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Abstract

- Damian Neubauer’ - Kamil Kazor' - Sylwia Bartoszewska' - Wojciech Kamysz'

Acinetobacter baumannii is one of the most challenging pathogens, on account of its predisposition to develop resistance leading
to severe, difficult-to-treat infections. As these bacteria are more usually isolated from nosocomial infections, the new therapeutic
options are demanded. Antimicrobial peptides (AMPs) are compounds likely to find application in the treatment of A. baumannii.
These compounds exhibit a wide spectrum of antimicrobial activity and were found to be effective against biofilm. In this study,
eight AMPs, namely aurein 1.2, CAMEL, citropin 1.1., LL-37, omiganan, r-omiganan, pexiganan, and temporin A, were tested
for their antimicrobial activity. A reference strain of A. baumannii ATCC 19606 was used. Antimicrobial assays included
determination of the minimum inhibitory concentration and the minimum biofilm eradication concentration. Considering the
fact that the majority of A. baumannii infections are associated with mechanical ventilation and the use of indwelling devices, the
activity against biofilm was assessed on both a polystyrene surface and tracheal tube fragments. In addition, cytotoxicity (HaCaT)

was determined and in vitro selectivity index was calculated.
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Abbreviations

AMPs Antimicrobial peptides

ATCC American Type Culture Collection

CFU Colony-forming units

DCM Dichloromethane

DIC N,N'-diisopropylcarbodiimide

DMF N,N-dimethylformamide

DMSO Dimethyl sulfoxide

ESI-MS Electrospray ionization mass spectrometry

Fmoc N-9-fluorenylmethoxycarbonyl

HPLC High-performance liquid chromatography

MBC Minimum bactericidal concentration

MBEC Minimum biofilm eradication concentration

MBEC"  Minimum biofilm eradication concentration
on tracheal tube fragments

MHA Mueller-Hinton agar

MHB Mueller-Hinton broth
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MIC Minimum inhibitory concentration

MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyl-2-H-tetrazoluim bromide

PBS Phosphate-buffered saline

RP-HPLC Reversed-phase liquid chromatography

SI Selectivity index

TFA Trifluoroacetic acid

TIS Triisopropylosilane

Introduction

The Acinetobacter bacteria are currently one of the major
causes of nosocomial infections while Acinetobacter
baumannii is considered to be the major pathogen, owing to
its predisposition to develop resistance [1]. These aerobic,
Gram-negative bacteria have been routinely isolated form nos-
ocomial infections, notably from patients of intensive care
units [2]. These infections are frequently severe and difficult
to treat, on account of their correlation with inter-regional
spread and local occurrence of A. baumannii resistant to car-
bapenems [3]. This fact is still more alarming since these f3-
lactam antibiotics are considered to be the last-line remedy
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used in the treatment of patients infected with multi-resistant
Gram-negative bacteria [4]. The A. baumannii causes a wide
variety of infections, but most of them are associated with the
respiratory tract and the use of indwelling devices. Therefore,
hospital-acquired pneumonia is the most frequent clinical con-
dition connected with these bacteria, particularly associated
with patients receiving the mechanical ventilator assistance
[5, 6]. In addition, A. baumannii can also cause blood stream
infections, wound and urinary tract infections, and meningitis
[7, 8]. Treatment of those infections, if caused by multidrug-
resistant bacteria, involves the use of combinations of such
agents as colistin, polymyxin B, and tigecycline. However,
the safety of these approaches, even if successful, has not
yet been well documented [9—11]. In this situation, the search
for new, effective antimicrobials is demanded. Antimicrobial
peptides are an interesting class of compounds that can be an
alternative to conventional antibiotics. These endogenic mol-
ecules are widely distributed in nature, mainly as a part of
innate immunity of organisms [12]. They target a broad spec-
trum of pathogens (bacteria, fungi, protozoa, and viruses) and
are associated with triggering and coordinating multiple com-
ponents of innate and immune adaptive systems [13—-16].
Owing to these properties, antimicrobial peptides (AMPs)
have attracted much attention of researchers from many sci-
entific groups worldwide. Generally, AMPs are 11-50 amino
acid residue long, amphipathic molecules with net positive
charge [17, 18]. The main mechanism of their antimicrobial
activity is based on a non-receptor-mediated microbial mem-
brane disruption. However, they can also lead to microbial cell
death through other mechanisms such as inhibition of protein/
DNA or cell wall synthesis or induction of apoptosis/necrosis.
Owing to the membrane-associated activity, they could also
exhibit a low potency to trigger antimicrobial resistance [19].
The aim of this study was to evaluate the activity of eight
AMPs, namely aurein 1.2, CAMEL, citropin 1.1., LL-37,
omiganan, r-omiganan, pexiganan, and temporin A, against
reference a strain of A. baumannii ATCC 19606. The micro-
biological studies involved the determination of MIC, MBC,
and MBEC. Interestingly, the antibiofilm activity was evalu-
ated both on a polystyrene surface and tracheal tube frag-
ments. The results were correlated with those of conventional
antibiotics: ciprofloxacin, erythromycin, gentamicin, pipera-
cillin, rifampicin, and tigecycline. Cytotoxicity of tested pep-
tides was determined by MTT assay.

Materials and Methods
Peptide Synthesis
Peptides used in this study (Table 1) were synthesized manu-

ally by solid-phase method using Fmoc chemistry on polysty-
rene resin modified by a Rink amide linker. Deprotection of
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Table 1 Peptides used in this study

Name Sequence

Aurein 1.2 GLFDIIKKIAESF-NH,

CAMEL KWKLFKKIGAVLKVL-NH,

Citropin 1.1 GLFDVIKKVASVIGGL-NH,

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES
Omiganan  ILRWPWWPWRRK-NH,

r-Omiganan KRRWPWWPWRLI-NH,

Pexiganan ~ GIGKFLKKAKKFGKAFVKILKK-NH,

Temporin A FLPLIGRVLSGIL-NH,

the Fmoc group was carried out in a 20% (v/v) piperidine
(Merck, Darmstadt, Germany) solution in DMF (Honeywell,
Seelze, Germany) for 15 min. Acylation with protected amino
acid was conducted in a DMF/DCM solution (Chempur,
Piekary Slaskie, Poland) with coupling agents for 1.5 h using
a threefold molar excess of DIC (Peptideweb, Zblewo,
Poland) and OxymaPure (Iris Biotech GmbH, Marktredwitz,
Germany). Every step was preceded by rinsing the resin and
running the chloranil test. Peptides were cleaved from the
resin using one of the mixtures: (A) TFA (Apollo Scientific,
Denton, UK), phenol, TIS (Sigma-Aldrich, St. Louise, MO,
USA), and water (92.5:2.5:2.5:2.5 v/v); (B) TFA,
triisopropylsilane, and water (95:2.5:2.5 v/v). Mixture (A)
was used with peptides containing a tryptophan residue,
whereas mixture (B) with the remaining peptides. Crude pep-
tides were precipitated with cold diethyl ether (Chempur,
Pickary Slaskie, Poland) and lyophilized. Subsequently, the
peptides were purified by RP-HPLC with LP-chrom software
(Lipopharm.pl, Poland). Purifications were carried out on a
Phenomenex Gemini-NX C18 column (21.20 x 100 mm,
5.0-um particle size, 110-A pore size). UV detection at
214 nm was used, and crude peptides were eluted with a linear
10-70% acetonitrile gradient in deionized water over 90 min
at room temperature. The mobile phase flow rate was
10.0 mL/min. Both eluents contained 0.1% (v/v) of TFA.
Fractions were analyzed on a Waters X-Bridge Shield RP-18
column (4.6 x 150 mm, 3.5-um particle size, 130-A pore size)
with UV detection at 214 nm. Pure fractions (>95%, by
HPLC analysis) were collected and lyophilized. The identity
of all compounds was confirmed by mass spectrometry (ESI-
MS).

Cultivation of Organisms

The A. baumannii ATCC 19606 strain was acquired from the
American Type Culture Collection and prepared in line with
the manufacturer’s instructions. The culture was stored in
Roti®-Store Cryo-Vials (Carl Roth GmbH, Karlsruhe,
Germany) at —20 °C. Before the tests, the bead with cryo-
protected bacteria was transferred into fresh MHB (Biocorp,
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Warsaw, Poland) and incubated for 24 h at 37 °C. Then, the
culture was seeded on MHA plates and incubated as just men-
tioned. The agar cultures prepared in this way were used for
further experiments. Cell densities for all assays were adjusted
spectrophotometrically (Multiskan™ GO Microplate
Spectrophotometer, Thermo Scientific) at 600 nm.

Activity Against Planktonic Forms of Bacteria

The MICs and MBCs were determined with the reference to
the Clinical and Laboratory Standards Institute guidelines
[20]. MICs were determined by broth microdilution method.
For this purpose, initial inoculums of bacteria (0.5 x 10> CFU/
mL) in MHB were exposed to a series of concentrations (0.5—
256 pg/mL) of the compounds and incubated for 18 h at
37 °C. The experiments were conducted on 96-well microtiter
polystyrene plates with the final volume of 100 pL. The MIC
was taken as the lowest drug concentration at which a notice-
able growth of microorganisms was inhibited. In parallel, the
MIC wells, two above and one below (positive control), were
cultured on a MHA plate. The lowest concentration of test
compounds that did not show any visible growth of bacteria
on the solid medium after 24 h of incubation at 37 °C were
defined as MBC. All experiments were conducted in
triplicate.

Activity Against Biofilm

The antibiofilm activity was determined on 96-well flat-bot-
tomed microtiter polystyrene plates and 0.5-cm fragments of
tracheal tubes (RIM-75, ZARY'S International Group, Zabrze,
Poland), with resazurin (7-hydroxy-3H-phenoxazin-3-one
10-oxide) as a cell viability reagent. The first part included
assay on 96-well plates. To do this, the plates were filled with
100 pL of the initial inoculums of bacteria (0.5 x 10" CFU/
mL) in the MHB and incubated for 24 h at 37 °C. Then, the
wells were rinsed three times with PBS to remove non-
adhered cells and the fresh medium with a series of concen-
trations (0.5-256 pg/mL) of the compounds was added. After
24 h of incubation, 20 uL of resazurin (4 mg/mL) was added
to each well and the MBEC values were read. The assay on
tracheal tube fragments was conducted using 24-well poly-
styrene plates. Briefly, the tracheal tube fragments were
dipped in 1 mL of the bacterial inoculum (0.5 x 10’ CFU/
mL) and incubated at 37 °C. After 24 h of incubation, the
test fragments were rinsed three times with PBS and trans-
ferred into other wells containing the fresh medium with a
series of concentrations of the test compounds. Subsequently,
the plates were incubated again for 24 h at 37 °C. Then,
200 pL of resazurin was added and the MBEC was read.
All experiments were conducted in triplicate.

MTT Assay

To evaluate the cytotoxicity of the test peptides (ICsg), the
classic MTT assay on 96-well plates was performed for human
keratinocytes (HaCaT) which were acquired from the ATCC.
The assay utilizes colorimetric determination of the cell met-
abolic activity and the color intensity reflects the number of
live cells that can be measured spectrophotometrically. The
cell line was cultured in Dulbecco’s modified Eagle Medium
(Invitrogen) supplemented with 10% fetal bovine serum (v/v),
100 units/mL of penicillin, 100 pg/mL of streptomycin, and
2 mM L-glutamine and was kept at 37 °C in a humidified 5%
CO, incubator. Briefly, a day after plating of 500 cells per
well, a series of concentrations (0.5-500 pg/mL) of the test
compounds were applied. DMSO was added to the control
cells at a final concentration of 1.0% (v/v), which was related
to the maximal concentration of the solvent compounds used
in the experiment. After 24 h of incubation at 37 °C (humid-
ified 5% CO, incubator) with the peptides, a medium contain-
ing 1 mg/mL of MTT was added to the wells up to a final
concentration of 0.5 mg/mL. Subsequently, the plates were
incubated at 37 °C for 4 h. Then, the medium was aspirated,
and the formazan product was solubilized with DMSO. The
background absorbance at 630 nm was subtracted from that at
570 nm for each well (Epoch, BioTek Instruments, USA). Six
replicates were conducted for each concentration. All experi-
ments were repeated at least twice and the resulting IC50
values were calculated with a GraFit 7 software (v. 7.0,
Erithacus, Berkley, CA, USA).

Results
Antimicrobial Assay

Eight different AMPs and six conventional antibiotics were
tested against the reference strain of A. baumannii ATCC
19606. The results indicate that the peptides exhibit a high
activity against planktonic forms of the bacteria (Table 2).
The most effective was CAMEL and pexiganan with MIC
and MBC values of 2 and 4 pg/mL, respectively. The next
was LL-37 with an order of magnitude lower activity and
citropin 1.1 with MIC and MBC values of 16 pg/mL.
Interestingly, the identical activities exhibited aurein 1.2 and
r-omiganan, the retro analog of omiganan, which turned out to
be stronger than the parent compound (for which the MICs
and MBCs were 32 and 64 pg/mL, respectively). Temporin A
exhibited the highest minimum inhibitory and bactericidal
concentrations of 128 pg/mL. In conclusion, the antimicrobial
activity of the peptides decreased in the order: CAMEL,
pexiganan > LL-37 > aurein 1.2, citropin 1.1, r-omiganan >
omiganan > temporin A. Among the antibiotics tested, the
most antimicrobially active was ciprofloxacin with MICs
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Table 2  Antimicrobial activity of the test compounds [p1g/mL] against 256 ug/mL for biofilm on the polystyrene and tracheal tubes,

A baumannii ATCC 19606 respectively). In general, the MBEC" were either lower (up to

Compound MIC MBC MBEC MBEC"  threefold in magnitude) or equal to MBEC for all of the test
compounds (antibiotics and peptides).

Ciprofloxacin 0.5 1 2 1

Erythromycin 32 32 32 16 .

Gentamicin 16 32 32 32 Cytotoxicity

Piperacillin 64 128 >512 >512

Rifampicin 4 4 3 4 Evaluation of cytotoxicity of the majority of peptides used in

Tetracycline ) 4 16 4 this study was conducted by us previously and the present

Aurein 1.2 16 16 64 1 analyses were run for omiganan and r-omiganan only [21].

CAMEL ) 4 128 64 Both the previous and actual results were used for calculation

Citropin 1.1 16 16 256 3 of SI (Table 3). Based on the cumulative set of the ICs values,

1137 4 g 51 198 it can be stat‘ed that th'e majority of pepﬁfies exhibited relative-

Omiganan 0 o4 556 18 ly high toxicity against HaCaT cell line. The ICsy values

+-Omiganan P 16 556 18 ranged between 1.05 and 79.39 pg/mL a.nd for half of them

Pexiganan 5 4 556 - were lower than thg MIC (the exceptlon was founq for

Temporin A 128 18 s12 256 CAMEL, LL-37, omiganan, and r-omiganan). Interestingly,

and MBCs of 0.5 and 1 pg/mL, respectively. With rifampicin
and tetracycline, these quantities ranged between 2 and 4 pg/
mL, while with erythromycin and gentamicin between 16 and
32 ug/mL. Piperacillin was the least effective antibiotic with
MICs and MBCs of 64 and 128 pg/mL, respectively. In gen-
eral, the antimicrobial activity of antibiotics decreased in the
order: ciprofloxacin > tetracycline, rifampicin > gentamicin,
erythromycin > piperacillin.

Antibiofilm Activity

Antibiofilm studies and the results of MBEC indicate that
eradication of biofilm from tracheal tubes occurred as a rule
at lower concentrations than that of the polystyrene surface of
microtiter plates (Table 2). However, the tested AMPs appear
to exhibit a lower antibiofilm activity than did conventional
antibiotics. The most active compound was ciprofloxacin with
MBEC values for polystyrene and tracheal tubes of 2 and
1 pg/mL, respectively. Interestingly, erythromycin eradication
concentrations were identical to those of MIC and MBC and
by an order of magnitude lower for tracheal tubes. The
antibiofilm activity of gentamicin and rifampicin appears to
be almost equal for planktonic cultures while with tetracy-
cline, this activity was found to be threefold lower. Among
all the test compounds, only piperacillin failed to eradicate the
biofilm at any concentration. The most active peptide was
aurein 1.2 with up to twice as high MBEC than MIC. On
the other hand, the largest difference between MICs and
MBECs was found for CAMEL (the sixfold lower activity),
pexiganan, and LL-37 (the sevenfold lower activity). What is
more, identical MBECs were found for omiganan and its retro
analog. Temporin A was up to twice less active against bio-
film, but the concentrations were relatively high (512 and
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the ICso for LL-37 was nearly three times lower than the
MIC value (SI=2.93).

Discussion

Recent scientific reports highlight the problem of an increas-
ing resistance to antibiotics and global spread of multidrug-
resistant bacteria. For this group, a special term of ESKAPE
pathogens has been proposed, which strictly refers to specific
species namely, Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter [22]. As these
bacteria are frequently isolated from patients with severe,
difficult-to-treat infections, new therapeutic options are need-
ed. Moreover, the research on new antimicrobial compounds
should be focused on this particular group of pathogens with
orientation on reference as well as clinical isolates and the
activity against biofilm. It is commonly known that survival
potential of bacteria is enhanced by biofilm formation, but this
feature is not always taken into account in the clinic. In fact,
the susceptibility profile of bacteria is routinely determined for

Table 3 ICsq values and SI of the peptides

Compound ICso MIC SI (ICs0,/MIC)
CAMEL 332" 2 1.66

Citropin 1.1 3.02" 16 0.18

LL-37 11.75" 4 293
Omiganan 79.39 32 248
r-Omiganan 29.51 16 1.84
Pexiganan 1.05" 2 0.52
Temporin A 791" 128 0.06

* These analyses were performed by our group in the previous study [21]
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planktonic cultures. However, biofilm can be described as a
cellular conglomerate attached to a surface (both biotic and
abiotic) enclosed in a matrix built up with extracellular poly-
meric substance (EPS) [23, 24]. As compared to the freely
suspended planktonic cultures, this structure is 10 up to
1000 times more resistant to antimicrobials. Particularly note-
worthy is the fact that the biofilm is responsible for over 80%
of microbial infections in the body. Moreover, biofilm-
producing bacteria have a capability to colonize indwelling
devices, thus leading to infections [24-26]. A. baumannii is
one of the strains that causing medical device colonization
becomes one of the major sources of systemic dissemination
[27]. AMPs as compounds with great antibiofilm potential can
find application in the treatment of A. baumannii infections
[28-32]. In this study, eight AMPs, namely, aurein 1.2,
CAMEL, citropin 1.1., LL-37, pexiganan, omiganan, r-
omiganan, and temporin A, were tested using reference strain
of A. baumannii ATCC 19606. Furthermore, the antibiofilm
activity was also determined for tracheal tube fragments. This
approach is quite unique since medical devices are used more
likely for the analysis of bacteria or their isolation [33-35]. As
a matter of fact, the growth of A. baumannii on tracheal tubes
is one of the major sources of colonization in lungs and bac-
terial pneumonia [36, 37]. Among the tested peptides,
CAMEL and pexiganan displayed the highest activity with
MIC values of 2 pg/mL. These results are consistent with
other studies conducted on clinical strains of A. baumannii.
For example, Giacometti et al. conducted a research on in vitro
activity of cecropin A, melittin, and CAMEL [CA(1-7)M(2—
9)NH,], alone and in combination with antibiotics, against 32
nosocomial isolates of A. baumannii [38]. The MICs and
MBCs ranged between 0.25—-8 and 0.5—16 pg/mL, respective-
ly. In spite of the fact that the peptide was found to be very
active with the potential in adjuvant therapy with other anti-
biotics, the authors suggested that further studies on safety
determination had to be conducted. Pexiganan is another pep-
tide that was previously tested against clinical isolates. For
instance, in the study conducted by Ge et al., susceptibility
profiles of a number of strains were determined [39]. The
distribution of the MICs ranged between | and 8 pug/mL and
the value of 2 pug/mL was found for the majority of strains (49
isolates). Furthermore, Flamm et al. conducted a research on
the activity of pexiganan against pathogens isolated from di-
abetic foot infection (DFI). [39]. The study involved not only
bacteriological assays, but also characterization of resistance
genes. The MICs for two DFI-associated A. baumannii strains
were equal to 8 pg/mL. Moreover, pexiganan and colistin
were also applied in experimental mouse models of A.
baumannii infection [40]. In that study, the compounds were
used for susceptibility determination and survival assessment
of mice. It should be noticed that pexiganan was found to be
effective in combinatory approach (low bacterial count) and
also increased NK cytotoxic activity over the levels of infected

and colistin-treated animals. LL-37 is the third most active
peptide assessed in that study and, at the same time, the most
extensively studied one against A. baumannii [41-44]. In the
research conducted by Feng et al., antibacterial and
antibiofilm activities of LL-37 and its fragments (KS-30,
KR-20, KR-12) against clinical strains were determined
[41]. Furthermore, not only MICs but also the kinetics, impact
on biofilm formation, development, and dispersal were
assessed. Although the MICs for the clinical strains applied
in their study were higher than those obtained in this research
(16 and 32 pg/mL versus 4 pg/mL), the impact on biofilm
formation occurred in similar concentrations. Our study re-
vealed that LL-37 eradicates biofilm at a very high concentra-
tion (MBEC =512 pg/mL). This suggests that application of
this peptide is much more recommendable for prevention of
biofilm-associated infections than for their treatment. Aurein
1.2 and citropin 1.1 are the peptides of amphibian origin that
in our study exhibited identical activities against planktonic
forms of A. baumannii (16 ng/mL) and the biofilm on tracheal
tubes (32 pg/mL). It should be emphasized that the MBEC
value obtained on polystyrene plates was four times lower for
aurein 1.2 (256 versus 64 pg/mL). Despite the fact those pep-
tides were extensively studied for their antimicrobial and
physicochemical properties, their impact on A. baumannii
has not been [45-50]. Only aurein 1.2, in a study conducted
by de Freitas et al. on the enhancement of antimicrobial pho-
todynamic therapy, has been found to reduce significantly the
viability of S. aureus, Escherichia coli, and A. baumannii as
well [51]. Omiganan and its retro analog (r-omiganan) were
also tested in our study; however, only the first one has been
studied against A. baumannii so far. In a study conducted by
Sader et al., the antimicrobial activity of omiganan
pentachloride (formerly MBI 226) was determined against
more than one and a half thousand clinical isolates of bacteria
and yeasts [52]. Moreover, not only the susceptibility profiles
to antimicrobial peptide and conventional antibiotics was
assessed, but also killing kinetics and precise quantification
of resistant strains were estimated. The MIC obtained with the
strain A. baumannii 101-2823A for omiganan was 8 pg/mL,
which is twice lower than that determined in our study. In
addition, r-omiganan was found to be a stronger antimicrobial
than the parent compound. The results are consistent with our
previous work where the retro analog of omiganan exhibited
improved activity against Gram-negative strains as compared
to that of the parent peptide. At the same time, omiganan is
less cytotoxic than its retro counterpart owing to the lower rate
of hemolysis. [53]. Temporin A was the weakest peptide tested
in our study and the most cytotoxic one. The activity against
planktonic forms was 128 pg/mL, which was 16 times higher
than the ICso. Even more, the MBEC values for tracheal tube
fragments and polystyrene were twice and four times higher,
respectively. As a matter of fact, temporin A was previously
tested against A. baumannii. In a study by Mangoni et al.,
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temporins A, B, and G were tested against multidrug-resistant
clinical isolates of multiple bacterial strains involved in noso-
comial infections. The results reported by this group indicated
that the A. baumannii strains were sensitive to temporins over
a concentration range comparable or lower than that required
to kill Gram-positive strains such as S. aureus. However, these
results are inconsistent with our findings, due to the different
protocols of antimicrobial assay as well as the use of human
serum in antimicrobial determination. Selectivity indexes
(Table 3) calculated for all peptides suggest that citropin 1.1,
pexiganan, and temporin A are distinctly cytotoxic (HaCaT)
and MIC is relatively high (SI between 0.06 and 0.52). The
highest SIs were determined for LL-37 and omiganan (2.93
and 2.48, respectively). Moreover, retro omiganan and
CAMEL have slightly lower Sls (1.84 and 1.66, respectively).
Nevertheless, different methods, particularly the materials,
used for determination of antimicrobial activity can also give
inconsistent results. This should be highlighted that positively
charged molecules like AMPs may bind to the polystyrene
surface. In our study, the polystyrene plates were used for
determination of MIC and MBEC as well. For instance,
Giacometti et al. have compared the activity of eight AMPs
using two protocols, the first described by CLSI (formerly
NCCLS) and the second by R.E.W. Hancock, which utilizes
the use of polypropylene instead [54]. The results highlighted
significant differences between those methods and indicated
the higher activity of AMPs when the polypropylene plate was
used. However, opposite observations were found in the study
of Sanchez-Gomez et al. [55]. Therefore, it is reasoned to
evaluate the activity of AMPs against A. baumannii on poly-
styrene and polypropylene plates in further studies.

Conclusions

Despite the fact that the peptides used in this study, except
temporin A, were found to be effective against planktonic
forms of the reference strain A. baumannii ATCC 19606, their
activity against biofilm formed on polystyrene and tracheal
tube fragments was distinctly lower, especially as compared
to the activities of conventional antibiotics. Nevertheless, it
should be emphasized that the main characteristic of
Acinetobacter spp. is their capability to acquire resistance. In
fact, there is a risk that the compounds being effective against
the reference strains may be inapplicable clinically. For this
reason, the therapy of many infections caused by these bacte-
ria is so challenging. Our study revealed how difficult is to
eradicate the A. baumannii biofilm and indicated the differ-
ence between the characters of the surface where it has been
formed. The peptides tested in our study turned out to be
weaker antimicrobials than antibiotics. However, it should
be noted that peptides as positively charged molecules may
bind to the surface of polystyrene and therefore, their
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antimicrobial activity may be underestimated. This notwith-
standing, the compounds constitute a suitable basis for the
design of new compounds with improved activity.
Moreover, they proved to be more effective in combinatory
approach. Many studies have shown their capability of bind-
ing to indwelling devices, thus making them resistant to bio-
film formation. That is why the research on this particular
group should be continued, with the focus on their biological
and physicochemical characterization.
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