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Abstract

Frontal electroencephalographic (EEG) alpha asymmetry is widely researched in studies of 

emotion, motivation, and psychopathology, yet it is a metric that has been quantified and analyzed 

using diverse procedures, and diversity in procedures muddles cross-study interpretation. The aim 

of this article is to provide an updated tutorial for EEG alpha asymmetry recording, processing, 

analysis, and interpretation, with an eye towards improving consistency of results across studies. 

First, a brief background in alpha asymmetry findings is provided. Then, some guidelines for 

recording, processing, and analyzing alpha asymmetry are presented with an emphasis on the 

creation of asymmetry scores, referencing choices, and artifact removal. Processing steps are 

explained in detail, and references to MATLAB-based toolboxes that are helpful for creating and 

investigating alpha asymmetry are noted. Then, conceptual challenges and interpretative issues are 

reviewed, including a discussion of alpha asymmetry as a mediator/moderator of emotion and 

psychopathology. Finally, the effects of two automated component-based artifact correction 

algorithms—MARA and ADJUST—on frontal alpha asymmetry are evaluated.

The Utility of Frontal Asymmetry: An overview

The difference between left and right alpha activity over the frontal regions of the brain 

during electroencephalographic (EEG) recording is termed frontal EEG asymmetry, a 

phenomenon that researchers first linked to patterns of emotion processing decades ago 

(e.g., Davidson, Schwartz, Saron, Bennett, & Goleman, 1979; Ahern & Schwartz, 1985; 

Davidson, Schaffer & Saron, 1985; Tucker, 1981). Frontal EEG asymmetry is now 

employed by scientists worldwide to study constructs such as temperament and personality, 

various types of psychopathology, motivation, emotion, and cognitive control (for reviews, 

see Allen & Reznik, 2015; Coan & Allen, 2003, 2004, Harmon-Jones, 2003, and Harmon-

Jones, Gable & Peterson, 2010).
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Frontal EEG asymmetry has been recorded during resting state and task conditions. 

Although used inconsistently in the literature when describing frontal EEG asymmetry, the 

term “activity” refers to data recorded during some period of time, such as while a 

participant is in a resting state, and “activation” refers to a change in activity due to some 

task or state change. Stated differently, activity reflects level and activation captures change 

in activity. One dominant perspective suggests that lateralized activity (i.e., resting-state 

frontal EEG asymmetry) reflects the tendency or predisposition of an individual to engage in 

certain types of emotional (positive versus negative) and/or motivational (appetitive versus 

avoidant) responses, whereas activation is thought to reflect state motivational and/or 

emotional responding. Frontal EEG asymmetry has most frequently been studied in relation 

to these emotional/motivational states and traits, and the relationship of frontal EEG 

asymmetry with emotional/motivational variables is the primary theoretical framework of 

the authors and of this review. A growing literature also indicates that relatively greater left 

than right frontal activity/activation characterizes approach-oriented situations (e.g., 

jealousy: Harmon-Jones, Peterson, & Harris, 2009; state anger: Harmon-Jones & Sigelman, 

2001; self-control: Schmeichel, Crowell, & Harmon-Jones, in press) and/or individuals (high 

dispositional anger: Harmon-Jones & Allen, 1998; high trait optimism: De Pascalis, 

Cozzuto, Caprara, & Alessandri, 2013), whereas greater right than left frontal activity/

activation is thought to reflect withdrawal-related motivational traits and states (e.g., sadness 

and fear: Coan, Allen, & Harmon-Jones, 2001; empathy: Tullett, Harmon-Jones, & Inzlicht, 

2012) or internalizing personality traits (depression: Thibodeau, Jorgensen, & Kim, 2006; 

anxiety: Mathersul, Williams, Hopkinson, & Kemp, 2008). In addition to emotional/

motivational states and traits, several reports have also linked frontal EEG alpha asymmetry 

to other variables like executive functions (Ambrosini & Vallesi, 2016; Çiçek, & Nalçaci, 

2001), worry (Heller, Nitschke, Etienne, & Miller, 1997; Smith, Zambrano-Vazquez, & 

Allen, 2016), and verbal fluency (Hoptman, & Davidson, 1998).

Although some researchers have embraced the use of state emotion manipulations to 

examine relationships between motivation/action and patterns of hemispheric EEG 

activation, the majority of frontal asymmetry studies of psychopathology over the past three 

decades have examined differences in left versus right hemisphere activity while individuals 

are seated in a resting state. These latter studies have been predictive of withdrawal-related 

psychopathology in some, but not all cases, with inconsistencies in findings for depression 

and anxiety symptom ratings measured dimensionally as well as for Major Depressive 

Disorder (Quinn, Rennie, Harris, & Kemp, 2014; Stewart, Bismark, Coan, Towers, & Allen, 

2010) and Posttraumatic Stress Disorder (see Meyer et al., 2015 for a review). In addition to 

sample-specific characteristics, several important methodological factors may, at least in 

part, account for such conflicting results. Some key issues include: a) choice of EEG 

reference (Hagemann, 2004; Hagemann, Naumann, & Thayer, 2001; Stewart et al., 2010); b) 

EEG recording length (Towers & Allen, 2009); c) the reliability/stability of EEG asymmetry 

within and across sessions (Allen, Coan, & Nazarian, 2004; Allen, Urry, Hitt & Coan, 2004; 

Hagemann, Naumann, Thayer, & Bartussek, 2002); d) disorder comorbidity/heterogeneity 

(Davidson, 1998; Miller et al., 2002; Meyer et al., 2015); e) sex differences (Miller et al., 

2002; Stewart et al., 2010); and, f) seasonal and temporal variations interacting with 

individual differences in waking preference (Velo, Stewart, Hasler, Towers, & Allen, 2012). 
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Issues a-c will be discussed in greater detail below. With respect to disorder heterogeneity, 

Nusslock, Walden, and Harmon-Jones (2015) argue that instead of attempting to link frontal 

asymmetry with diagnostic criteria for a particular disorder, researchers should relate left 

versus right frontal activity to psychological symptom clusters (cf. Reid, Duke, & Allen, 

1998) such as anhedonia, mania, and anxious apprehension across clinical groups to increase 

power and better inform assessment and intervention strategies.

In addition to attending to these concerns, approaches have also focused on increasing the 

signal to noise ratio to enhance the magnitude of correlations between EEG profiles and 

emotional responding, by moving beyond simple resting state recordings or analysis. The 

resting state is far from static, with dynamic shifts in asymmetry within subject across time 

during a typical several-minute resting session (cf. Allen & Cohen, 2010). One strategy can 

be to parse the relatively long resting state into moments that capture the most signal, either 

by looking for microstates of asymmetry bursts (Allen & Cohen, 2010) or identifying 

moments within a recording with the greatest indication that a target emotional or 

motivational state is present (e.g., facial expressions of emotion: Davidson, Ekman, Saron, 

Senulis, & Friesen, 1990). The other strategy is to provide a challenge so that engages 

relevant motivational systems during a longer period of recording (Coan, Allen, & 

McKnight, 2006). In their capability model of individual differences in brain asymmetry, 

Coan et al. (2006) argue that utilizing motivationally relevant challenges may produce more 

powerful individual differences than just recording frontal asymmetry during a resting state, 

wherein uncontrolled subject factors might reduce power to find meaningful relationships 

between brain activity and subjective reports of trait/state responding (Coan & Allen, 2003). 

Indeed, a comparison of activity at rest and activity during a motivationally-relevant 

elicitation (directed facial action task) recorded in the same sample showed that task-related 

activity (during happy, angry, sad, and fearful directed facial expressions; Stewart, Coan, 

Towers, & Allen 2011) differentiated depressed from never-depressed men and women more 

strongly than resting activity when examining average, Cz, and linked-mastoid referenced 

data (Stewart et al., 2014); by contrast, current-source density (CSD) transformed data for 

resting and task activity both differentiated depressed from never-depressed groups. These 

results suggest that motivationally-salient challenges, and EEG transformations such as the 

CSD transformation that highlight frontal neural sources (see below for details), may 

produce more predictive and reliable estimates of motivational states and traits.

The literature on EEG asymmetry is sizable, and continues to grow, and yet reflects great 

diversity in terms of “the conditions under which data were recorded, … the manner in 

which data were reduced and … the manner in which data were subsequently analyzed” 

(Allen, Coan, & Nazarian, 2004, p. 214). This review thus details important data acquisition 

and analysis procedures in the hopes that consistency in data collection and processing 

practices will lead to greater reliability across studies in linking frontal EEG asymmetry to 

emotion, motivation, and psychopathology.
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Obtaining the best estimates of Frontal Asymmetry: Procedures for Data 

Collection, Transformation, and Reduction

Recording Considerations

Guidelines for recording EEG asymmetry are much the same as for recording other EEG 

signals in terms of subject preparation and laboratory procedures. A special consideration 

for working with EEG asymmetry, given that it can function as both a trait individual 

difference and also vary with state manipulations, is to avoid unintentionally inducing a state 

manipulation before or during EEG recording. Subject preparation should be professional, 

efficient, emotionally equanimous, and mindful of the reaction of the participant, guidelines 

that are likely part of most laboratory preparation protocols. These considerations assume 

special importance for EEG asymmetry research, as emotional responses to recording 

preparation have been shown to predict frontal EEG asymmetry scores (Blackhart, Kline, 

Donohue, LaRowe, & Joiner, 2002), as have specific experimenter characteristics such as 

attractiveness (Wacker, Mueller, Pizzagalli, Hennig, & Stemmler, 2013). Moreover, 

experimenters conducting multiple studies within the same subject should also be mindful of 

carryover effects of emotional stimuli from one experiment to another.

When planning a recording session, an investigator must balance the need to obtain a 

sufficient quantity of data to provide reliable estimates of frontal EEG asymmetry while 

minimizing participant burden; with longer sessions, emotional state can change within 

session, contributing heterogeneous sources to the single metric that typically summarizes 

the session. Because the recording session is segmented into short epochs and a power 

spectrum is derived from each epoch (see below), the power spectrum from any single epoch 

will reflect both frequencies that are common across epochs as well as those idiosyncratic to 

any given epoch. Yet averaging together spectra across epochs can allow those frequencies 

to emerge that are present in a reasonably large proportion of epochs while attenuating the 

influence of infrequent or irregular signals that might be considered noise (Nunez, 1981). As 

shown by Towers and Allen (2009), excellent reliability of frontal EEG asymmetry may be 

obtained with as few as 100 epochs, which corresponds to one to three minutes (depending 

on epoch overlap) of artifact-free recorded data. For resting assessments, this would likely 

be a continuous recording, but for state-elicited asymmetry scores, this could reflect pooling 

across multiple shorter segments where the investigator has good reason to believe the 

emotion is similarly elicited during each segment (e.g., film segments, picture viewing, 

emotional manipulation; cf. Coan et al., 2001). Depending on how many epochs are rejected 

due to artifacts (see below for methods of retaining epochs using correction instead of 

rejection), an investigator may need to plan to record 2–3 times as long as the target of 1–3 

minutes, as rejection of epochs for blinks and other artifacts can often result in data loss 

approximating 50% (Allen, Urry, Hitt, & Coan, 2004).

The Impact of Reference and Reference-free Transformations

Interpretation of frontal EEG asymmetry data assumes that measures of spectral power from 

a given recording site reflect activity at that site rather than activity at the reference lead or 

elsewhere. For this purpose, researchers may seek a relatively inactive reference, and have 

often used averaged ears or mastoids, or an average reference comprising mean activity at all 
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recorded sites (Reid, Duke, & Allen, 1998; Tomarken, Dichter, Garber, & Simien, 2004). 

With a sufficiently large array of electrodes arranged in a sphere, the average reference will 

nicely approximate an inactive reference; activity generated from dipoles will be revealed as 

positivity at one site and negativity at a site 180 degrees opposite this site, and thus the sum 

across sites will approach zero with adequate representation of the entire sphere. Limited 

recording montages, with few electrodes that do not provide adequate coverage of the sphere 

will have more residual activity in the average reference (e.g., potentially mirroring alpha 

power from distal occipital sources onto frontal electrodes; Hagemann, 2001).

Especially troubling in terms of isolating activity to recorded leads is the Cz reference, 

which has been utilized frequently in the literature (Coan & Allen, 2004; Thibodeau, 

Jorgensen, & Kim, 2006). The Cz reference may potentially under- or over-estimate activity 

at the target site (Hagemann et al., 2001), and empirical comparisons find that asymmetry 

scores using Cz-referenced data possess lower correlations to scores from other reference 

schemes (e.g., Hagemann et al., 2001; Reid et al., 1998).

Despite providing low-activity or relatively inactive references, averaged mastoids and the 

average reference montages create a localization difficulty so that power from distant 

intracranial sources is apparent at an unrepresentative scalp electrode (see Figure 1). Most 

vexing is alpha “mirroring” whereby frontal alpha power is contaminated by recording the 

opposite polarity of an oscillating occipital alpha dipole (Hagemann et al., 2001). Whereas 

in the time domain, a dipole will produce a positivity at one location and a negativity 180 

degrees opposite, spectral power simply summarizes the magnitude of oscillations (without 

regard to polarity), resulting in power from that dipole emerging in both locations (see 

Figure 1). An alternative is to use a spatial filter, such as the reference-free CSD 

transformation (Kayser & Tenke, 2006; Perrin, Bertrand, Giard, & Pernier, 1990; Perrin, 

Pernier, Bertrand, & Echallier, 1989), which computes the second spatial derivative of 

voltage between nearby electrode sites, providing a spatially-enhanced signal representation 

that increases the contribution of local electrical activities and attenuates those from distal 

volume-conducted sources.

Recent work suggests that the CSD transformation may provide a better index of individual 

differences in frontal asymmetry and reduce the contributions of non-frontal sources to 

frontal asymmetry (Stewart et al., 2010; Stewart, Coan, Towers, & Allen, 2014; Velo et al., 

2012; also see a special issue of International Journal of Psychophysiology 97, 3, September 

2015 for an in-depth review of the CSD montage).

Stewart et al. (2010) found that only CSD-transformed frontal asymmetry – but not average, 

nor averaged mastoids, nor Cz-referenced asymmetry – differed as a function of lifetime 

history of depression during the resting state for 306 participants. The impact of these 

different surface potential transformations is depicted in Figure 1. Occipital alpha power 

increases when participants close their eyes (Berger, 1929); this pattern is clearly illustrated 

in Figure 1, and only the CSD transformation contains occipital alpha to occipital sites. 

Apparent with the averaged mastoids reference and average references is considerable alpha 

at frontal sites, especially during eyes closed, when alpha power should predominate at 

occipital sites. The figure illustrates how the CSD transform attenuates the contributions of 
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distal sources to surface leads, and thus may be the preferred approach for assessing the 

relationship of frontal EEG asymmetry to depression, and for analyzing the asymmetrical 

activity of frontal neural sources.

There are some caveats to using the CSD approach. CSD accentuates differences between 

neighboring electrodes, and when electrodes are spaced widely apart small active patches of 

cortex between sensors may be filtered-out. This is akin to aliasing in the time domain: low 

spatial sampling rates will not resolve high-frequency spatial signals. In short, CSD 

transformations poorly represent activity at the scalp in montages with few channels. 

Similarly, effects at the edges of the cap (where the scalp is under-sampled) should also be 

interpreted cautiously. Finally, this may also be a problem when an electrode is 

systematically interpolated within a condition: activity at an interpolated electrode will have 

low-spatial frequency and may be attenuated with a CSD reference (interpolation sites do 

not covary with experimental conditions, thus this effect equates to random noise in most 

cases). Despite the name, CSD is not a source localization algorithm in the typical sense, 

CSD is a representation of local sources and sinks at the level of the dura (fewer 

assumptions regarding dural energy sources avoids the inverse problem). Whereas sources 

with high spatial-frequency and radial dipoles are showcased with a CSD montage, deep 

distributed sources tangential to the scalp may be attenuated or invisible. In the experience 

of the writers, CSD does a good job of capturing EEG alpha asymmetry with a 60 channel 

cap. As an alternative, other spatial filters can also be used such as independent components 

or source estimation (e.g., LORETA). Of note to researchers: when in doubt, compare and 

contrast how different montages influence results, and consider reporting results for multiple 

montages in publications.

Transforming Raw Signals into Asymmetry Scores

Figure 2 depicts the basic steps involved in transforming time-domain EEG signals into 

spectral power at a given site (also see Allen, Coan, et al., 2004). The signal collected in the 

time-domain (Panel A, left side) is converted into a frequency-domain representation in the 

form of a power spectrum (Panel A, right side). Whether data are collected from a 

continuous resting period, or from distinct relatively short segments (such as during emotion 

elicitation), short epochs are created (Panel B) and converted to frequency spectra. These 

power spectra are then averaged across many epochs. For resting data, a large data segment 

is first epoched into smaller 1–2 second epochs (although other durations are possible, such 

as longer epochs if time-frequency approaches will subsequently be used). For EEG 

acquired in the context of elicited emotional expressions or experiences, the data segment 

might still need to be epoched into a few smaller epochs, and data across these similar 

expressions or experiences would then be aggregated.

Creating epochs that are relatively short (1–2 seconds) better matches an assumption of the 

Fourier transform, the predominant approach to derive power spectra from time-domain 

signals. Fourier analyses assume that each signal is periodic (the stationarity assumption) 

and that any periodic signal can be decomposed into a series of sine and cosine waveforms 

at many frequencies, with the beginning of each waveform having its own particular phase. 

A periodic signal is one that repeats, and does so at uniformly spaced intervals of time. 
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Strictly speaking, EEG signals are not periodic because repetition of features is not precisely 

spaced at uniform intervals. Short epochs, however, provide small segments of data with 

features that repeat in a highly similar fashion at other points in the waveform. Often epochs 

are overlapped (Panel B) because weighting functions applied to the time-domain signal in 

the process of “windowing” (described below) will greatly attenuate the signal at the distal 

regions of each epoch, and only the signal near the central portion of each epoch will receive 

considerable weight (Panel C). By overlapping epochs, all portions of the signal receive high 

weighting in some epoch.

Windowing of the time-domain signal will minimize the creation of artifactual frequencies 

in the resultant power spectra. Because the Fourier approach assumes a periodic signal 

repeating infinitely both forward and backward in time, without the windowing function that 

reduces the signal to near-zero at the ends of each epoch, discontinuities would arise if one 

placed a copy of the epoch immediately before or after itself. With such discontinuities, 

Fourier methods introduce spurious frequencies to reconstruct such a signal. Windowing 

avoids the discontinuity (Panel C), but greatly attenuates the contribution of data near the 

end of the epoch to the power spectrum. Overlapping epochs (Panel D) solve this problem; 

data receiving minimal weight near the end of epoch n will be weighted more heavily in 

epoch n+1.

The Fast Fourier Transform (FFT; Cooley & Tukey, 1965) is a considerably faster and 

computationally less complex instantiation of the Discrete Fourier transform (DFT). To 

derive power spectra using the FFT, epochs must have 2n data points, which can be 

accomplished by selecting epochs with precisely a power of two data points (e.g., 2.048 

seconds at 500 Hz) or upsampling data to obtain a power of two (e.g., 2.0 seconds at 500 Hz 

is upsampled to 512 Hz). Alternatively, an epoch can be padded with zeros on either end to 

obtain a length that is a power of two (e.g. 2.0 seconds at 500 Hz is padded with 12 data 

zeros, 6 at the start and 6 at the end of the epoch). Some commercial software packages may 

handle this internally if epochs are not a power of two, and Matlab’s fft function1 can 

specify padding to any epoch length. The length of the epoch (T) will also have 

consequences for the spectral precision. The power spectrum reflects power in the signal at 

each frequency from direct current (DC) to the Nyquist frequency (half the sampling rate), 

with a spectral value every 1/T points. Thus with one-second epochs, one would have a 

spectral power value at integer frequencies (1,2,3,…), whereas with a two second epoch, one 

would have greater precision with values ever 0.5 Hz (0.5, 1.0, 1.5 …).

Because the FFT converts each time-domain epoch to a power spectrum, the average of 

these power spectra is ultimately taken as the basis for analysis (Panel E). Alpha power, 

either total (μV2 by summing all spectral points in the frequency range) or density (μV2/Hz 

by summing all spectral points in the frequency range and dividing by the range in Hz), is 

1Matlab computes a symmetrical FFT. To get power from the Matlab fft function, first load an epoch into the fft function, then discard 
the second half of the fft output (the fft results are symmetrical), and take the absolute value of what remains (i.e., magnitude). Scale 
the magnitude by the number of points (magnitude / sample points). Square the scaled magnitude to get power. Multiple non-DC and 
non-Nyquist spectral points by 2 (because half of fft results were discarded previously; DC and Nyquist spectral points are unique and 
not multiplied by 2). The final result will be spectral power for the number of spectral points determined by epoch length (i.e., 
frequency precision).
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most often examined. Alpha power is typically operationalized as between 8 and 13 Hz in 

adults, sometimes divided into lower and upper alpha (e.g., 8.0–10.5 Hz, and 11–13 Hz), and 

lower frequencies have been examined in children, as such lower frequencies in the 

developing brain are assumed to be equivalent to adult alpha (e.g. Fox & Davidson, 1987). 

Alpha oscillations are believed to functionally inhibit neural activity (Mathewson et al., 

2011) and play an important role in synchronizing large-scale networks (Laufs et al., 2006; 

Scheeringa, Petersson, Kleinschmidt, Jensen, & Bastiaansen, 2012). The relationship 

between alpha and cortical activity may also be moderated by activity in other frequency 

bands (especially theta and beta; Ambrosini & Vallesi, 2016; Laufs et al., 2006; Ota, 

Toyoshima, & Yamauchi, 1996). Although the idea that frequency bands interact in terms of 

functional significance is interesting, using cross-frequency ratios (i.e., the ratio of 8–13Hz 

to 15–30Hz activity) makes interpretation of results across studies less tenable. At present, 

there simply is not much information on the functional significance of cross-frequency 

interactions, or how cross-frequency ratios relate to traditional asymmetry measures.

To calculate alpha asymmetry scores, alpha power at any given site is first natural log 

transformed, as untransformed power values tend to be positively skewed (Allen, Coan, et 

al., 2004). Then, a difference score (ln[right]-ln[left] alpha power) can then summarize the 

relative activity at homologous right and left leads. Higher asymmetry scores calculated this 

way putatively reflect relatively greater left frontal activity (assuming that alpha is inversely 

related to cortical network activity; Allen, Coan, et al., 2004). Additionally, this log-

difference score provides some degree of correction for overall alpha power (Allen, Coan, et 

al., 2004), such as those due to individual differences in skull thickness that influence signal 

amplitude (Eshel, Witman, Rosenfeld, & Abboud, 1995; Leissner, Lindholm, & Petersen, 

1970; Pfefferbaum, 1990).

The asymmetry difference score indicates the relative difference in alpha power between the 

hemispheres, but does not indicate whether a higher asymmetry score results from less left 

alpha power, more right alpha power, or some combination of both. Thus, asymmetry scores 

reveal little in terms of absolute frontal laterality. Some investigators have entered alpha 

power at homologous left and right electrodes with hemisphere as a factor into an analysis of 

variance to address this question, but the power of this approach is hampered by large 

differences between subjects in alpha power unrelated to the asymmetry score: uncorrected 

frontal alpha power is affected by nuisance variables like overall alpha power and skull 

thickness. Such individual differences in overall power are especially problematic for 

examining correlations between criterion variables and single site alpha power, as the 

resultant correlations will reflect relationships primarily with overall power rather than site-

specific power, as overall differences in global power are considerably larger than site-

specific differences within subjects.

Researchers interested in examining alpha power at an individual site (i.e., F7) instead of the 

difference in hemispheres have at least two options: one option is to correct alpha power 

using a residualization/regression procedure, and another option is to correct for overall 

alpha power using a topographical normalization. A convenient method to adjust for overall 

power is to residualize the single site power on whole head power, and then examine 

correlations between the residualized site power and the criterion variable; this method was 
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described in detail by Allen and colleagues (2004). Another approach is to first divide alpha 

power at a single electrode by the summed alpha power across all electrodes, correcting for 

overall power. Then, this relative alpha power metric is transformed to a within-subject Z-

score by normalizing over all electrodes. This topographically normalized metric can 

improve the localization of alpha effects, mitigating the effects of nuisance variables like 

skull thickness and overall alpha power, and revealing which hemisphere drives an 

asymmetry score (i.e., correlation between topographically normalized alpha at F7 with an 

F8/F7 asymmetry score; also see Allen, Coan, et al.,, 2004). Either of these approaches 

provide single site alpha power metrics that are suitable for correlation with criterion 

variables, as they reduce the irrelevant variance that may disproportionately influence such 

correlations.

Artifact Reduction Approaches

The major sources of artifact in frontal EEG asymmetry research include ocular movements, 

blinks, muscle bursts, and signal discontinuities. Spectral decomposition of signals including 

these non-cerebral contributions may artifactually influence alpha power at the sites where 

the artifacts are present.

The eyes, being dipoles with a positive charge at the cornea relative to the retina, create 

electrical fields that, with movement or blinks, produce artifacts in the EEG that are as large 

or larger than the EEG signals. The majority of the power of ocular artifacts is in the delta 

and theta range (Gasser, Sroka, & Mocks, 1985; Hagemann & Naumann, 2001), outside the 

alpha band typically examined in EEG asymmetry research. Nonetheless, some ocular noise 

still exists in the alpha band. Because of the concern that ocular artifacts may contribute to 

alpha power in EEG signals, investigators often reject epochs containing blinks or other 

ocular artifact. Moreover, because of the concern that the electrooculographic (EOG) signals 

recorded using two leads adjacent to the eye may contain some EEG signal, including alpha 

activity (cf. Iacono & Lykken, 1981), regression-based approaches that subtract a portion of 

the time-domain EOG signal from the time-domain EEG signal have been avoided, as such a 

procedure might subtract alpha activity of neural origin. Further considerations of the 

contribution of ocular signals can be found in Hagemann and Naumann (2001).

In addition to EOG signals, muscle bursts and signal discontinuities produce spectral power 

across a broad range of frequencies. These bursts and discontinuities reduce the signal-to-

noise ratio; thus epochs with these artifacts are typically rejected.

Decomposing scalp data to sources to identify artifacts.

An alternative to epoch rejection involves identifying artifacts using blind source-separation 

techniques to isolate artifacts and remove them from the scalp-recorded EEG. Independent 

component analysis (ICA) is one such technique, which decomposes EEG signals into 

independent components (ICs) that are identified by statistical criteria. Each IC is a time-

series, and all ICs sum to create the observed EEG. ICA creates components that represent 

maximally independent time series. Each component time-series can be conceptualized as a 

source (not necessarily an intracranial source) that contributes to scalp-recorded EEG 

signals; each scalp EEG signal is thus a weighted composite of ICs. Changes in voltage that 
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co-occur in time will be identified as components (i.e., have high temporal kurtosis), 

especially when the spatial-temporal relationships are stereotyped (i.e., similar spatial-

temporal patterns that co-occur, such as occipital alpha bursting, or frontally-prominent 

ocular activity due to blinks). The number of ICs is determined by the rank of the data, 

which is in turn determined by the number of data vectors that are linearly independent of 

one another. In most cases, the number of independent data vectors is the number of 

electrodes, and in the case of an average reference, the number of electrodes minus one. One 

important distinction is that ICA is a so-called “blind” source separation: the user neither 

specifies the number of ICs, nor the orientation of IC axes.

ICA has been especially useful for separating neural and artifact signals in the EEG. After 

ICA demixing, artifact components can be discarded, resulting in ‘clean’ EEG (Makeig, 

Bell, Jung, & Sejnowski, 1996; Jung et al., 1998a, 1998b, 2000). An open-source infomax 

ICA approach is available with EEGlab (pop_runica function; Delorme & Makeig, 2004; 

Makeig, Debener, Onton, & Delorme, 2004), and is frequently used for EEG artifact 

correction (Chaumon, Bishop, & Busch, 2015; Delorme, Sejnowski, & Makeig, 2007; 

McMenamin, et al., 2010; Mognon, Jovovich, Bruzzone, & Buiatti, 2011; Jung et al., 2000; 

Winkler, Haufe, & Tangermann, 2011; Winkler, et al., 2014) and dimensionality reduction 

(Makeig et al., 2004; Onton, Westerfield, Townsend, & Makeig, 2006). ICA assumes: 1) 

delays in propagation between electrodes are negligible; 2) sources are stationary in terms of 

topography;3) the time courses of sources are independent; and 4) the number of sources is 

the same as the number of sensors. ICA assumptions are likely not entirely tenable, 

especially in the cases of 2, 3 and 4. In the case of 2, it is well known that EEG phenomena 

may not be spatially stationary (see Onton & Makeig, 2006 for review), especially when 

using longer epochs (>10s, see Jung et al., 1998b) or when calculating ICs with multiple-

subject averages. For 3, eye blinks are known to vary with the P300 (i.e., blinking in 

response to unexpected or surprising stimuli), and bursts of alpha power may also covary 

with eye blinks (i.e., the closing of the eyes; Berger, 1929)); yet ICA has demonstrated that it 

can adequately separate these signals (Jung et al., 2000). The case of number 4 is impossible 

to determine, but it seems to be that in many cases, researchers have more channels than 

sources (there may be as few as 15 reliable sources in typical EEG recordings; Artoni, 

Menicucci, Delorme, Makeig, & Micera, 2014). One other consideration when working with 

ICA: ICA alters the time series of the data, including EEG phase. For example, removal of 

an eye blink IC would affect the EEG phase in the ~1–5Hz range (eye blinks are typically 

around 1–5Hz in the spectral domain). Researchers interested in phase-based metrics may 

want to consider procedures that do not alter the phase of their time-series, because IC 

removal could ostensibly increase or decrease the phase-based metrics. Because ICA 

assumptions are rarely perfectly satisfied, signals are rarely perfectly demixed. Some 

suggestions have been made by researchers to improve ICA performance prior to ICA 

calculation:

1. Aggressive zero-phase-shift finite impulse response (FIR) high-pass filtering (1–

2Hz) of the continuous data (eegfiltnew in EEGlab; also see Cook & Miller, 

1992) may improve stationarity and ICA decomposition.
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2. Similarly, removal of slow-drifts or DC-offsets in the data by subtraction of the 

mean from an entire epoch improves demixing. Researchers are discouraged 

from using short (100–200 millisecond) baseline corrections for event-related 

designs (see Groppe, Makeig, & Kutas, 2009).

3. Removal of gross paroxysmal artifacts (artifacts that are large, sparse, and have 

varying spatial topography) prior to ICA demixing may improve performance; 

for example, body and electrode movements that have time courses with non-

stationary spatial distributions are “split” by the ICA into many different ICs.

4. The more data points used for the ICA decomposition the better, as the quality of 

the ICA is a function of the number of data points and the number of electrodes 

(at least 20 samples per number of sensors-squared has been recommended; 

Onton & Makeig, 2006; Groppe et al., 2009). ICA decompositions for montages 

with more electrodes will benefit from using more data points for ICA (Onton & 

Makeig, 2006; Groppe et al., 2009).

5. When sources with platykurtic distributions are apparent in the data (e.g., line 

noise), the ‘extended’ parameter of the runica/pop_runica function in EEGlab 

may improve demixing (Jung, et al., 1998a), or line noise can be removed prior 

to ICA using a notch filter, or the cleanline plugin for EEGlab (Bigdely-Shamlo, 

Mullen, Kothe, Su, & Robbins, 2015; Mullen, 2012) can also be used to remove 

50/60Hz noise.

6. It is critical that the rank of the data is accurately determined for ICA 

decomposition, and Matlab does not always compute rank accurately 

automatically. The rank of the data is reduced when using an average reference 

(rank is reduced by 1), or when channels are interpolated prior to ICA (rank is 

reduced by number of interpolated channels). In the case of reduced rank, 

researchers should exclude channels prior to ICA, so that the number of channels 

used for ICA is equal to the rank of the data (any channel(s) will do). 

Alternatively, researchers can use the pca argument for the pop-runica function to 

reduce the dimensionality of the data to the correct rank prior to ICA 

computation.

7. Dozens of blind source separation approaches are available (see Delorme, 

Palmer, Onton, Oostenveld, & Makeig, 2012 for a comparison of 21 source 

separation approaches), and it may be the case that some approaches are better 

for certain experimental designs (Dien, Khoe, & Mangun, 2007; Dien, 2010), or 

for different varieties of signals (Fitzgibbon, Powers, Pope, & Clark, 2007).

8. The garbage-in, garbage-out principle also applies to ICA, and it would be ill-

conceived to believe that ICA is a panacea for fixing poor-quality recordings.

Altogether, ICA can demix signals adequately, but rarely perfectly. Demixing performance 

may improve following quick preprocessing of data as noted above, with careful 

consideration of ICA assumptions and data dimensionality, or from use of an alternative 

blind-source separation implementation.
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ICA has been especially useful for mitigation of stereotyped EEG artifacts like eye blinks, 

eye movements, and muscle activity (artifacts with near invariant spatial distributions). For 

example, assume a signal is composed of power in the 8–13 Hz band overlaid on a slower 

wave (1–3Hz) resulting from an eye blink. The EEG in this case is a mixture of a neural 

signal (8–13 Hz activity) and an artifact (eye blink). Insofar as the eye blink may be captured 

adequately as an IC, this component can be subtracted from the EEG resulting in eye blink-

free EEG (but the 8–13 Hz activity remains in the EEG). Although eye blinks and 8–13Hz 

activity may co-occur in some epochs, it is likely that they do not co-occur during every 

epoch, and their distribution across electrodes will differ; thus, they are separable via ICA 

(i.e., timecourses are independent). In fact, even eye blinks that are frequently coincident 

with the oddball P300, are also separable with ICA (Jung et al., 2000). Thus, ICA can be 

used to demix neural and artifact components, and researchers can isolate and remove 

artifact while keeping neural data that overlaps in time. In fact, artifact removal from good 

ICA decompositions result in EEG data free from eye blinks, eye movements, and muscle 

artifact with almost no reduction in neural activity (Jung et al., 2000; McMenamin et al., 

2010). In cases of poor ICA demixing, however, overlapping neural and artifactual data may 

also be discarded.

Because ICA rarely demixes signals perfectly, ICs may include mixed artifact and neural 

contributions, and researchers or automatic artifact correction algorithms (AAAs) are faced 

with deciding whether to reject these ambiguous components. Although artifact 

classification (whether with surface signals or ICs) by human raters is a very common 

approach, classification by human raters has liabilities. Researchers typically include or 

exclude ICs from subsequent analyses by visual inspection or quantitative analysis of a 

component’s time course, topography, and spectral features (i.e., pop_selectcomps and 

pop_prop in EEGlab), then classify the IC as artifactual or neural. Evidence suggests that 

certain features of the IC are especially useful for accurate and reliable classification of an 

IC as artifactual or neural, especially the power spectra (Delorme, Sejknowski, & Makeig, 

2007), scalp topography (Mognon, Jovicich, Bruzzone, & Buiatti, 2011; Viola et al., 2009), 

and intracranial source complexity (Chaumon, , Bishop, & Busch, 2015; Delorme, Palmer, 

Onton, Oostenveld, & Makeig, 2012; Mcmenamin et al., 2010; Winkler et al., 2011).

Utility of AAAs for Identifying ICs with artifacts.

Despite these known features, human experts rely on unknown configurations of internal 

regression weights to identify these features (weights that vary within and between 

individuals), and classifications may not be reliable between experts or over time for a given 

expert (see Dawes, Faust, & Meehl, 1989 for a critical discussion of human vs actuarial 

judgment). Human interrater reliability is variable across studies; interrater reliability is high 

when raters: 1) classify artifacts on an interval-level scale (McMenamin, et al., 2009); 2) 

only classify ocular artifacts and discontinuities (Mognon et al., 2011); 3) are experienced 

with identifying particular artifacts (Viola et al., 2009); and 4) undergo training in IC 

classification (Hatz et al., 2015). Conversely, interrater reliability is lower when ICs are 

classified dichotomously (neural or artifact), or are a mixture of neural and artifactual data 

(i.e., ambiguous ICs). Researchers may also invest substantial time and energy classifying 

components (100 recordings multiplied by 62 components = 6200 components to classify), 
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and training research assistants to classify components with a high degree of reliability (Hatz 

et al., 2015, McMenamin et al., 2010). In contrast, classification weights are known for 

AAAs, AAAs are perfectly reliable, and AAAs are less time-intensive to use for the 

researcher.

AAAs are often “trained” on one experimental setup or electrode montage, and performance 

can vary when an algorithm is used in a novel context (Chaumon et al., 2015). By 

comparison, a new automatic artifact correction tool—Multiple Artifact Rejection Algorithm 

(MARA)—uses an adapted classifier, which adjusts classification parameters as a function 

of electrode montage (Winkler, 2014). MARA (an EEGlab plugin) uses spectral, 

topographic, temporal, and source features of an IC for classification as neural or artifact, 

features previously observed to have good predictive validity for detecting artifact 

(Chaumon et al., 2015; Delorme et al., 2007; McMenamin et al., 2010; Mognon et al., 2011, 

Viola et al., 2009; Winkler et al., 2011). With more than 100 total participants, in continuous 

and event-related datasets, and with electrode montages varying from 16 to 128 electrodes, 

MARA has shown good performance for automatic classification of artifact (85 – 91% 

accuracy compared to experienced raters depending on experimental setup; Winkler et al., 

2011, 2014). When research assistants have been trained to a high degree of reliability, or 

with fewer components to classify, MARA is also capable of semi-automatic correction: 

potential artifacts are highlighted, scores for classification features displayed, and a human 

rater can make the final classification. Given the superior reliability of AAAs over human 

raters, however, this method of human review may not enhance the reliability or artifact 

removal over the strictly automated approach.

Automatic EEG artifact Detection based on the Joint Use of Spatial and Temporal features 

(ADJUST; Mognon et al., 2011) is an EEGlab plugin that utilizes properties of time and 

space to classify ocular artifact and discontinuities (features with good predictive validity for 

detecting artifact; Chaumon et al., 2015; Mognon et al., 2011; Viola et al., 2009). ADJUST 

detects eye blink and discontinuity artifact, but, ADJUST does not select for myogenic or 

other artifact. ADJUST evaluates 5 features of an IC, then classifies an IC as artifactual 

when at least one temporal and one spatial feature are above threshold. Thresholds are 

created using an iterative Bayesian approach called Expectation-Maximization (Bruzzone & 

Prieto, 2000). Importantly, ADJUST identifies ocular artifact and discontinuities with 

exceptional accuracy (~95% accuracy compared to human raters).

Researchers are often especially concerned with AAAs committing false positives (i.e., 

incorrectly classifying neural data as artifact), but false positives are rare for many AAAs in 

general (Chaumon et al., 2015), and for MARA and ADJUST specifically (Mognon et al., 

2011; Winkler et al., 2011, 2014). When automatic correction algorithms in fact make false 

positives, they are often ambiguous ICs that contribute very little to the actual data (<1–3% 

of variance; Chaumon et al, 2015; McMenamin, et al., 2010; Mognon et al., 2011) and that 

are also difficult for human raters to classify. One study reported that human raters produced 

the best data when removing all ambiguous ICs, even when they were mostly neural activity 

relative to myogenic activity (McMenamin et al., 2010); yet, even after this aggressive IC 

removal by human raters (70% of the IC variance), myogenic artifact was still apparent in 

the EEG. Similarly, Winkler et al. (2014) reported good brain-computer interface 

Smith et al. Page 13

Int J Psychophysiol. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance after removal of 60% of ICs, And Mognon and colleagues (2011) reported that 

ocular artifact alone accounted for 51% of the variance in their dataset, andanother report 

found that only 15 of 71 ICs were stable within-participant (Artoni et al., 2014). It seems to 

be the case that neural sources may account for as little as 25% of the variance in the data2, 

as ocular, myogenic, and line noise artifact are often much greater in magnitude than EEG 

signals and contribute the most variance (McMenamin et al., 2010).

These observations suggest that researchers may want to consider the relative cost of false 

negatives and false positives when making artifact cleaning and analysis choices. Overall, 

human raters are likely imperfectly valid or reliable classifiers of artifact, whereas some 

AAAs (especially MARA and ADJUST) can use the most discriminative features of an IC to 

classify ICs as neural or artifact with high validity and perfect reliability. As detailed in 

Appendix A and shown in Figures 3 and 4, MARA aggressively rejected what appears to be 

high frequency frontalis electromyographic (EMG) activity as well as ocular activity; in 

contrast, ADJUST rejected ocular artifact only, and left the majority of the presumed 

frontalis activity in the data. In both cases, the distribution of alpha activity appears to be 

relatively unaltered, suggesting few false positive rejections of alpha band activity (see 

Figure A4).

Conceptualizing Frontal Asymmetry: Statistical Approaches and 

Theoretical Inferences

In addition to methodological issues of recording, reference, artifact removal, and power 

extraction, frontal asymmetry research may benefit from careful consideration of statistical 

approaches. Theory should drive the development of conceptual models, with theory-driven 

research extending and challenging such models. Frontal asymmetry is widely relevant in 

models ranging from emotional processing to psychopathology and often reported as a 

predictor, outcome, mediator, or moderator. As such, it is important that researchers consider 

the role of frontal asymmetry in any given model and what theoretical clarity this role will 

provide. Understanding and consideration of the statistical approach at the outset of study 

design will help researchers advance theory by designing studies aimed at improving models 

of emotion, motivation, and psychopathology.

As such, statistical approaches that are most commonly used in frontal asymmetry research 

are outlined below, with consideration of how statistical approaches can ensure the utility of 

frontal asymmetry within the context of a particular model. A decade ago, significant 

advances were made in statistical approaches to frontal asymmetry by a review 

distinguishing between predictor and outcome (Cacioppo, 2004) and another distinguishing 

between mediator and moderator (Coan & Allen, 2004). We will suggest the continued 

relevance of such important distinctions and provide a brief introduction to frontal 

asymmetry as a predictor, outcome, mediator, and moderator.

2The proportion of neural activity to artifact (~25%) may not generalize to experimental designs with fewer artifacts or greater signal-
to-noise ratios; for example, sleep studies or EEG recordings in paralyzed or anesthesized patients may have a larger proportion of 
neural activity.
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Frontal Asymmetry as a Psychological and Neural Index

As discussed above and in a number of reviews (Allen & Reznik, 2015; Coan & Allen, 

2004; Nusslock et al., 2015), frontal asymmetry research can generally be summarized by 

two major research approaches. The first approach examines frontal asymmetry during rest 

as a trait variable related to various psychological constructs (Davidson, 1994; Stewart et al., 

2010; Sutton & Davidson, 1997) and predictive of future emotional behavior or 

psychopathology (Blackhart et al., 2006; Nusslock et al., 2011; Papousek, Reiser, Weber, 

Freudenthaler, & Schulter, 2012; Wheeler, Davidson, & Tomarken, 1993). The second 

approach studies state-related changes in frontal asymmetry as a function of current 

emotional state or behavior (Coan et al., 2001; Harmon-Jones, Vaughn-Scott, Mohr, 

Sigelman, & Harmon-Jones, 2004; Harmon-Jones & Sigelman, 2001; Killeen & Teti, 2012).

It is important to note that the vast majority of research from both approaches focuses on 

frontal asymmetry as an index of psychological phenomena (e.g., approach motivation, well-

being, risk for psychopathology). As a neurophysiological measure, however, frontal 

asymmetry may index both: 1) psychological phenomena; and 2) neural activity reflecting 

potential mechanisms. A handful of studies have examined the generators of scalp-recorded 

asymmetry to date, and have implicated different regions of both the left and right frontal 

regions (Gable, Mechin, Hicks, & Adams, 2015; Koslov, Mendes, Pajtas, & Pizzagalli, 

2011; Pizzagalli, Sherwood, Henriques, & Davidson, 2005; Saletu, Anderer, & Saletu-

Zyhlarz, 2006; Shackman, McMenamin, Maxwell, Greischar, & Davidson 2009). It is 

important to remember that different regions within the frontal lobes with varying functions 

can result in similar downstream processes like self-reported affect; for example, increased 

reward sensitivity has been linked with more leftward intracranial activity (Pizzagalli et al., 

2005), whereas increased behavioral inhibition has been linked with more rightward 

intracranial activity (Shackman et al., 2009), and aberration in either system could 

potentially result in a depression-like presentation. Further studies are needed to isolate the 

neural structures and mechanisms that contribute to asymmetrical frontal alpha power at the 

scalp and increase risk for depression (Allen & Reznik, 2015; Cacioppo, 2004; Davidson, 

2004). Simultaneous EEG-functional magnetic resonance imaging (fMRI) recordings 

(Allen, Hewig, Hecht, Miltner, & Schnyer, 2013), magnetoencephalography (Domschke et 

al., 2015; Onoda et al., 2007), source estimation (Pizzagalli et al., 2005; Smith, Cavanagh, & 

Allen, 2013), time-frequency analyses (Allen & Cohen, 2010), and scalp-level functional 

connectivity metrics may all be useful for revealing neural circuitry that contributes to 

frontal alpha asymmetry. Ultimately, a comprehensive model should examine frontal 

asymmetry as an indicator of both psychological and neural phenomena.

Frontal Asymmetry as a Simple Correlate

Empirical work and reviews of the frontal asymmetry literature (Coan & Allen, 2004) often 

combine studies examining frontal asymmetry as a predictor or outcome variable, which 

may reduce theoretical clarity. Although direction cannot be assumed in the large portion of 

the literature that focuses on identifying the psychological correlates of frontal asymmetry 

(for review see Coan & Allen, 2004; Nusslock et al., 2015), an important distinction 

between the metric as a predictor and outcome variable can be made in directional models 

(Cacioppo, 2004). When frontal asymmetry is treated as a predictor variable, results indicate 
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the probability of the outcome variable conditional on the level of frontal asymmetry—

P(outcome measure | EEG asymmetry). On the other hand, when frontal asymmetry is 

treated as the outcome variable, the assumption is that the probability of a particular frontal 

asymmetry score depends on values in the predictor variable—P(EEG asymmetry | predictor 

variable). For example, virtually all studies relating frontal alpha asymmetry to risk for 

psychopathology examine frontal asymmetry as an outcome variable (asymmetry scores are 

measured as a function of presence or history of psychopathology; e.g., Gotlib, Ranganath, 

& Rosenfeld, 1998; Henriques & Davidson, 1990, 1991; Stewart et al., 2010), when in fact 

the conceptual model guiding the investigation would be one where frontal asymmetry is a 

predictor. Findings of frontal EEG asymmetry as a simple correlate (outcome) are not 

inconsistent with its role as a predictor, but such findings are not sufficient to support a 

theoretical model of frontal EEG asymmetry as a predictor variable. Of course to establish it 

as a predictor of psychopathology, resource-intensive longitudinal designs are needed such 

as that of Nusslock, Shackman, Harmon-Jones, Alloy, Coan, & Abramson (2011), wherein 

frontal EEG asymmetry predicted the development of a first episode of depression over the 

ensuing three years. Although findings of frontal EEG asymmetry as a simple correlate 

(outcome) are not inconsistent with its role as a predictor, such findings are not sufficient to 

support a theoretical model of frontal EEG asymmetry as a predictor variable. Thus it 

remains to be determined conclusively in large samples whether EEG asymmetry is a risk 

indicator for future depression or a residual “scar” (Lewinsohn, Steinmetz, Larson, & 

Franklin, 1981) of previous psychopathology. Increased consideration of directionality of 

models in frontal asymmetry research may provide further theoretical clarity.

Moderation analysis

Moderators are third variables that may advance theory by explication of for whom or under 

what circumstances a given relationship exists. More generally, a moderator variable alters 

the relationship between the predictor and outcome (i.e., an interaction effect); as depicted in 

Figure 4, moderation suggests that the relationship between an outcome and predictor 

variable differs as a function of the third variable (Baron & Kenny, 1986). For example, 

frontal asymmetry would serve as a moderator of treatment response in the hypothetical case 

in which a given psychotherapeutic intervention decreases depressive symptoms only for 

individuals with greater relative left frontal activity, but not individuals with greater relative 

right frontal activity (e.g., Bruder et al., 2001, 2008). A moderator may also exist in a case 

where all participants respond to treatment, but those with greater relative left frontal activity 

respond with significantly more improvement than their counterparts with greater relative 

right frontal activity. As such, frontal asymmetry moderation analyses typically examine 

whether relationships change as a function of trait-like resting “activity” but may also 

examine change in frontal asymmetry. While a large amount of research has examined 

frontal asymmetry as a moderator of emotional processing (see Coan & Allen, 2004), only a 

small number of studies have examined frontal asymmetry as potential moderator of 

treatment response; frontal asymmetry has been implicated as a potential moderator of 

treatment response in cognitive-behavioral therapy (Moscovitch et al., 2011) and 

pharmacological treatment for depression (Arns et al., 2015; Bruder et al., 2001, 2008) but 

was found not to moderate treatment response for behavioral activation (Gollan et al., 2014). 

Although findings on EEG asymmetry as a moderator of treatment response are in the 
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preliminary phases, there is some convergent evidence that more left than right frontal 

activity may interact with pharmacological and cognitive interventions in terms of predicting 

positive clinical outcomes.

Statistically, moderators are represented as interactions between third variables and predictor 

variables (Figure 4). While there must be a statistically significant interaction between the 

moderator and the predictor on the outcome variable, there may or may not be independent 

main effects of the moderator and predictor variables on the outcome variable. Moderators 

can be distinguished from covariates, which are third variables that reduce the variance in 

the relationship between the predictor and the outcome by adjusting for the effect of a third 

variable statistically related to the outcome (MacKinnon, Lockhart, Baraldi, & Gelfand, 

2013). True covariates explain variance in the outcome but not predictor variables (Figure 4). 

If a third variable explains variance in both the outcome and predictor, including such a 

variable as a covariate may lead to ambiguous results (Miller & Chapman, 2001). For 

example, because time of day has been found to influence frontal asymmetry (Velo et al., 

2012), it may be beneficial to adjust for time of day when examining frontal asymmetry as 

an outcome. However, if time of day also explains variance in one’s predictor variable (e.g. 

all alternative treatment groups occurred in the morning), removing variance associated with 

time of day affects not only frontal asymmetry but also the group variable.

Mediation Analysis

Further insight into how a process occurs, and, as such, the model of a process, may be 

revealed through mediators. A mediator accounts for the relationship between a predictor 

and outcome variable (Figure 4). Mediation indicates that the extent to which a predictor 

variable changes an outcome variable depends (or partially depends) on another variable 

through which a process of change may occur (Baron & Kenny, 1986). Importantly, a 

mediator may not itself be the mechanism of change but may be a larger representation of a 

number of variables that change (Kazdin, 2007). This distinction may be particularly 

important when operating under the assumption that frontal EEG asymmetry is an indicator 

of some neural mechanism. As such, frontal asymmetry serves as a mediator that indexes 

neural change. For example, Allen et al. (2001) used biofeedback training to alter frontal 

asymmetry scores and found that increased relative right frontal activity led to decreased 

positive affect; the effect of biofeedback training on affective responding was mediated via 

frontal asymmetry. Additionally, a number of studies have examined frontal asymmetry as 

an outcome of treatment that may be linked to symptom change in future research 

(Barnhofer et al., 2007; Fachner, Gold, & Erkkilä, 2013; Woo, Kim, Kim, Petruzzello, & 

Hatfield, 2009).

Although the multiple independent regression models approach to mediation outlined by 

Baron and Kenny (1986) is still widely used, the Sobel test may provide a more direct test of 

mediator effects. The Sobel test is a particular t-test that compares the effect of the mediator 

and the null hypothesis that the mediator has no effect. The effect of the mediator can be 

considered the product of: 1) the predictor to mediator path; and 2) the mediator to outcome 

path. Further conceptual discussion of the Sobel test and detailed procedures can be found in 

Preacher & Hayes (2004). Importantly, mediators share the same statistical relationships 
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with another third variable, confounders. Yet, there is a conceptual distinction between 

mediators and confounders in that confounders cannot reasonably be the cause by which the 

predictor variable affects the outcome (MacKinnon et al., 2013). In nearly all cases, a 

researcher’s good judgment and theoretical knowledge should be used when identifying a 

variable as a mediator; in other words, it is misguided to rely on p-values alone, which can 

result in the identification of a confound as a mediator. This distinction highlights the 

importance of theory-driven research; only theory may distinguish frontal asymmetry as a 

confounder from frontal asymmetry as a mediator. Examining frontal asymmetry as a 

mediator may significantly advance theory by allowing insight into a potential mechanism 

by which a process occurs.

Conclusions and Best Practices

The availability of turn-key EEG systems, cheap and powerful computers for analysis, and 

increasing pressure from granting agencies to include biological measures in proposals has 

led to an increase in the number of researchers using or considering EEG as a solution for 

addressing questions related to motivation and psychopathology. Despite increasing 

availability and nearly 40 years’ worth of work, one could wish for greater consensus 

regarding its recording and processing parameters and theoretical conceptualization. In that 

spirit, we offer a few suggestions for researchers in an attempt to standardize the recording 

and interpretation of frontal alpha asymmetry studies:

1. Assessing state mood before and after EEG preparation can provide an index of 

whether any unintended emotional manipulations transpired.

2. Transforming the online reference to the surface Laplacian (i.e., CSD) can 

mitigate contamination from nonfrontal alpha power that may be unrelated to 

motivational/emotional states and traits, and can improve localization of EEG 

activity. This may be a good first step towards isolating intracranial sources of 

frontal alpha asymmetry.

3. Moving beyond simple resting state recordings, either by selecting specific 

segments within the resting state (e.g. Allen & Cohen, 2010) or by using 

emotional challenges to increase relevant signal related to emotion and 

motivational processes, may result in more reliable frontal asymmetry metrics 

and ideally larger effect sizes.

4. Stringently cleaning ocular and myogenic artifact as well as signal 

discontinuities with ICA-based approaches may improve signal-to-noise ratios 

and mitigate the effect of confounding variables like muscle tension on frontal 

alpha asymmetry. The use of automated artifact correction algorithms can 

enhance reliability of artifact correction over human raters’ decisions.

5. Attempting to link frontal EEG asymmetry not just to psychological constructs, 

but to other measures of neural function can identify potential mechanisms 

underlying frontal asymmetry and reveal more about the pathway from 

lateralized alpha power to psychological functioning (i.e., motivational states and 

traits).
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6. Giving careful consideration of frontal alpha asymmetry as an outcome or 

predictor, and using experimental designs that are amenable to the specific 

conceptualization. More prospective studies need to be performed in this regard, 

testing frontal asymmetry as a predictor of psychopathology.

7. Giving careful consideration of frontal alpha asymmetry as a mediator or 

moderator when designing experiments and testing hypotheses.

Even after nearly 40 years of research, at least two fundamental questions remain regarding 

frontal alpha asymmetry: where does it come from and what does it indicate? Improvements 

in recording and processing techniques as well as theoretical models have accelerated 

developments in the field. It is in that spirit that the present review is offered, with the hopes 

that these recommendations will continue this progress.
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Appendix A:: A Comparison of Mara and Adjust for IC-Based Artifact 

Removal

Comparison of Features Weighed by Each Algorithm

MARA was created by a machine learning algorithm trained on human raters’ classification 

of 1290 components. An initial feature set including 13 features of the IC time course, 9 

spectral features, and 16 topographic features (scalp and source topography) were evaluated 

as potential classifiers. These 38 features were narrowed down to 6 features that were non-

redundant and the best classifiers relative to expert ratings: 1) The complexity of a minimum 

l2-norm solution to the inverse problem. More complex solutions are indicative of artifact; 2) 

The logarithm of the difference between minimal and maximal scalp activations. A larger 

difference is more indicative of artifact; 3) The mean absolute local skewness for a 15s 

window, where more skewness is indicative of artifact; 4) A steep frequency spectra, 

especially in terms of elevated 20–50Hz power (noted as λ by Winkler et al., 2011). Higher 

values are more indicative of artifact; 5) Power in the 8–13Hz band, where less power is 

indicative of artifact; 6) Deviation from 1/f, where lower values are indicative of artifact 

(i.e., the IC approximates 1/f).

MARA is the first algorithm to combine source estimation with scalp-based features for IC 

artifact classification. Notably, MARA was compared against datasets that were bandpass 

filtered (i.e., 0.1–40Hz) or had noisy channels removed prior to evaluation by MARA, and 

the ability of MARA to classify ICs that were predominantly line noise is not addressed by 

the authors. Also, MARA was evaluated on data that was reduced in dimensionality 

(reduced to 30 components with principal components analysis (PCA)) prior to ICA, which 

the authors suggest may improve performance (although PCA prior to ICA may introduce 

non-linearities into the data; see http://tinyurl.com/nox9fc6 for a tutorial on PCA-ICA 

decomposition).
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ADJUST considers 5 features, classifying as artifact an IC that has at least one temporal and 

one spatial feature suggestive of artifact: 1) The difference between anterior and posterior 

electrodes, and more relative anterior activity is indicative of artifact (e.g., blinks or vertical 

eye movements); 2) The presence of rare and high-amplitude events (i.e., temporal kurtosis) 

is also suggestive of rapid and high-amplitude artifact (i.e., blinks); 3) Excessive variance 

within an epoch, where greater variance suggests artifact; 4) Large differences in activity 

between left and right frontal channels, especially activity that is in anti-phase, is also an 

artifact indicator (e.g., horizontal eye movements); and, 5) Large differences between 

activity at one channel and activity at surrounding channels indexes discontinuity.

Empirical Comparison

To compare the performance of MARA and ADJUST, resting-state recordings (2502 

recordings from 323 participants; see Stewart et al., 2010 for details on sample) were used. 

The sample size varied slightly across analyses because some participants had missing data, 

and/or ADJUST’s Estimation-Maximization algorithm failed to discriminate neural versus 

artifact ICs. All analyses included at least 2480 recordings. Human raters visually inspected 

and rejected non-biological signals (e.g., amplifier clipping, discontinuities). Ocular and 

myogenic artifact was not rejected by human raters. Most data processing steps were 

implemented with native EEGlab functions or EEGlab plugins. Data were downsampled 

from 1000Hz to 250Hz (using pop_resample), and then bandpass filtered 1–50Hz using a 

custom zero-phase shift optimal FIR filter generated following the recommendations of 

Cook and Miller (1992) via the fir2 function in Matlab, although pop_eegfiltnew will also 

work. Channels marked as bad by human raters were also removed (pop_select). Segments 

of 2.048 sec were cut from the continuous data (pop_epoch). Segments overlapped by 75%. 

The mean of each epoch was subtracted from each epoch to remove DC offset 

(pop_rmbase). Segmented data were demixed using the pop_runica function in EEGlab 

using the FastICA toolbox using the symmetrical approach (available as an EEGlab plugin 

at: http://tinyurl.com/zxvtscl). Following ICA decomposition, the processing streams 

diverged. The data that was cleaned with visual inspection had bad channels interpolated, 

and then was transformed to the CSD montage, and processing was finished. A duplicate set 

of data underwent automated MARA or ADJUST IC classification implemented in SASICA 

(a plugin for EEGlab that contains many AAAs from different researchers; eeg_SASICA; 

Chaumon et al., 2015). After fully automatic IC classification by MARA or ADJUST, 

components classified as artifactual were subtracted from the data and converted back into 

channel-level data (pop_subcomp), bad channels were then interpolated (eeg_interp), and 

the cleaned data were CSD transformed using the approach summarized by Perrin, Pernier, 

Bertrand, & Echallier (1989, 1990) and implemented with the function laplacian_perrinX 
from Cohen (2014).

Signal-to-noise ratio was calculated as the ratio of power in a frequency bin to the average 

power of the surrounding ±5 Hz, but excluding ±1 Hz around the frequency bin of interest 

(Cohen, 2014). For example, discontinuities and noise in EEG data produce a ‘flat’ 

spectrum, and thus the ratio between neighboring spectral points will be low. By 

comparison, a robust alpha peak between 9–11Hz that is much greater than activity at 8 or 

12 Hz will have a large ratio, and SNR will be large between 9–11Hz.
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A mixed-linear model (MLM) was calculated in SPSS 23 to evaluate the relationship 

between alpha asymmetry scores and depression status (see Stewart et al., 2010 for 

information about sample and participant selection) using the alpha asymmetry scores 

derived from the different processing approaches. In brief, 143 participants met criteria for a 

Major Depressive Episode (MDE) at some point in their life, and 163 participants had no 

history of depression in their lifetime. A previous report showed that the participants with at 

least one MDE had less left-than-right frontal alpha activity (Stewart et al., 2010). MLM 

main effects were evaluated for MDE history, Electrode site, Day, and Session; additionally 

a MDE × Electrode interaction was also calculated. Only the main effect of MDE history is 

reported here.

MARA rejected 32% of component variance on average (range 0–92%). ADJUST rejected 

26% of component variance (range 0 – 86%). The distribution of rejected component 

variance is displayed in Figure A1. On one hand, the values of 32% and 26% are somewhat 

lower than has been reported previously in the literature, and may be due to the fact that 

MARA and ADJUST were computed on data that had some artifact removed prior to IC 

classification. On the other hand, the range of rejected data, as well as the histograms in 

Figures A1 and A4, suggests that in a small number of cases, either the AAAs over-

corrected, or a handful of recordings were dominated by artifact and potentially unusable. 

Given the range of data rejected, it would probably be wise for investigators to closely 

inspect files that have had a substantial portion of component variance marked for removal.

As detailed in this review and shown in Figures 3, 4, and A4, both ADJUST and MARA 

preserve alpha activity and its topography in most cases, but they differ in terms of how 

aggressively they rejected what appears to be high frequency frontalis EMG activity as well 

as ocular activity. The preservation of alpha activity is apparent in the frequency spectrum 

across the scalp (Figure A2, top panel) as well as frontal leads specifically (Figure A2, 

middle panel) following both ADJUST and MARA. It is also apparent that MARA 

attenuated high frequency power and low frequency power more aggressively than ADJUST. 

Signal-to-noise ratios in the alpha band over frontal channels also improved following 

MARA component removal, and to a lesser extent ADJUST component removal (Figure 

A3).

To examine the impact on asymmetry scores, the 8–13 Hz power at each left hemisphere site 

was log transformed and subtracted from the 8–13 Hz power at homologous right 

hemisphere sites (i.e., alpha asymmetry score, see Coan & Allen, 2004). The variability 

across participants in asymmetry scores is displayed for data before and after AAA cleaning 

in Figure A5. It appears to be the case that cleaning slightly improves the distribution in the 

asymmetry scores (the distribution is slightly less kurtotic). This may be a result of a 

reduction in the bilateral low- and high-frequency noise: bilateral high frequency power that 

overlapped the alpha band would create a pointed distribution centered on zero following 

subtraction of right-sided from left-sided electrodes. This is more so the case for F6/F5, 

which appears to be a hot spot for high-frequency activity in the beta and gamma bands in 

the topoplots of Figures 3 and 4..
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Pearson correlation coefficients between asymmetry scores for data cleaned using MARA 

and ADJUST as well as for asymmetry scores calculated from visually inspected data are 

depicted in Figure A6. The correlations are uniformly high, although descriptively smallest 

at F6/F5. Altogether, the results suggest that automatic correction algorithms may 

adequately clean data recordings in many cases. In individual cases, data may be over-or-

under cleaned (i.e., the range of data removed by correction algorithms and Figure A1 and 

A4). Automatic cleaning resulted in distributions of asymmetry scores that more closely 

approximated normality, reduced high frequency activity unrelated to 8–13Hz activity, and 

preserved frontal and scalp-wide alpha power. In fact, the effect sizes of the relationship 

between alpha asymmetry and lifetime depression history were similar or improved 

following AAA: for visually inspected data the relationship between lifetime depression 

status and alpha asymmetry was (F(1,9356.29)=54.07, p<.001), for visual inspection + 

ADJUST component removal data the relationship was (F(1,9355.85)=53.46, p<.001), and for 

visual inspection + MARA component removal data the relationship was (F(1,9050.30)=79.29, 

p<.001). Altogether, the results suggest that MARA in fact reduced EMG noise unrelated to 

the relationship between frontal alpha asymmetry and depression status. In.

Figure A1. 
Histograms of percent of variance rejected for ADJUST (top panel), MARA (middle panel), 

and the overlap between ADJUST and MARA (bottom panel).
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Figure A2. 
Power across all scalp sites (top panel), frontal channels only (F1, F2, F3, F4, F5, F6, F7, F8, 

and Fz, middle panel), occipital channels only (POz, Oz, O1, and O2, bottom panel) at each 

spectral point for data that was visually inspected data, visually inspected + ADJUST, and 

visually inspected + MARA.. All 3 conditions show a robust alpha peak, MARA and 

ADJUST similarly attenuate delta and theta power, and MARA attenuates high frequency 

power at frontal channels.
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Figure A3. 
Signal-to-noise ratio across all scalp sites (top panel), frontal channels only (F1, F2, F3, F4, 

F5, F6, F7, F8, and Fz, middle panel), occipital channels only (POz, Oz, O1, and O2, bottom 

panel) at each spectral point for data that was visually inspected data, visually inspected + 

ADJUST, and visually inspected + MARA. MARA and ADJUST increase SNR over frontal 

channels.

Figure A4. 
Spectral power differences for single recordings (N≥2480) across all scalp sites (top panel), 

frontal channels only (F1, F2, F3, F4, F5, F6, F7, F8, and Fz, middle panel), occipital 

channels only (POz, Oz, O1, and O2, bottom panel) at each spectral point for data that was 

visually inspected data, visually inspected + ADJUST, and visually inspected + MARA. 

MARA and ADJUST produce generally consistent results across recordings. Both ADJUST 

and MARA adequately preserved alpha power in most, but not all cases. MARA more 

frequently reduced high frequency power over frontal channels than ADJUST.
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Figure A5. 
Histograms of asymmetry scores for different artifact mitigation approaches at a frequently 

used asymmetry site (F6/F5). Histograms of asymmetry scores following visual inspection 

(top panel), visual inspection + ADJUST (top-middle panel), and visual inspection + MARA 

(bottom-middle panel), and the overlap between three artifact approaches (bottom panel) 

show that MARA reduces the pointedness of the distribution in asymmetry scores around 

zero compared to visual inspection only, and visual inspection + ADJUST.
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Figure A6. 
Correlations for asymmetry scores between different methods of artifact mitigation at four 

frontal electrodes. Pearson correlations between 3 datasets are presented: visually inspected 

data, visually inspected + ADJUST, and visually inspected + MARA cleaned data.. 

Correlations between visually inspected data and visually inspected + component cleaned 

data were high in every case. Interestingly, the lowest correlations were between visual 

inspected data and MARA, and between ADJUST and MARA, at those electrodes that also 

tended to have the greatest high frequency power, presumably from frontalis activity (i.e., 

F4/F3 and F6/F5).
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Figure 1. 
Topography of alpha power under eyes open (top) and eyes closed (bottom) conditions as a 

function of transformation (Cz, average (AR), or linked mastoid (LM) reference or current 

source density (CSD) transformation) from a sample of over 2400 recordings. Power values 

at each site represent natural-log transformed values; thus negative numbers represent mean 

power values less than one. Each transformation is scaled independently, but within each 

transformation, eyes open and closed data are plotted on the same scale. Only the CSD 

transformation contains occipital alpha to occipital leads, whereas the other three montages 

show reflected alpha at frontal regions, visible most clearly by a comparison of frontal leads 

under eyes closed compared to eyes open recordings.
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Figure 2. 
Overview of converting time-domain signals to power spectra for EEG asymmetry research. 

Panel A depicts a 10-second segment of raw data from a single channel on the left, and the 

spectral representation of this epoch on the right. Panel B illustrates the process of epoching 

the longer segment into shorter overlapping two-second epochs. Panel C shows the impact of 

the Hamming window (dotted bell curve) on a single epoch, with the grey line representing 

the raw signal and the black line representing the signal after the application of the window. 

Note that a discontinuity would result if a copy of the raw (grey) signal were concatenated 

following this signal, but no such discontinuity would result for a similarly concatenated 

windowed (black) signal. Panel D displays the net weighting (black line, scaled to fit graph) 

of overlapping hamming windows (grey lines) for two-second epochs. Panel E illustrates the 

impact of averaging power spectra. The top 9 grey lines are the spectral representation of 9 

two-second epochs, and the lower black line is the average spectrum. Note that alpha power 

(8–13 Hz) is somewhat variable from epoch to epoch, but that the average spectrum reveals a 

distinct alpha peak. Vertical axis in Panel E is power in microvolts-squared. Figure after 

Allen, Coan, and Nazarian (2004).
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Figure 3. 
Spectral power across the scalp for five frequency bands of interest before and after 

automatic IC-based correction using the ADJUST algorithm. The depicted scale (inμV2) 

varies across frequency bins, and is the same for the first two columns (Visual inspection 

only, Visual inspection only + ADJUST; the difference score has its own scale)). 

Overlapping-epochs were hamming-windowed prior to FFT to mitigate edge-artifacts. The 

FFT results for each epoch were averaged for each subject, then across all subjects (i.e., a 

grand-average). Spectral points were averaged within canonical frequency bands.
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Figure 4. 
Spectral power across the scalp for five frequency bands of interest before and after 

automatic IC-based correction using the MARA algorithm. The depicted scale (in μV2) 

varies across frequency bins, and is the same for the first two columns (Visual inspection 

only, Visual inspection only + MARA; the difference score has its own scale)). Overlapping-

epochs were hamming-windowed prior to FFT to mitigate edge-artifacts. The FFT results 

for each epoch were averaged for each subject, then across all subjects (i.e., a grand-

average). Spectral points were averaged within canonical frequency bands.
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Figure 5. 
This figure illustrates conceptual differences between the third variables of moderator, 

mediator, covariate, and confound, adapting diagrams from Baron and Kenny (1986). As 

described in further detail in the text, a moderator is a third variable that changes the 

relationship between a predictor and outcome variable. Covariates do not alter but can 

clarify the relationship between predictor and outcome by adjusting for variance between a 

third variable and the outcome. On the other hand, mediators are third variables through 

which a predictor variable changes an outcome variable. Mediators may be distinguished 

from confounds, which are third variables that share the same statistical relationships but 

cannot reasonably be the cause by which the predictor affects change.
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