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Abstract

Purpose of review: In this review, we discuss novel strategies that allow for extended 

preservation of vascularized composite allografts and their potential future clinical implications for 

the field of vascularized composite allotransplantation (VCA).

Recent findings: The current gold standard in tissue preservation – static cold preservation on 

ice – is insufficient to preserve VCA grafts for more than a few hours. Advancements in the field 

of VCA regarding matching and allocation, desensitization, and potential tolerance induction are 

all within reasonable reach to achieve; these are, however, constrained by limited preservation time 

of VCA grafts. While machine perfusion holds many advantages over static cold preservation, it 

does not significantly elongate the preservation time. More extreme preservation techniques, such 

as cryopreservation approaches, are, however, specifically difficult to apply to composite tissues as 

the susceptibility to ischemia and cryoprotectant agents varies greatly by tissue type.

Summary: In the current scope of extended preservation protocols, high subzero approaches of 

VCA grafts will be particularly critical enabling technologies for the implementation of tolerance 

protocols clinically. Ultimately, advances in both preservation techniques and tolerance induction 

have the potential to transform the field of VCA and eventually lead to broad application of 

reconstructive transplantation.
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INTRODUCTION

Vascularized composite allotransplantation (VCA) has increasingly become a viable clinical 

reconstructive option for the treatment of patients with amputations or devastating 

craniofacial tissue defects (1,2). To date, more than 200 patients worldwide have benefited 

from VCA, the majority receiving hand/upper extremity or face transplants. However, the 

potential impact of VCA is exponentially larger: currently, there are about 2 million people 

living with limb loss in the U.S. 185,000 amputations are performed annually with 83,000 

amputations due to trauma alone that could potentially benefit from VCA (3–5). In addition, 

there are 3 million facial injuries in the U.S. per year with about 0.5% (15,000) cases 

considered catastrophic without any conventional reconstructive option. In particular, 

reconstruction of functional subunits such as eyelids, ears, lips, or the nose is extremely 

challenging and in many instances after multiple surgeries the outcomes are poor (6,7). On 

top of these civilian numbers, there have been approximately 1600 wounded warriors that 

sustained amputations and 4000 with craniofacial injuries in the recent conflicts in 

Afghanistan and Iraq. The total economic cost of these conditions is estimated at about $3 

billion (8).

In 2017, 5.8 million reconstructive procedures were performed in the United States alone 

according to the American Society of Plastic Surgeons (9). In order to achieve the goal of 

optimal aesthetic and functional outcome, reconstructive surgeons operate via the principle 

of restoring “like with like”. Complex tissue injuries involving multiple tissue types, e.g. 

craniofacial and upper limb injuries, are, however, rarely sufficiently reconstructed by 

autologous tissue transfers and are ideally reconstructed by composite tissue allografts. VCA 

combines expertise of reconstructive surgery and organ transplantation, filling in the gap for 

treatment of complex tissue injury.

However, VCA currently faces two main hurdles that have limited its widespread 

application, including i) optimization and minimization of immunosuppression protocols as 

well as ii) logistical and matching problems. With respect to immunosuppression, an 

advanced understanding of alloimmunity related to solid organ transplantation has paved the 

way for VCA. Initial opinion that skin-containing VCA would require alarming high doses 

of immunosuppression have been proven obsolete (10–12). Nevertheless, the unfavorable 

risk-benefit ratio of life-long immunosuppression for a life-enhancing rather than life-saving 

treatment drives research in the development of immune tolerance induction specifically via 

mixed-chimerism protocols (13–18).

Described first in the 1950’s (19), transplant tolerance refers to a state of donor-specific 

immune hypo- or unresponsiveness. In kidney transplantation, tolerance induction has been 

successfully achieved clinically through the induction of mixed chimerism subsequent to a 

nonmyeloablative preoperative regimen combined with donor bone marrow transplantation. 

These protocols allow for long-term allograft survival without the need for maintenance 
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immunosuppression (20). As tolerance and decreased need for immunosuppressive 

medication would allow for mitigation of drug-related side effects, the potential to expand 

prospective VCA recipients is substantial. However, this requires time preoperatively to 

apply a conditioning regimen prior the transplant, which would necessitate longer 

preservation of the tissue for transplant. This cannot be achieved with the current static cold 

preservation technology in a cadaveric donor setting.

The matching of scarce VCA donor grafts to recipients is also complicated by small 

geographic allocation windows while working with strict biological and anatomical 

matching criteria. Close matching is critical for both graft acceptance and 

immunomodulation; however, with current time and distance constraints, many viable 

organs are unable to be allocated to the best-matched recipient in a timely manner and are 

thus either unused or transplanted into a less-ideal candidate (21,22). Beyond this, VCA 

grafts suffer damage from tissue necrosis during the preservation period and increased 

ischemia-reperfusion injury following transplantation (23–26). Another big roadblock in 

VCA allocation is the significant amount of presensitization present in potential recipients 

secondary to prior blood transfusions and reconstructive efforts (27,28). For these patients, a 

desensitization regimen would decrease morbidity associated with transplant and make these 

patients candidates for VCA. However, currently available desensitization strategies are 

confined to a living donor setting.

Optimal matching and allocation, preconditioning desensitization, and potential tolerance 

induction are all within reasonable reach to achieve, barred, however, by the time constraints 

associated with VCA. Thus, despite the tremendous need and potential of reconstructive 

transplantation, the transformational potential of VCA remains severely limited by short 

preservation times (29). In this review, we discuss novel strategies with the potential to allow 

for longer preservation of vascularized composite allografts and their potential future clinical 

implications for the field of VCA (Table 1).

PRESERVATION

In all fields of transplantation, organ viability is inextricably linked to transplant success. 

Since the first successful organ transplantation performed in 1954 by Dr. Joseph E. Murray, 

cooling organs has been the key element in maintaining organ viability during the period of 

organ recovery until transplantation. Organs are rapidly flushed with a cold preservation 

solution (4–10 degrees Celsius) and transported in an ice-filled box until transplantation, 

referred to as static cold storage (SCS). During cold ischemia, organs are deprived of 

oxygen, resulting in ischemic cell injury of nearly all cells triggered by adenosine 

triphosphate (ATP) depletion, impairment of mitochondrial respiratory function, and 

acidosis from glycolysis (30). Moreover, upon restoration of blood flow, cell injury and 

damaging pathways are further aggravated. This biphasic phenomenon is referred to as 

ischemia-reperfusion injury (IRI). In solid organ transplantation, ATP depletion prior to 

transplantation strongly correlates with delayed graft function and impaired post-transplant 

outcome (31). Though cold ischemia itself is harmful to the organ, hypothermia still has a 

central role in preservation; a decrease of 10 degrees Celsius slows down metabolism by 

factor 1.5 to 3 (32), thereby lowering the demand for oxygen and slowing down ATP 
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depletion. This provides a time window wherein organs are kept viable ex situ, i.e. a 

maximum of 4 hours in hearts and 12 hours in livers, while cold ischemia time for kidneys 

can be extended up to 24–36 hours (33–36). VCA grafts are, however, composed of 

biologically heterogeneous tissues (skin, vessels, nerves, muscles, bone and even bone 

marrow) originating from different embryological germ layers (37) with varying degree of 

susceptibility to ischemia. Hand and limb grafts are mainly composed of muscle tissue, the 

cells of which are known to have an increased susceptibility to cold ischemia due to high 

metabolic activity. Experimental limb allograft models have shown that the degree of muscle 

damage correlates with cold ischemia times and that irreversible myocyte damage occurs 

between 3 to 6 hours (38,39). Another cell type that is very easily and severely affected by 

cold ischemia are the endothelial cells lining the vasculature. Loss of endothelial cells 

disrupts the first vascular barrier which elects a site of pro-coagulation and inflammation 

(40). As a consequence of endothelial dysfunction, production of nitric oxide (a potent 

vasodilator) decreases resulting in poor tissue perfusion and hypoxia (41).

Machine perfusion

Over the last decade, machine perfusion has gained a lot of attention as an alternative 

method of organ preservation (or perhaps may become an essential counterpart to static 

preservation methods). While SCS is sufficient to preserve good quality donor organs, it is 

less suitable to preserve or recover suboptimal donor grafts that are being used more 

aggressively in order to meet the worldwide donor shortage (42,43). During machine 

perfusion, organs are mechanically perfused via the vasculature with a perfusion solution 

(either oxygenated or non-oxygenated, and cellular or acellular). As compared to SCS, 

machine perfusion has the opportunity to provide essential nutrients, “wash out” toxins, 

resuscitate the organ, and assess its viability prior to transplantation. In the literature, the 

different methods of machine perfusion are mainly classified by the temperature at which it 

is used: hypothermic (0–12°C), mid-thermic (13–24°C), subnormothermic (25–34°C), or 

normothermic machine perfusion (35–38°C)(44). In 2010, Guarrera et al. published the first 

clinical series of hypothermic machine preservation (HMP) in human liver transplantation 

(45) showing feasibility and safety of the technique. Whether oxygenated HMP is superior 

to SCS in reducing ischemic cholangiopathy after transplantation is currently being 

investigated in a clinical trial (ClinicalTrials.gov NCT02995252). Subnormothermic 

machine perfusion of both rat and human livers prior to transplantation has shown to reverse 

ischemia-induced damage to the liver (46–48). Recently, normothermic machine perfusion 

(NMP) of human donor livers was compared to conventional SCS in a randomized 

controlled trial (49). Friend and colleagues found that NMP resulted in 50% lower levels of 

graft injury, a 50% lower rate of organ discard, and a 54% longer mean preservation time.

In 2011, Constantinescu et al. applied the technique of extracorporeal blood perfusion to a 

VCA graft by preserving amputated extremities for 6 hours in a porcine model (50). They 

found that muscle stimulation was possible throughout the entire perfusion, whereas a 

complete loss of response was noted in static cold preserved controls. In 2016, Ozer et al. 

published perfusion of a swine limb with autologous blood at 27–32 degrees Celsius up to 

24 hours (51). While neuromuscular stimulation remained intact until the end of 

preservation in the machine perfusion group, a neuromuscular response was absent in 
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control limbs (preserved at 4 degrees for 6 hours). The same research group was the first to 

report the use machine perfusion to preserve a human VCA graft. In a report of 5 human 

limbs maintained for 24 hours with ex situ perfusion at 30–33 degrees Celsius (52), the 

neuromuscular electrical stimulation continually displayed contraction until the end of 

perfusion, and the histology showed no myocyte injury. In this study, cold ischemia time was 

limited to an average of 76 minutes, ranging between 40 to 100 minutes. Machine perfusion, 

therefore, can be considered promising to extend the current preservation time up to several 

hours.

Cryopreservation

Cryopreservation is an important enabling technology for the clinical utilization of blood 

components/transfusions, bone marrow transplantation, artificial insemination, and in vitro 
fertilization (53,54) and will play an essential role in overcoming the many barriers facing 

organ transplantation (55). Cryopreservation is the use of very low temperatures (typically ≤

−80°C) to dramatically reduce enzymatic and chemical activity thereby slowing down 

cellular functions while maintaining three dimensional and cellular structures of living cells 

and tissues (56). At low enough temperatures, such as that of liquid nitrogen (−196°C), all 

biological and chemical processes are suspended and can be, at least theoretically, kept 

indefinitely (53). However, conventional cryopreservation is fatal to most biologics for 

several reasons. First, during freezing, water is trapped as ice, thereby changing the 

concentration of solutes in the extracellular milieu, and cell membrane properties are altered 

as cells/tissues are exposed to non-physiological conditions (57). Further, intracellular ice 

formation can rupture cells, and extracellular ice can result in severe mechanical stress. 

Thus, classical cryopreservation methods can cause damage to cells and tissues by 

mechanical factors, solute, and chilling effects, with the formation of intracellular ice an 

ever-present risk.

A critical consideration for any cryopreservation protocol is the inclusion of cryoprotectant 

agents (CPA) which can mitigate many of the aforementioned stressors through alteration of 

the freezing behavior. In 1948, glycerol was accidently discovered to have cryoprotective 

abilities as it protected spermatozoa from freezing injury (58). Over the years, many agents 

(i.e. trehalose, sorbitol, 1,4-butanediol) have proven to be beneficial in reducing cryo-injury. 

The use of many CPAs (i.e. dimethyl sulfoxide [DMSO], ethylene glycerol, 2,3-butanediol) 

is, however, limited due to the chemical toxicity at high concentrations or at certain 

temperatures. Moreover, even the process of loading/unloading of the most effective CPAs 

can be challenging; osmotic changes occur as the agents enter the cell more slowly than 

water which can lead to cell injury and death. The work of Pegg et al. thoroughly 

demonstrates the importance of CPA use during cryopreservation (56).

In overcoming the issues observed with cryopreservation, vitrification is a promising 

alternative approach whereby cells/tissues are cooled to cryogenic temperatures in the 

absence of ice (59). In some cases, vitrification shows a clear improvement in cell viability 

(60) as compared to cryopreservation in the presence of ice (reviewed in (61)). However, 

vitrification protocols require high molarity cryoprotectant agents which further complicate 

the osmotic effects and increase the risk of cryoprotectant toxicity (59). Moreover, 
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vitrification is severely limited by the extremely high cooling/heating rates required to 

achieve the glassy state, to inhibit the growth of crystalline structures, and to prevent 

fracturing. Another form of preservation that heavily relies on the use of chemical and 

physical compounds is desiccation. During desiccation, all water is subtracted from tissue by 

addition of a hydroscopic agent (i.e. cellulose, zinc oxide) that can retract and hold the 

water, leaving the tissue in a state of extreme dryness. In various plants and animals (e.g. 

algae, seeds, certain shrimp, frogs), desiccation is used to suspend metabolism to overcome 

extreme environmental stressors (62). Although this method is successfully used to preserve 

food, currently it needs further optimization to preserve mammalian cells (63). In summary, 

new methods and cryoprotectant agents are constantly being investigated to overcome the 

various mechanisms of injury as a result of preservation.

Successful cryopreservation of composite, heterogeneous tissue is, however, much more 

complicated, and reports on VCA cryopreservation are scarce. Rinker et al. reported 

transplantation of 10 cryopreserved rodent epigastric flaps that were perfused with DMSO/

trehalose, cooled in a controlled fashion to −140 degrees Celsius, and stored for 2 weeks 

(64). The authors reported survival of all 10 transplant recipients, ranging from 7 to 15 days 

with one outlier of 60 days of survival. Wang et al. reported successful cryopreservation 

(with DMSO stored for 2 weeks at −140 degrees Celsius) and replantation of Syme’s 

amputated (above the ankle) rodent limbs after up to three months. However, all above-knee 

amputated limbs failed upon replantation as the limbs became immediately edematous upon 

restoration of blood flow resulting in blood vessel compression. The amount of muscle in 

both graft types was the discriminating factor in transplant success. Nearly a decade later, 

Arav et al. reported ‘directional freezing’ (with DMSO, ethylene glycerol and trehalose, at 

−80 degrees Celsius for 7 to 30 days) and replantation of 6 above-knee amputated limbs, but 

authors were unable to show long term survival (maximum survival 3 days) (65). The 

variable response of different tissue types to freezing, thawing, and CPAs complicates the 

quest for one generalized protocol for cryopreservation of all VCA grafts.

High Subzero Storage

Whereas cryopreservation protocols can be very damaging to diverse biologics, several 

specimens in nature have developed ingenious ways of halting biological activity and 

entering a state of “suspended animation.” For example, the freeze-tolerant wood frogs can 

survive temperatures as low as −18 degrees Celsius for months without injury (66). One 

critical feature of freezing survival is the rapid mobilization of hepatic glucose, which 

enables cells and tissues to withstand the stress caused by freezing and thawing (67). In 

many ways, CPAs are used via similar principles. Thus, new methods aimed at drawing 

lessons from nature – such as leveraging high subzero temperatures or mimetic CPAs – hold 

great promise.

A novel alternative to cryopreservation is supercooling (ice-free), which stores cells, tissues, 

and organs at high subzero temperatures while also avoiding any phase transition. In contrast 

to conventional cryopreservation and vitrification, the temperature range of supercooling is 

just below zero (68,69). Even the slightest temperature drop below zero, −0.8 degrees 

Celsius, greatly improves ATP content when compared to livers stored at 4 degrees Celsius 

Burlage et al. Page 6

Curr Opin Organ Transplant. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(70). In a recent study, our group was able to demonstrate successful transplantation of rat 

livers after 4 days of supercooling at −6 degrees Celsius with long term survival (68). An 

essential component to this protocol was the inclusion of the glucose derivative 3-O-methyl-

d-glucose (3-OMG) (71). 3-OMG is a viable mimetic alternative to the glucose used by 

freeze-tolerant wood frogs as it is relatively metabolically inert and thus can accumulate in 

the intracellular environment. Our group is currently working on a protocol to apply the 

technique of supercooling to VCA grafts. While promising, supercooling is an unstable 

equilibrium state and holds the risk of accidental ice formation. The smallest impurity or 

vibration could therefore initiate freezing of the whole system. Thus, other high subzero 

preservation techniques which aim for an equilibrium state are regaining interest (72). For 

example, a technique originally proposed by Farrant (73) and later termed “liquidus 

tracking” uses progressively higher concentrations of CPAs during cooling to depress the 

solution’s freezing point and eliminate the possibility of ice formation. Using this technique, 

subzero temperatures can be achieved without the unwanted risk factor of accidental ice 

formation (74).

CONCLUSIONS

Ultimately, when we talk about bringing transplantation and specifically VCA to new 

frontiers, TIME will be our most precious resource. Such additional time to prolong viability 

of organs can be bought currently by new developments and innovations in machine 

perfusion, cryopreservation, and organ banking.

This gained time will allow us to improve current processes in all of transplant but 

particularly in the field of VCA. Specifically, organ preservation would allow us to narrow 

the gap between supply and demand in transplantation. Having extended organ preservation 

and organ banking strategies in place will simplify logistics and enhance matching; this is 

particularly important for VCA, in which size, age, gender, and skin tone must be accounted 

for in addition to blood type and immunological markers to enable restoration of “like-with-
like” tissue. In addition, we would be able to further enhance matching by exchanging VCAs 

and tissue grafts over a larger geographic area.

While VCA is most certainly a life altering procedure that greatly improves the quality of 

life of its recipients, it is not necessarily a lifesaving therapy. Commitment to lifelong 

immunosuppression is therefore a concession that must be carefully weighed against all the 

potential benefits of VCA. We support the belief that for VCA to become common practice, 

the clinical implementation of immunosuppression minimization or eventually successful 

tolerance protocols are vital. With advances in organ preservation we will be able to convert 

transplant practice and fundamentally change the field from an acute setting procedure to 

elective surgery. This would enable us to routinely apply tolerance protocols by allowing for 

recipient preconditioning in a cadaveric donor setting. And finally, cryopreservation and 

organ banking will facilitate pre-transplant desensitization strategies and allow us to 

overcome issues related to preformed antibodies and ABO incompatibility. Furthermore, this 

is probably only a small portion of possibilities that would arise – we would be able to 

explore entirely novel concepts of tolerance induction, such as immune engineering, off the 

shelf availability of donor-derived immune and stem cells for tolerance induction, or the 
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establishment of immune vaccination in the field of organ transplantation. With such novel 

tolerance strategies in place, we would be able to further expand the indications for VCA. 

Though further trials are still needed to prove the feasibility, safety, and superiority of 

machine perfusion over static cold preservation of VCA grafts, the technique can be used as 

part of extended storage protocols, which can be applied to extend the preservation time 

more profoundly. Ultimately, advances in preservation techniques and tolerance induction 

have the potential to transform the field of VCA and eventually lead to broad application of 

reconstructive transplantation.
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KEY POINTS:

• The current gold standard in tissue preservation is insufficient to preserve 

VCA grafts for more than a few hours, creating a technological bottleneck in 

making VCA common practice.

• Cryopreservation of composite tissue is complicated by the varying degree of 

susceptibility to ischemia and cryoprotectant agents.

• Extended preservation protocols, particularly high subzero approaches, of 

VCA grafts will be critical enabling technologies for the implementation of 

tolerance protocols clinically.
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TABLE 1:
Schematic overview of several different preservation techniques.

Abbreviations used; C: Celsius, CPAs: cryoprotectant agents, VCA: vascularized composite 

allotransplantation.

Static cold storage Machine perfusion High subzero preservation Vitrification

Description
Current method of 

preservation in cold 
solution on ice

Continuous perfusion 
with solution

Storage below the freezing point 
without ice formation

Fast enough 
transformation of a 

substance into a glass 
state

Mechanism Cold Cold or warm, wash out 
toxins, (non-)oxygenated Cold Cold

Temperature range +4 °C +37 to +10 °C −4 to −6 °C −120 to −196 °C

Thermodynamic state Equilibrium Equilibrium Non-equilibrium Non-equilibrium

Maximum storage time Hours Hours Days to weeks Years

Clinical implications for Vascularized Composite Allotransplantation

Global matching options No No Yes Yes

Tolerance induction No Maybe Yes Yes

Scalability options High Low High Difficult

Difficulties for Vascularized Composite Allotransplantation

Main problems Short storage time Storage time and labor 
intensive Not optimized for VCA yet

Toxic CPAs, 
devitrification 

damage
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