisted selection for FHB resist-
ance was subsequently compared in several simulated selec-
tion experiments featuring three selection strategies that 
might be applied in a practical breeding programme (Fig. 1):

(1)	 One-stage single-trait selection with extensive dis-
ease phenotyping, where all selection candidates are 
either phenotyped in disease nurseries or genomically 
selected without phenotyping.

(2)	 Two-stage single-trait selection, where half of the selec-
tion candidates are discarded in the first stage, while 
testing in disease nurseries and final selection decisions 
are conducted among the preselected candidates.

(3)	 Two-stage multi-trait selection for all three investigated 
traits (FHB, plant height and flowering date) simul-
taneously, where half of the selection candidates are 
discarded in the first stage either by phenotypic culling 
or genomic index selection, and preselected candidates 
are retested in disease nurseries for conducting final 
selection decisions.

A small-scale durum breeding programme was assumed 
for the purpose of this study, where the budget allows assess-
ing FHB resistance only in one artificially inoculated field 
trial each year. Separate training population and selection 
populations were 50 times sampled for all simulated selec-
tion experiments, where the former comprised, as in the 
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assessment of the prediction abilities, N = 160 lines from 
the mapping population and the latter V = 40 lines that were 
sampled from the validation population. It should be men-
tioned that these numbers were seen as appropriate given the 
exploratory nature of this study, although training and vali-
dation population sizes are generally much larger in applied 
breeding programmes.

Genomic-based selection relied on a G-BLUP model with 
a training population that was phenotyped in one trial/year, 
which was designated as the prediction year. Phenotypic 
selection was on the other hand based on phenotypic data 
of the selection candidates from a second trial/year desig-
nated as the selection year. Genomic-assisted selection was 
finally based on the combination of data obtained in the pre-
diction and selection year, where selection was conducted 
with kinship enhanced phenotypic breeding values derived 
from model (10) with a fixed trial/year effect. FHB resist-
ance information about lines in the selection population was 
assumed absent in the prediction year, while it seemed rea-
sonable to assume that phenotypic information about plant 
height and flowering date would already be available in early 
generations when selection candidates are genotyped.

Given this framework, several basic approaches were ini-
tially compared for the one-stage single-trait selection with 
extensive disease phenotyping:

	(1.1)	 Phenotypic selection and genomic-assisted selection 
among all 40 selection candidates.

	(1.2)	 Genomic-based and enhanced genomic-based selec-
tion among all 40 selection candidates, where the 
most promising marker for FHB severity was included 
as fixed effect into the latter.

Moreover, the two-stage single-trait selection strategy 
aimed to reflect a typical scenario in many line breeding 

programmes where genomic selection is conducted in 
parallel to preliminary or observation yield trials (Michel 
et al. 2017; Gaynor et al. 2017). Phenotypic information 
about FHB severity is often not available in this early 
stage of selection, and phenotyping for FHB resistance is 
prolonged to advanced breeding stages where the breed-
ing material is screened in disease nurseries in parallel 
to multi-environment yield trials. Selection has, however, 
to be conducted in both stages of variety development in 
such cases due to the limited resources of breeding pro-
grammes, and to simulate this breeding scheme, lines were 
again sampled in a training (160) and selection population 
(40) with individual trials 2011–2013 being designated as 
prediction, selection and validation year. Three approaches 
that involve either none or a preselection by culling were 
compared for this strategy:

	(2.1)	 Phenotypic selection with culling in the first stage, i.e. 
the prediction year, where no FHB resistance informa-
tion for lines in the selection population was available 
yet. Among the 40 selection candidates, the 10 earli-
est and latest lines, respectively, were culled and the 
leftover 20 lines were ‘advanced’ for FHB resistance 
phenotyping in the selection year.

	(2.2)	 Genomic-assisted selection with culling of the 20 
most susceptible selection candidates according to 
genomic-based breeding values, followed by genomic-
assisted selection among the preselected lines in the 
selection year.

	(2.3)	 Genomic-based and enhanced genomic-based selec-
tion among all selection candidates as described in 
1.2).

The flowering date served as a representative ‘neutral’ 
trait as it did not display a strong correlation with FHB 

Fig. 1   One-stage and two-
stage selection strategies 
using phenotypic (PHENO), 
genomic-assisted (GAS) or 
genomic-based (GS) selection 
using the available information 
from the validation population 
(VP) as well as from the train-
ing population (TP). Phenotypic 
selection in the first year of a 
two-stage selection strategy was 
based only on flowering date or 
plant height, while in the other 
methods selection was con-
ducted with genomic breeding 
values for all involved traits
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severity in the investigated durum wheat population. Earli-
ness is furthermore a general aim in many durum breeding 
programmes aside from many other traits like yellowness, 
protein content or yield components that might play an 
important role in early generation selection.

The simultaneous selection for multiple agronomic traits 
and FHB resistance could accordingly be challenging, espe-
cially due to the often-observed negative correlation between 
FHB severity and plant height. Hence, the merit of genomic 
selection indices that took this issue into consideration was 
investigated in the framework of the two-stage multi-trait 
selection strategy by:

	(3.1)	 Phenotypic selection with culling in the first stage, i.e. 
the prediction year, where no FHB resistance informa-
tion for lines in the selection population was available 
yet. Among the 40 selection candidates, the 10 small-
est and tallest lines, respectively, were again culled 
and the leftover 20 lines were ‘advanced’ for FHB 
resistance phenotyping in the selection year.

	(3.2)	 Genomic-assisted index selection with culling of 
the 20 most susceptible selection candidates accord-
ing to a genomic-based selection index, followed by 
genomic-assisted index selection among the prese-
lected lines in the selection year.

	(3.3)	 Genomic-based and enhanced genomic-based selec-
tion with a genomic selection index among all selec-
tion candidates as described above.

The culling of the smallest and tallest lines was, as a 
breeder would expect that lines with a very short stature 
will show also a strong susceptibility to FHB, while tall-
statured plants will most likely be more resistance to FHB 
but on the other hand possess less tolerance against lodging. 
Genomic index selection was conducted with the previous 
described restriction index (12) aiming to improve FHB 

resistance and holding the other two traits constant, while 
phenotypic records for plant height and flowering date were 
again assumed to be already available in the prediction year 
used for model training. The final selection decision for all 
selection strategies was undertaken by selecting the 6–20 
most resistant lines identified by each of the above-described 
approaches, in which the left-out third year, i.e. the valida-
tion year, was employed to determine the response to selec-
tion by:

where RRel i is the relative response to selection for the ith 
trait, �i is the population mean of the selection population 
in the validation year, and �Sel i is the mean of the selected 
population of 6–20 best performing lines. Although selec-
tion was based only on FHB severity, the indirect response 
to selection for plant height and flowering date was also 
assessed. Selection was furthermore conducted for all com-
binations of trials/years, thus each trial/year served once as 
training, selection and validation year within each of the 50 
replicates of random sampling.

Results

Quantitative genetic parameters and trait 
correlations

A medium to high heritability was obtained for all investi-
gated traits both in the analysis of individual trials and in 
the across-trial analysis highlighting a sufficient data quality 
for further phenotypic and genomic analyses (Table 1). Fol-
lowing the respective heritability estimates, the correlation 
among trials was highest for plant height (r = 0.79–0.82), 
followed by flowering date (r = 0.51–0.59), and lowest for 
FHB severity (r = 0.44–0.54) (Table S1). A comparatively 

(13)RRel i =
(
�Sel i − �i

)
∕�i

Table 1   Mean, range, variance 
components and heritability 
of FHB severity (AUDPC), 
plant height (cm) and flowering 
date (days after May 1) for the 
individual trials and across the 
entire trial series 2011–2013

Genotypic variance ( �2

G
 ), genotype × trial interaction variance ( �2

GT
 ), residual variance ( �2

e
 ), heritability (h2)

Trait Trial �2

G
�2

GT
�2

e
h2 Min Mean Max

FHB severity 2011 27,192 36,211 0.60 225 811 1303
2012 9306 13,954 0.57 358 725 1030
2013 23,745 35,087 0.57 207 783 1180
Series 16,501 4859 26,125 0.79 309 739 1094

Plant height 2011 26.00 9.86 0.84 55 66 90
2012 25.40 17.28 0.75 55 68 90
2013 21.85 8.47 0.84 53 68 90
Series 25.29 0.00 10.81 0.93 55 67 89

Flowering date 2011 0.82 1.56 0.51 26 30 33
2012 1.61 2.68 0.54 30 33 38
2013 2.64 1.59 0.77 38 41 46
Series 1.27 0.35 1.79 0.81 32 34 38



977Theoretical and Applied Genetics (2019) 132:969–988	

1 3

narrow range was observed for flowering date given a diver-
sity panel that was constructed from a worldwide collection 
of durum lines, which was, however, expected due to the 
preselection of lines with regard to agronomically homo-
geneous properties under Central European conditions. 
The range for plant height in the retained lines was larger 
and had a maximum of 90 cm due to the set culling level 
when preselecting lines for further analyses in this study. 
A large genetic variance was estimated using the AUDPC 
as FHB severity measure, which was four times larger than 
the genotype-by-trial interaction variance though smaller 
than the residual variance (Table 1) suggesting the need of 
FHB experiments to be conducted in replicates as well as 
several environments to obtain high quality phenotypic data 
(Fuentes et al. 2005).

The correlation between the AUDPC and the last FHB 
scoring was high (r = 0.93) (Fig. S2A). The heritability of 
the latter trait was though with h2 = 0.73 slightly lower than 
the heritability of the AUDPC (h2 = 0.79), which further 
underlined the merit of repeated scorings during the field 
season. Despite the fact that the range of FHB severity was 
rather large, no resistant lines could be identified as their 
performance varied between medium to highly susceptible. 
Lines with Canadian origin displayed thereby the best per-
formance, but also showed the highest plant height under 
Central European conditions (Fig. S3). They were directly 
followed by lines developed in the USA whose plant height 
was on average lower, whereas a large range was observed 
for the other origins though with strong similarity in the 
average plant height across origins. Considering the entire 
panel, a negligible correlation was found between flowering 
date and FHB severity based on BLUEs from the across-
trial analysis (r = 0.09 with p value = 0.175) (Fig. S2B), 
while the correlation between plant height and FHB sever-
ity was more pronounced for the entire panel (r = − 0.29 with 
p value < 0.001) though dependant on the presence of the 
semi-dwarfing allele at the Rht-B1 locus (Fig. S2C).

Phenotypic and genotypic population structure

Principal component analysis did not reveal a clear popu-
lation structure neither on the phenotypic level based on 
Euclidean distance between standardized phenotypic data 
for plant height, flowering date and FHB severity nor geno-
typically based on genome-wide distributed markers (Fig. 
S4). Lines from ICARDA and CIMMYT were closely 
related to each other, highlighting most likely the close col-
laboration and germplasm exchange between these institu-
tions. Lines with other origins were more widely spread, 
and especially lines from Italy could be found throughout 
the target genetic space. Estimation of ancestry coefficients 
showed accordingly an admixture between origins, while 
in the STUC​TUR​E-like analysis (Frichot et al. 2014) with 

three subpopulations, two groups were again dominated by 
lines from CIMMYT and ICARDA, and the other group 
contained most of the lines with origin in Canada, the USA, 
Austria and France (Fig. 2). This differentiation was retained 
when refining the resolution to six subpopulations, where 
lines in subpopulations I–IV and VI contained mostly lines 
with Mediterranean origin and subpopulation V lines with 
North American, Western and Central European countries 
of origin. The latter subpopulation showed thereby on aver-
age the lowest FHB severity (AUDPC = 642), subpopulation 
IV the highest (AUDPC = 808), and the other subpopula-
tions were on average rather equal (AUDPC = 730–749). 
A Mantel test of the phenotypic and genomic relationship 
matrix revealed a significant correlation of both matrices 
with r = 0.31, hence lines that were sampled into the valida-
tion population by the partitioning around medoids cluster-
ing represented the whole range of phenotypes in the panel 
were equally spread over the entire target genetic space and 
came from all designated origins (Fig. S4). Therefore, they 
represented the worldwide durum germplasm collection well 
and were regarded as suitable for validating marker–trait 
associations found by genome-wide association mapping.

Genome‑wide association mapping and marker 
validation

Seventeen marker–trait associations for FHB severity, plant 
height and date of anthesis were detected above the explora-
tory threshold of − log10 p value = 3 using the BLUEs from 
across-trial analysis of 180 durum wheat lines and 8275 
markers (Table 2, Table S2). A clear marker–trait asso-
ciation was found for the semi-dwarfing QTL Rht-B1 on 
chromosome 4B (Fig. 3) as well as one additional locus for 
plant height on chromosome 5A. Both of these detected QTL 
passed the significance threshold determined by the permu-
tation test and could furthermore be validated using the 48 
lines that were entirely left out from the mapping process 
(Table S3). The marker–trait association with Rht-B1 was 
additionally the only one that passed the conservative Bon-
ferroni corrected significance threshold in the entire dataset. 
Five markers on chromosomes 1B, 2A, 2B, 4A and 4B could 
be identified for flowering date, which had minimal effects in 
the mapping as well as in the validation population and did, 
moreover, only pass the exploratory threshold. It was evi-
dent that all plant height associated markers had an impact 
on FHB resistance. Accordingly, the semi-dwarfing alleles 
at Rht-B1 and the 5A locus reduced plant height, but had at 
the same time a strong negative influence on FHB resistance. 
Their allele frequencies were anyhow high in the diversity 
panel of released varieties and breeding lines (Table 2), 
which could also be expected in modern elite germplasm 
due to necessary increase in resistance to lodging in durum 
wheat breeding (De Vita et al. 2007).
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Fig. 2   Population structure 
inferred by estimating indi-
vidual ancestry coefficients with 
K = 3 (cross-entropy = 0.527) 
and K = 6 (cross-
entropy = 0.486) subpopula-
tions. Lines in subpopulations 
I–IV and VI contained mostly 
lines with Mediterranean origin, 
while subpopulation V was 
dominated by lines with North 
American, Western and Central 
European origin

Table 2   Chromosomal position, 
QTL detection frequency and 
additive effect of markers 
associated with Fusarium head 
blight severity (FHB), plant 
height (PH) and flowering 
date (FD) in the mapping and 
validation population

‡ − log10(p value) with high-confidence marker–trait associations being underlined
a The trait for which the marker was detected in the mapping population
b Additive effect in the entire population of 228 lines
c Frequency of lines carrying the favourable allele (%)
d Explained genetic variance (%)

Marker Chrom. Position Traita p‡ Add. eff. populationb FAc ρG
d

FHB PH FD

IWB72690 1A 1.7 FHB 3.15 − 23.8 − 1.3 − 0.2 0.29 9.7
IWB36357 1B 82.7 FD 3.11 18.3 0.6 − 0.5 0.89 5.3
IWB32396 2A 101.6 FD 3.16 − 47.9 0.3 − 0.8 0.86 19.1
IWB46663 2A 109 FHB 3.23 − 67.6 0.9 0.2 0.32 1.8
IWB44254 2A 158.7 PH 3.14 29.2 − 1.1 0.4 0.88 0.5
IWB36028 2A 181.2 PH 4.47 70.2 − 2.6 0.0 0.87 4.6
IWB24986 2A 197.6 FHB 3.8 − 84.9 1.4 0.1 0.13 5.7
IWB40861 2B 53.4 FD 3.07 21.5 − 0.9 − 0.6 0.57 11.9
IWB5439 2B 172.3 FHB 3.3 − 52.7 1.6 0.1 0.26 4.9
IWB64968 3B 8.0 FHB 4.55 − 65.8 0.8 0.0 0.35 17.8
IWB36517 3B 92.2 PH 3.14 8.9 − 1.4 − 0.1 0.24 7.8
IWB24360 4A 105.5 FD 3.02 − 7.3 − 0.8 − 0.7 0.11 5.4
IWB74227 4B 2.8 FD 3.06 42.9 − 1.7 − 0.7 0.87 10.3
IWB56078 4B 32.9 PH 5.56 32.1 − 2.1 0.0 0.81 11.3
IWA1670 5A 188.9 PH 4.74 49.7 − 2.3 0.3 0.81 8.4
IWB70133 6A 124.8 FHB 3.19 − 42.3 − 0.4 − 0.4 0.83 3.8
IWB66697 6B 155.1 FHB 4.62 − 64.9 1.5 0.1 0.11 9.0
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Seven loci were found to improve FHB resistance in 
the international durum wheat collection at hand that were 
mapped to positions on chromosomes 1A, 2A, 2B, 3B, 6A 
and 6B. Merely, two marker–trait associations on chromo-
somes 3B and 6B were retained when filtering according 
to the permutation test based significance threshold of 
− log10 p value = 4.33 for high-confidence markers. Both 
had pronounced additive effects in the mapping population, 
which could also be confirmed for the 3B QTL in the vali-
dation population (Table S3). The 3B QTL-linked marker 
IWB64968 had a minimal effect on plant height (addi-
tive effect of 0.8) and no effect on flowering date, in the 
entire population, whereas the 6B QTL-associated marker 
IWB66697 had a pronounced positive influence on plant 
height (additive effect of 1.5) analysing all 228 lines. The 
contradicting results for the 6B FHB resistance QTL on 
plant height between the mapping and validating population 
were most likely due to the low resistance allele frequency of 
11% and might be the result of a sampling effect (Table S3).

The major resistance QTL in this durum germplasm 
mapped to chromosome 3B between the SSR markers 
Xbarc133 and Xgwm493 that designates the confidence 
interval of the prominent resistance QTL Fhb1 in hexaploid 
wheat (Buerstmayr et al. 2009; Maccaferri et al. 2015). Fhb1 
has been partly elucidated, and a pore-forming toxin-like 
gene (PFT) was identified to confer resistance against fun-
gal spread (Rawat et al. 2016). Consequently, to investigate 
the presence of Fhb1 in durum wheat the entire panel was 
analysed for the PFT gene and the Fhb1-specific marker 
TaHRC-KASP (Su et al. 2018) (Table S2). All durum lines 
carried the non-Fhb1 allele for the marker TaHRC-KASP, 
and all but two lines exhibited the null allele for the PFT 
gene. Surprisingly only the susceptible Syrian landrace 
variety ‘Haurani’ carried the same functional PFT allele as 
the Fhb1 reference ‘CM-82036’. The sequence comparison 

between Haurani and ‘CM-82036’ revealed a single SNP 
resulting in a synonymous mutation (C < T; S168S), whereas 
for the second PFT carrier, the susceptible French durum 
variety Exeldur, a missense mutation in the second exon of 
the gene was detected (A < T; M140K). In conclusion, the 
detected FHB resistance QTL on chromosome 3B in durum 
wheat is dissimilar to Fhb1, and only one susceptible line 
possessed the functional PFT gene. Nevertheless, the found 
marker–trait association on chromosome 3B deserves further 
attention due to the generally narrow genetic variation of 
FHB resistance in durum and might be among others a use-
ful resource to support genomic breeding strategies.

Single‑trait and multi‑trait genomic prediction

The detected marker–trait associations for FHB severity and 
the other traits were accordingly tested for their merit in a 
marker-assisted selection, which was parallelly compared 
with phenotypic and genomic selection using the entire set 
of 8275 genome-wide distributed markers. Predicting the 
validation population that was left out from the marker dis-
covery was feasible using the previously found marker–trait 
associations, although genomic selection was clearly supe-
rior to marker-assisted selection for most traits especially 
when enhanced by modelling one major QTL as fixed effect 
(Fig. 4). For this purpose, a larger weight was given to the 
identified FHB resistance marker on chromosome 3B, while 
the 5A marker was chosen for plant height due to its equal 
or even larger effect than the Rht-B1 locus among the high-
confidence markers, and the 2A marker for flowering date as 
it was the most reliable marker–trait association for this trait 
according to the p value. The relative advantage of enhanced 
genomic-based versus marker-assisted selection in terms 
of prediction ability was accordingly 21% for FHB sever-
ity, 38% for plant height and 20% for flowering date. Both 

Fig. 3   Manhatten plots for genome-wide association mapping of FHB 
severity (a), plant height (b) and flowering date (c) where the high-
confidence marker–trait associations are highlighted with red arrows. 
The exploratory significance threshold of − log10 p value = 3 is indi-

cated by the dotted line, the significance threshold determined by 
permutation by the dashed line, and the Bonferroni corrected signifi-
cance level by the solid line
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approaches were, however, far inferior to phenotypic selec-
tion based on BLUEs, while using the marker information 
to model relationship between lines in a genomic-assisted 
selection gave some increase in prediction ability of 4% for 
FHB severity and 8% for flowering date but had no effect on 
the prediction of plant height.

Aside from upweighting major QTL in the prediction of 
FHB severity, phenotypic imputation or trait-assisted selec-
tion with prior information about plant height and flower-
ing trait was tested as a convenient option to increase the 

prediction ability as both traits are generally early available 
in a breeding programme. The employed multivariate model 
could accordingly increase the prediction ability for FHB 
severity from r = 0.39 to r = 0.41 (Fig. 5a). The negative 
trade-off between genomic breeding values for FHB severity 
and observed phenotypic values, i.e. BLUEs for plant height, 
was though strongly inflated from r = − 0.26 to r = − 0.43 
by this method, which could be partially compensated by 
employing a genomic selection index with restrictions 
(Fig. 5b). A negligible difference could be observed between 

Fig. 4   Comparison between 
phenotypic, genomic-assisted, 
marker-assisted, genomic-based 
and enhanced genomic-based 
selection with upweighting 
major QTL using the mapping 
population for model training 
and predicting the validation 
population in a cross-validation 
across trials

Fig. 5   Comparison between single-trait (ST-GP) and multi-trait pre-
dictions (MT-GP) using prior information about plant height (PH) 
and flowering trait (FD) when estimating genomic breeding values for 
FHB severity (a) with data from the across-trial analysis. Genomic 

index selection for FHB severity based either on a variance–covari-
ance matrix involving all lines (ALL) or merely the selection candi-
dates (SEL) (b)
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when the necessary variance–covariance matrix for calculat-
ing the index was derived by involving all lines or merely the 
selection candidates. However, the negative trade-off could 
only partially be compensated with the parameters obtained 
from a multi-trait model (r = − 0.08). Using a matrix based 
on Pearson correlations between genomic breeding values 
enabled on the other hand a stronger adjustment for plant 
height (r = − 0.05) that was though, as expected, accompa-
nied by a reduction in prediction ability for FHB severity 
(r = 0.33).

Genomic breeding strategies

Given the large advantage of phenotypic over genomic-
based selection in terms of prediction ability (+ 40% for 
FHB severity), several simulated selection experiments 
were conducted to further test under which circumstances 
genomic selection could still be useful when breeding for 
FHB resistance in durum. The selection among a randomly 
sampled set of 40 lines from the validation population 
showed a larger response for FHB severity by phenotypic 
than genomic-based selection in the selection strategy with 
extensive disease resistance phenotyping, reflecting the 
higher prediction ability of the former method (Fig. 6a). 
Nevertheless, genome-wide marker information could also 
be employed to improve phenotypic selection, which led 
though merely for the highest selection intensity to a higher 
response to selection. Enhancing prediction models by inte-
grating the marker IWB64968 on chromosome 3B as fixed 
effect into the prediction model gave on the other hand a 

constant relative advantage over the basic genomic breeding 
values, which was though still inferior to phenotypic selec-
tion in this one-stage single-trait selection.

The second simulated selection experiment aimed to 
reflect the need of a two-stage selection with preselection 
in many breeding programmes. Despite a lower prediction 
ability, the results showed a strong advantage of genomic 
over phenotypic selection due to earlier available informa-
tion and even a genomic-based selection gave an average 
advantage of 43% over the two-stage phenotypic selection 
where no FHB phenotypic information was available in first 
stage (Fig. 6b). Markedly, a genomic-based preselection of 
lines followed by genomic-assisted selection in the disease 
nursery showed a relatively seen 80% higher response to 
selection than feasible by phenotypic selection. The indirect 
response to selection for flowering date was negligible as 
expected by the low phenotypic correlation with FHB sever-
ity, underlining its role as a ‘neutral trait’ in this study (Fig. 
S2B). The indirect response to selection for plant height was 
on the other hand quite eminent for all selection methods, 
which would result in the selection for taller plants when 
aiming to increase FHB resistance due to the negative cor-
relation between FHB severity and plant height (Fig. 6b).

Employing a genomic selection index was able to com-
pensate for this undesirable indirect response to plant height; 
it resulted though also in a lower response to selection for 
FHB severity (Fig. 6c). Phenotypic culling in the first stage 
of the two-stage selection strategy for plant height resulted 
even in a decrease below the population average for this 
trait; however, a pronounced response to FHB severity was 

Fig. 6   Comparison between phenotypic, genomic-based, genomic-
assisted and marker-assisted selection strategies for FHB sever-
ity (solid line) and plant height (dashed line). One-stage single-trait 
selection with extensive disease phenotyping (a), two-stage single-
trait selection where half of the selection candidates are discarded 

in the first stage by either phenotypic selection for flowering date or 
genomic-based selection for FHB severity (b) and two-stage multi-
trait selection where half of the selection candidates are discarded in 
the first stage either by phenotypic culling for plant height or genomic 
index selection (c)
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merely achieved for selection intensities larger than 30%, i.e. 
12 out of 40 lines. Genomic-based index selection among 
all 40 selection candidates with advancing merely the most 
promising lines for testing in a disease nursery followed by a 
genomic-assisted index selection in the second stage showed 
finally the highest performance among all methods in this 
multi-trait two-stage selection scenario. Nevertheless, such a 
preselection resulted though in slightly less response in com-
parison with extensive phenotyping highlighting both the 
potential and limitations of a genomic-based preselection.

Discussion

A major QTL for FHB resistance in durum wheat 
on chromosome 3BS

An international collection of 228 cultivars and breeding 
lines was evaluated under high FHB disease pressure in 
artificially inoculated and humidity controlled field trials 
over three consecutive years to further explore the genetic 
basis of FHB resistance in the elite durum wheat gene pool. 
Although a lack of highly resistant material was evident, 
FHB severity levels showed a broad variation—between 
moderately resistant, as revealed for the North Dakota vari-
ety ‘Belzer’ with a disease severity of about 35% diseased 
spikelets and highly susceptible with 90% infected spikelets 
for the Spanish line ‘Artena’. Plant height strongly influ-
enced FHB severities and genome-wide association mapping 
detected the two main contributors on chromosome 5A and 
the semi-dwarfing gene Rht-B1b. The 5A plant height QTL 
mapped in proximity of the gibberellin-responsive dwarfing 
gene Rht12 originating from the gamma ray-induced winter 
wheat mutant ‘Karcagi 522M7K’ (Viglasi 1968). Rht12 is 
located distally on the long arm of chromosome 5A, approxi-
mately 5.4 cM from locus Xwms291 (Korzun et al. 1997) 
and is most likely the origin of the identified plant height 
QTL on chromosome 5A, as, moreover, some cultivars, for 
example, ‘Italo’, are known to possess Rht12 (M. Macca-
ferri, unpublished). Plant height is one of the foremost mor-
phological traits impairing FHB severity, with the general 
dependency—the shorter the plants the more severe are FHB 
epidemics, resulting in numerous co-localizations of plant 
height and resistance QTL (Mesterhazy 1995; Hilton et al. 
1999; Buerstmayr et al. 2009; Mao et al. 2010). The widely 
deployed semi-dwarfing alleles Rht-D1b and Rht-B1b have 
been frequently found to be associated with increased sus-
ceptibility, and this negative trade-off caused by Rht-B1b 
could also be confirmed in durum wheat (Buerstmayr et al. 
2012; Prat et al. 2017; Miedaner et al. 2017). The recently 
identified dwarfing gene Rht24 on chromosome 6A reduces 
plant height without adverse effects on FHB resistance 

providing a valuable source for FHB resistance breeding 
programmes (Herter et al. (2018).

Despite the confounding effect of putative resistance 
QTL with plant height, one high-confidence QTL on chro-
mosome 3B that had a minimal effect on plant height and 
flowering date could be identified in the study at hand. Its 
additive effect corresponded to approximately 1 scoring 
point on a 1–9 scale, which was rather large considering 
an estimated range between 5 and 9 scoring points of the 
entire population in this study. This major resistance QTL 
was positioned on the short arm of chromosome 3B in close 
proximity to the prominent resistance QTL Fhb1 found in 
hexaploid wheat cultivars, e.g. Sumai-3, Wangshuibai and 
derivatives (Anderson et al. 2001; Buerstmayr et al. 2009). 
Interestingly, also in other durum wheat lines resistance-
improving alleles were found to coincide with the Fhb1 
interval. Association mapping in Tunisian-derived durum 
populations revealed FHB resistance QTL in the above-
mentioned region (Ghavami et al. 2011), and in a popula-
tion of the highly resistant Triticum dicoccum line ‘Td161’ 
with the susceptible Austrian durum cultivar Floradur, the 
durum cultivar contributed a resistance allele mapping in the 
Fhb1 region (Buerstmayr et al. 2012). The identity of these 
resistance QTL detected in durum wheat in the Fhb1 QTL 
interval is likely, and our study underlined the importance 
of the specific region in a broad durum wheat collection 
with 35% of the durum lines carrying the resistant allele. 
By now the complete contig sequence of the Fhb1 region 
has been established demonstrating that the QTL interval 
deviates from the Chinese Spring reference in DNA size 
and gene content with several genes unique for the Fhb1 
donors (Rawat et al. 2016; Schweiger et al. 2016). Among 
these unique genes, a pore-forming toxin-like (PFT) gene 
was identified as the causal gene behind FHB resistance 
(Rawat et al. 2016). Haplotype analysis of the durum panel 
proposed other gene function behind the 3B QTL detected 
in durum wheat as the PFT gene was only present in two of 
the 228 analysed durum lines. Notably, only the suscepti-
ble Syrian landrace ‘Haurani’ possessed the ‘resistant’ PFT 
haplotype that is in contrast to a study of 40 wheat landraces 
and cultivars where the PFT allele was exclusively found in 
FHB resistant lines (Rawat et al. 2016). In a broader study 
of 348 hexaploid wheat accessions of mainly Chinese origin, 
the ‘resistant’ PFT allele existed also in susceptible acces-
sions (He et al. 2018) and in a collection of 151 cultivars 
44 lines were positive for the Wangshuibai/Sumai-3 PFT 
allele, but only 12 of them were resistant (Jia et al. 2018). 
Fhb1 has been introgressed in hexaploid wheat and durum 
wheat, mostly efficiently improved FHB resistance levels but 
the recurrent parent had a large impact on the effect of Fhb1 
suggesting a large dependency on the genetic background 
(Von der Ohe et al. 2010; Salameh et al. 2011; Balut et al. 
2013; Prat et al. 2017). However, the role of PFT on FHB 



983Theoretical and Applied Genetics (2019) 132:969–988	

1 3

resistance is under discussion, as Jia et al. (2018) claimed 
that association of PFT with resistance in some germplasm 
is due to its tight linkage to the actual unknown resistance 
gene.

The second high-confidence FHB resistance QTL was 
positioned in the telomeric region of chromosome 6BL 
dissimilar to the well-known FHB resistance QTL Fhb2 
(Anderson et al. 2001) and to other resistance genes identi-
fied on chromosome 6B in tetraploid wheat (Somers et al. 
2006; Buerstmayr et al. 2012, 2013) as well as in hexaploid 
wheat (Bonin and Kolb 2009; Zhang et al. 2010; Basnet et al. 
2012; Szabó-Hevér et al. 2014; Buerstmayr and Buerstmayr 
2015). Most importantly, especially the identified resist-
ance QTL on chromosome 3BS denotes a valuable finding 
for resistance breeding as the variation for FHB resistance 
is very limited in the primary gene pool of durum wheat. 
The associated SNP marker IWB64968 is also included in 
the 15K wheat SNP array allowing fast and cost-efficient 
implementation in breeding programmes, the conversion 
of the polymorphism in an user-friendly KASP marker can 
further facilitate the deployment of the found marker–trait 
association. Although this suggests some merit of utilizing 
the QTL for improving FHB resistance in durum, further 
validation in other genetic backgrounds is certainly needed, 
e.g. their segregation and effect in recent elite germplasm, 
before an application can be recommended in durum breed-
ing programmes.

Improving FHB resistance in durum by genomic 
breeding in early generations

Some genetic progress for FHB resistance has been achieved 
by phenotypic selection in the past (Fuentes et al. 2005), 
and moderately resistant varieties are available nowadays 
(Clarke et al. 2010; Miedaner and Longin 2014). Genomic-
based selection is though an interesting alternative to costly 
and time-consuming scorings in disease nurseries and 
resulted in a relative superiority of 21% in terms of predic-
tion ability for FHB resistance when compared with con-
ventional marker-assisted selection in the study at hand. 
Marker-assisted selection with few significant markers can 
furthermore lead to effects of hitchhiking at the marker loci 
thus increasing the rate of inbreeding in comparison with 
genomic-based selection (Daetwyler et al. 2007; Pedersen 
et al. 2010; Sonesson et al. 2012), but most importantly a 
fixation of the favourable alleles would not allow any further 
genetic gain after a couple of selection cycles in a genomic 
breeding strategy (Miedaner et al. 2017). Prediction abil-
ity for genomic-based selection was furthermore similar as 
reported in previous studies focusing on genomic selection 
for FHB resistance in hexaploid wheat (Rutkoski et al. 2012; 
Mirdita et al. 2015; Arruda et al. 2016; Jiang et al. 2017), 

while it could be slightly enhanced (+ 8%) by modelling the 
found marker–trait association on chromosome 3B as fixed 
effect in a W-BLUP model by using the de novo GWAS 
approach suggested by Spindel et al. (2016).

A further option to improve the accuracy of genomic 
breeding values would be the usage of multi-trait genomic 
prediction models with pre-existing information of plant 
height and flowering date that could be measured earlier, 
easier or more cost-efficient than the main trait of interest, 
i.e. FHB resistance. This method has already shown some 
potential in the pathosystem bread wheat Fusarium for pre-
dicting the costly to assess mycotoxin content with prior 
information about FHB severity (Rutkoski et al. 2012). 
The correlation between FHB severity and flowering date 
is admittedly strongly influenced by climatic conditions 
such as the temperature during inoculation, which could 
consequently mask the true FHB resistance of some breed-
ing lines (Emrich et al. 2008). This was, however, not an 
issue in this study, where the correlation between flower-
ing date and FHB severity was low and additionally varied 
between years. The flowering date has also shown a low 
potential to improve the prediction of FHB severity in trait-
assisted selection in this and a previous study (Schulthess 
et al. 2018), suggesting only a casual relationship between 
both traits without any or a very narrow genetic base. The 
negative correlation for plant height was also evident in the 
analysed durum population and resulted in the selection 
of taller plants when intending to increase FHB resistance 
both under phenotypic and genomic selection. The applied 
genomic selection index was a practicable option to address 
this issue and kept the population average for plant height 
stable, thus avoiding the negative trade-off yet at the cost 
of a lower response to selection for FHB resistance. Using 
pre-existing information about plant height had though also 
shown some value to improve the prediction accuracy for 
FHB severity in a trait-assisted selection, it can albeit be 
seen as an adjustment of FHB severity predictions to fol-
low the underlying negative relationship and as a result it 
increased the negative trade-off in the multi-trait predictions. 
Culling for plant height or the mentioned index selection 
might therefore be necessary afterwards (Schulthess et al. 
2018), which can, however, be expected to compensate the 
higher accuracy of a trait-assisted selection to some extent. 
On the other hand, an increase in plant height might be 
acceptable if minor genes for straw strength are concomi-
tantly selected in order to prevent an increased lodging sus-
ceptibility. Hence, further studies are needed to investigate 
the actual merit of using early information about plant height 
in multi-trait prediction models for FHB resistance.

Irrespective of such model fine-tuning, the response to 
genomic selection is anticipated to be higher than by clas-
sical phenotypic selection as information about FHB sever-
ity could be made available sooner and support selection 
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decisions in an earlier stage during variety development. The 
potential of such a strategy in durum breeding was indicated 
by using fixed lines in this study, although it should be men-
tioned that in applied breeding programmes the degree of 
heterozygosis will be much higher in early generation selec-
tion candidates and the genetic diversity in most cases lower 
than in the investigated worldwide durum collection. The 
accompanied improvement in the two-stage simulated selec-
tion experiments seemed nevertheless promising for practi-
cal applications. It combined previous available data from 
multiple phenotyping steps gave genomic breeding values 
that are based on multi-environment data that corresponded 
to records from several years. Pure phenotypic selection 
uses in contrast initially only 1-year data and sometimes 
2-year data when selected lines are retested and will accord-
ingly have a lower correlation with the true breeding value 
of a potential varietal candidate. Combining already avail-
able phenotypic records for achieving the desired selection 
goal of higher FHB resistance without a too large indirect 
response for plant height was also feasible with such a two-
stage genomic selection strategy. Aside from culling, the 
usage of a genomic selection index (Ceron-Rojas et al. 2015) 
has been shown to be a convenient option for accomplishing 
this goal in the simulated selection experiments. A com-
bination of both selection methods is likewise imaginable, 
e.g. culling outlier lines that already showed high lodging 
in early generations and subsequent index selection among 
the leftover lines to support the identification of lines with 
a desired trait combination. Lastly, it should be noticed that 
a genetically diverse training population was employed for 
the genomic predictions in this study, and although no clear 
population structure could be found, several intermixed 
subpopulations were identified that slightly differentiated 
the origin of the lines. Employing such combined training 
populations with multiple subpopulations can also be of 
interest for increasing the training population size of small 
subpopulations as well as obtaining information about line 
performances across breeding programmes, e.g. when using 
molecular marker data for the planning of crosses.

Apart from all its benefits, the costs for genotyping a 
breeding line to apply genomic selection are comparatively 
higher than getting one phenotype record for FHB resistance 
in a disease nursery (Lorenz et al. 2012; Sallam and Smith 
2016). The largest advantage of genomic over phenotypic 
selection is most likely given when it is implemented at an 
early breeding stage, where phenotypic selection for the 
trait of interest is not feasible or its reliability very limited 
(Longin et al. 2015; Marulanda et al. 2016; Gaynor et al. 
2017). Several thousand lines are generally remaining for 
testing in a medium-sized breeding programme at this stage, 
which would imply a huge effort to derive phenotypic data 
for FHB severity in such cases, especially as replicated test-
ing in several locations is usually necessary to obtain reliable 

results (Fuentes et al. 2005). However, a lot of these lines 
will be discarded due to insufficient performance for other 
traits than FHB resistance that might be among others asso-
ciated with their general field impression. This will, how-
ever, make a substantial number of data points generated in 
a FHB nursery obsolete beforehand. On the other hand, only 
these preselected lines are usually genotyped when imple-
menting genomic selection in a line breeding programme at 
this stage, which allows finding a resource allocation where 
costs between genotyping and extensive early disease pheno-
typing balance-out. The additional genomic breeding values 
that could be derived for traits related to yield and quality 
aside from disease resistance would almost certainly prove 
to be another valuable resource for supporting selection 
decisions in early generations (He et al. 2016; Thorwarth 
et al. 2017; Hayes et al. 2017; Fiedler et al. 2017).

Notwithstanding that FHB resistance is an important trait 
in durum breeding (Prat et al. 2014; Clarke et al. 2010), it 
cannot be the only selection criterion and first eliminating 
the lines most susceptible to FHB followed by selection for 
other agronomical important traits might thus be an appro-
priate strategy. Another yet complementary option to reduce 
the phenotyping intensity would be a stricter selection and 
advancing fewer lines to the next breeding stage, i.e. for 
testing in multi-environment trials, given that they are more 
promising than the ones identified by early generation phe-
notypic selection (Michel et al. 2017). Such lines would also 
be interesting crossing parents, whose genomic fingerprints 
can be aside from the above-discussed product development 
further used in the planning of crosses with genome-wide 
marker data to target a general population improvement of 
the entire germplasm in a breeding programme (Zhong and 
Jannink 2007; Akdemir and Sánchez 2016; Lehermeier et al. 
2017; Osthushenrich et al. 2017; Müller et al. 2018).

Conclusions

Comparison between phenotypic and genomic selection 
for FHB resistance revealed a superior prediction ability 
of the former; nevertheless, simulated selection experi-
ments resulted in a higher response to selection when using 
genomic breeding values for an early generation selection 
and focused disease phenotyping of a preselected set of the 
most promising lines. The usage of genome-wide marker 
data for genomics-assisted selection can thus be a valuable 
tool for supporting breeders in their selection decisions by 
making germplasm information earlier accessible and more 
reliable. Increasing the frequency of favourable alleles at 
major QTL by upweighting their effect in genomic predic-
tion models can thereby be an important aspect as shown for 
the QTL identified on chromosome 3BS for FHB resistance 
in this study. Prior knowledge of trait genetic architecture 
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and basic genomic breeding values could together be used 
for either positive or negative tandem, culling or index selec-
tion within and across families for specific traits and trait 
complex in combination with breeder’s knowledge about 
parents, plant material and breeding goals. The genetic pro-
gress for FHB resistance in the elite durum gene pool could 
accordingly be accelerated in the short term with such a 
strategy, while sources of resistance from exotic germplasm 
could serve to broaden the genetic base for FHB resistance 
beyond the capabilities of elite material for achieving higher 
levels of FHB resistance in durum wheat in the long-term.
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