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Abstract

Motivation: Most automatic functional annotation methods assign Gene Ontology (GO) terms to

proteins based on annotations of highly similar proteins. We advocate that proteins that are less

similar are still informative. Also, despite their simplicity and structure, GO terms seem to be hard

for computers to learn, in particular the Biological Process ontology, which has the most terms

(>29 000). We propose to use Label-Space Dimensionality Reduction (LSDR) techniques to exploit

the redundancy of GO terms and transform them into a more compact latent representation that is

easier to predict.

Results: We compare proteins using a sequence similarity profile (SSP) to a set of annotated train-

ing proteins. We introduce two new LSDR methods, one based on the structure of the GO, and one

based on semantic similarity of terms. We show that these LSDR methods, as well as three existing

ones, improve the Critical Assessment of Functional Annotation performance of several function

prediction algorithms. Cross-validation experiments on Arabidopsis thaliana proteins pinpoint the

superiority of our GO-aware LSDR over generic LSDR. Our experiments on A.thaliana proteins

show that the SSP representation in combination with a kNN classifier outperforms state-of-the-art

and baseline methods in terms of cross-validated F-measure.

Availability and implementation: Source code for the experiments is available at https://github.

com/stamakro/SSP-LSDR.

Contact: s.makrodimitris@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many algorithms have been proposed to predict Gene Ontology

(GO) (Ashburner et al., 2000) terms for a protein based on defined

relationships to a set of proteins already annotated with GO terms.

Protein sequence is the most widely-used predictor of function. In

fact, over 90% of the methods participating in the second Critical

Assessment of Functional Annotation (CAFA) use sequence informa-

tion (Jiang et al., 2016), by calculating either sequence similarities

between proteins [e.g. ( Cozzetto et al., 2013; Gong et al., 2016;

Lan et al., 2013)], or other sequence properties, such as k-mer fre-

quencies (Cozzetto et al., 2013) and enrichment of certain sub-

sequences in proteins performing a specific function (Cao and

Cheng 2016). Most automatic function prediction (AFP) methods

use the ‘Guilt by Association’ principle to predict annotations:

assigning a GO term to a query protein if this GO term is present in

proteins that are ‘similar’ to the query, by some definition of similar-

ity. For instance, the Multi-Source-kNN (MS-kNN) method (Lan

et al., 2013) applies a weighted averaging of the functions of the k

proteins most similar to the query, where similarity is defined as se-

quence similarity, co-expression or protein–protein interaction.

Other methods construct networks with proteins as nodes, where

‘similar’ proteins are connected by an edge, and annotate queries
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based on the functions of their neighbors in the network [e.g.

(Kourmpetis et al., 2010; Youngs et al., 2013)].

An alternative view is to describe a protein with a pre-defined set

of measurements (a feature vector) and use machine learning techni-

ques to ‘learn’ which proteins perform a specific function. Choosing

a meaningful feature representation for proteins is, however, not

trivial. The CombFunc method (Wass et al., 2012) used different

data sources to generate features, which include the lowest BLAST

E-value for the query, the percent identity between the query and

the top BLAST hit, the fraction of co-expressed proteins that per-

form a given function, etc. These features are then fed to a support

vector machine (SVM) classifier. More recently, DeepGO

(Kulmanov et al., 2017) used a deep neural network whose feature

vectors consisted of all sub-sequences of length 3 of a protein, as

well as features derived by learning an embedding of protein–protein

interaction networks (Alshahrani et al., 2016).

We take a different view on defining features to represent a pro-

tein. Instead of describing the protein itself (as, e.g. DeepGO does),

or extracting features from closely related proteins (BLAST hits or

network-based features), we propose to use a feature representation

of a protein based on its sequence similarity profile (SSP) to all anno-

tated training proteins, known as a (dis)similarity-based representa-

tion in machine learning (PeRkalska and Duin, 2002). The use of

similarity-based representations of proteins in the form of an SSP

was introduced by Liao and Noble for predicting protein families

(Liao and Noble, 2003), but has not been used for multi-label AFP

before. Although the ability to identify functional similarities

decreases with decreasing sequence similarity (Wass and Sternberg,

2008), lower sequence similarity might point toward functional dis-

similarity, and thus should lower the likelihood for GO terms associ-

ated with low-similarity proteins. Hence, we wanted a feature

representation, like the SSP, that exploits functional relationships

across all levels of similarity, and not only at high similarity, as cur-

rent AFP methods do.

In addition, the CAFA benchmarks point out that especially the

Biological Process ontology (BPO) is hard to predict for many spe-

cies (Jiang et al., 2016). This issue is seen with many AFP algorithms

and might be partly due to the nature of the GO itself. Although

intuitive for humans, GO terms remain difficult to predict with

automatic methods. We suspect that this is because the GO contains

so many terms, that it becomes hard to differentiate between all of

them. Also, GO terms are not independent of each other, due to the

directed acyclic graph (DAG) structure of the GO.

A way to overcome the complexity of the GO as well as the noise

in the annotations might be to reduce the number of target variables

that an AFP algorithm needs to predict, by taking advantage of the

redundancy imposed by the DAG. Khatri et al. used singular value

decomposition (SVD) to obtain principal directions in the GO-term

space and filter out noisy GO annotations of human proteins and

predict novel ones (Khatri et al., 2005). Other methods inspired by

text processing, use topic modeling, where GO terms are seen as

words that stem from specific latent variables called topics

(Masseroli et al., 2012). The topics can be interpreted as a lower-

dimensional representation of functions. All the above methods use

dimensionality reduction to discover new annotations for proteins

that already have some GO terms annotated to them.

To (also) be able to predict annotations for proteins that do not

have annotations, we propose to transform the GO terms into a

lower-dimensional space using Label-Space Dimensionality

Reduction (LSDR) techniques and train a machine learning method

in this reduced space. Two such existing LSDR methods, namely

Principal Label-Space Transformation (PLST) (Tai and Lin, 2012)

and Conditional Principal Label-Space Transformation (CPLST)

(Chen and Lin, 2012), are both based on an SVD of the labels. Chen

and Lin showed that, when combined with linear regression, CPLST

slightly outperforms PLST in predicting protein localization and

protein family (Chen and Lin, 2012).

PLST and CPLST are general methods that can in principle be

applied to any multi-label problem, including AFP. However, in the

case of the GO, further information is available concerning

the labels, namely that they are organized in a hierarchy. Exploiting

this extra piece of information is likely to lead to better dimensional-

ity reduction and, as a result, better performance. This observation

was first made by Bi and Kwok, who introduced an LSDR technique

that finds latent representations in which GO terms contribute to

each component in a way similar to their ancestors in the DAG (Bi

and Kwok, 2011).

The DAG-aware method by Bi and Kwok has three disadvan-

tages. First, it does not take the distribution of the labels in the train-

ing set into account and projects only using information about a

term’s ancestors. Second, it ignores the fact that GO terms can share

information even if they are not connected by an edge in the DAG.

For instance, two children of a GO term typically describe two

related functions. Finally, the method uses a computationally

demanding algorithm to ensure that the final predictions respect the

GO hierarchy.

We address these disadvantages by introducing an LSDR method

that is both GO-aware and label-distribution-aware. Then, we take

the notion of GO-awareness further by combining label distribu-

tions with GO-term semantic similarity (Pesquita et al., 2009), so

that similar terms are treated similarly regardless of whether they

are connected in the DAG. Also, to ensure that our predictions are

consistent with the GO, we simply propagate predicted annotations

toward the root, which is much more efficient.

In summary, we apply dimensionality reduction schemes for the

GO label-space to AFP and propose two new reduction schemes

that incorporate the structure of the GO. Also, we introduce a new

way to represent proteins encompassing the similarity to all other

proteins, the SSP.

2 Materials and methods

2.1 Notation
Let Ntrain denote the number of training proteins. These proteins are

represented by a feature matrix X train 2 R
Ntrain�Nfeat , whose i-th row

contains the feature vector xi of the i-th training protein, and Nfeat is

the dimensionality of the feature vector. The GO annotations of the

i-th protein are represented by a binary label vector yi 2 f0; 1g L,

where yij ¼ 1, if protein i is annotated with GO term j, and L is the

number of GO terms (labels) in one of the three GO sub-ontologies.

Further, Y train 2 f0; 1gNtrain � L represents the corresponding label

matrix, whose i-th row contains yi.

Given a set of Ntest test proteins, represented by feature matrix

X test 2 R
Ntest�Nfeat , we define as Y test 2 f0; 1gNtest � L the matrix

containing the corresponding label vectors. For test protein i, the

annotations predicted by an AFP algorithm are represented by the

label vector ŷ i 2 f0; 1g L.

2.2 Sequence similarity profile (SSP)
We represent each protein i in the dataset as a vector xi 2 R

Ntrain

whose j-th element contains the sequence identity between i and the

j-th training protein. In other words, each protein is represented by a

SSP to all proteins in the training set. This profile is used as a feature
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representation in combination with a k nearest neighbors (kNN)

classifier because it is relatively simple and efficient and does not

need to be trained separately for each GO term. The posterior for

each GO term l then becomes:

P yil ¼ 1 j xið Þ ¼
P

j 2 NSSP
k
ðiÞfyjlg

k
(1)

where NSSP
k ið Þ represents the kNN in the training set for protein i

using Euclidean distance in the SSP space.

2.3 Label-space dimensionality reduction (LSDR)
In general, the LSDR workflow can be summarized as follows:

Transform the label matrix Y into a lower-dimensional matrix

Y 0 2 R
Ntrain �L

0
, where L

0
< L, using a transformation matrix T, so

that Y
0 ¼ Y � T.

The new label vectors y0 2 R
L
0

are no longer necessarily binary,

so a multi-variate, multi-target regression model f is trained, so that

f xið Þ ffi y
0
i.

For every test vector x 2 R
Nfeat , calculate its predicted latent

function representation ŷ0 ¼ fðxÞ.
Obtain a posterior score for the test protein being annotated

with each of the L GO terms using the inverse of the transformation

of the first step, scoreðxÞ ¼ ŷ0T�1 2 R
L. Each element of the score

vector contains a value (not necessarily a probability) that reflects

how certain the algorithm is about the assignment of the corre-

sponding GO term to the protein.

LSDR is incorporated into AFP by predicting y0 instead of y.

After applying the inverse transformation to y0 to obtain y, to ensure

that the predictions respect the GO hierarchy, we transform the pos-

terior score for a term l as follows:

score xilð Þ ¼ maxfscore xilð Þ; max
t2Children lð Þ

fscore xitð Þgg (2)

The scores are updated per GO level starting from the most dis-

tant terms to the root. This guarantees that the scores are consistent

with the hierarchy.

We introduce three existing LSDR methods (PLST, CPLST and

DAG) and two new ones (GOAT and SEM).

2.3.1 PLST

PLST (Tai and Lin, 2012) applies SVD on the label matrix Y

[Equation (3)], after transforming it so that each column has zero

mean:

Y ¼ URVT ; U 2 R
Ntrain �Ntrain ;R 2 R

Ntrain �L; V 2 R
L � L (3)

More specifically, U and V are unitary matrices, whose columns

contain the eigenvectors of YYTand YTY , respectively, also known

as left and right singular vectors of Y. R is a diagonal matrix, whose

diagonal elements correspond to the singular values of Y, which are

equal to the square roots of the eigenvalues of YYTand YTY . The

transformation matrix TPLST consists of the columns of V corre-

sponding to the L’ largest singular values (L’ principal right singular

vectors).

2.3.2 CPLST

The CPLST (Chen and Lin, 2012) matrix TCPLST has as columns

the L’ principal right singular vectors of the matrix

YTXðXTX þ kIÞ�1XTY , where k is a regularization parameter and

ðXTX þ kIÞ�1XT ¼ XþðkÞ is the left regularized pseudo-inverse of X.

By incorporating the term XXþðkÞ, CPLST takes into account the

distribution of the labels as well as the distributions of the features,

i.e. the labels are projected onto directions where both the variance

of the labels (as in the PLST) as well as the correlation between the

labels and the features is large.

2.3.3 DAG

In (Bi and Kwok, 2011) a matrix Ganc 2 R
L � L is defined, such that

Gancij ¼ 1 if i ¼ j or j is an ancestor of i in the DAG defined by the

GO. The labels are then transformed based on the matrix TDAG con-

sisting of the L’ principal right singular vectors of Ganc. This trans-

formation projects related GO terms toward similar directions. In

their testing phase, Bi and Kwok employed an iterative algorithm to

ensure that the predictions respect the GO hierarchy. Here, we

obtain GO-consistent predictions by applying Equation (2).

2.3.4 GOAT

We defined a matrix G 2 R
L � L such that Gij ¼ 1 if i ¼ j or i and

j are connected by an edge in the DAG and 0 otherwise. The labels

are then transformed based on matrix TGOAT , consisting of the L’

principal right singular vectors of Y �G. This transformation

attempts to maintain directions of high variance in the label-space,

while projecting related GO terms toward similar directions.

2.3.5 SEM

As an alternative approach to capture the similarity between GO

terms, we used Resnik’s definition of semantic similarity (Resnik,

1995) to calculate a similarity score between each pair of GO terms

[Equation (4)].

sim l; l
0� �
¼ max

c 2 ancðl; l0 Þ
f�log P cð Þð Þg (4)

where ancðl; l
0 Þ is the set of common ancestors of GO terms l and l

0
,

and P cð Þ is the frequency of term c in the training set. All pairwise

similarities between GO terms were computed and stored in a simi-

larity matrix S 2 R
L � L. Finally, we applied LSDR using trans-

formation matrix TSEM whose columns correspond to the L’

principal right singular vectors of Y � S.

2.4 Baseline methods, evaluation and datasets
We compared SSP to three baseline methods. Two are based on

BLAST hits, TRANSFERBLAST and CAFABLAST, and the third is

the sequence-based part of MS-kNN (Lan et al., 2013). MS-kNN

performed best in most CAFA2 benchmarks, using sequence infor-

mation only for all species but human. Details of these methods are

provided in Supplementary Material (SM1). We studied the effects

of LSDR on SSP, TRANSFERBLAST and MS-kNN.

We compared the methods using the protein-centric F-measure

(Fp), Area under the Precision-Recall Curve (AUPRCp) and

Semantic Distance (SDp) and the term-centric F-measure (Ft) and

Area under the ROC curve (AUROCt). Definitions of these metrics

can be found in Supplementary Material SM2.

We tested the methods on three different datasets: the targets

of CAFA2 from the nine species with the most target proteins

(Supplementary Material SM3), the preliminary CAFA3

Arabidopsis thaliana targets released by the organizers

(Supplementary Material SM4), and the dataset containing all

A.thaliana proteins with experimental and/or computational anno-

tations (cross-validation dataset, Supplementary Material SM5). In

all cases we trained and tested all methods only on the target species

(intra-proteome annotation), as motivated in Supplementary

Material SM6 and Supplementary Figure S16. The parameters of all
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algorithms were optimized for each dataset using cross-validation

(Supplementary Material SM7).

3 Results

3.1 LSDR improves CAFA performance
We evaluated the effect of the five LSDR techniques on SSP,

MS-kNN and TRANSFERBLAST (Table 1 and Supplementary Figs

S1–S5, Supplementary Material SM3) using 860 proteins from the

CAFA2 data. LSDR improves the performance of all three algo-

rithms for all metrics except for Ft, where the improvement is evi-

dent only for TRANSFERBLAST. GO-aware LSDR techniques

achieve slightly better performance on SDp, a metric that rewards

more meaningful predictions and punishes shallow annotations,

with SEM achieving the best SDp for all the methods, although the

differences are small.

We also tested our methods on the preliminary CAFA3 dataset

for Arabidopsis, which is the species with the most targets in this

test set (137) (Supplementary Material SM4, Supplementary Figs

S6–S10 and Table S1). The results follow a pattern similar to that of

CAFA2, with LSDR considerably improving SDp and AUROCt for

all three algorithms. For most cases, any AFP algorithm combined

with LSDR performs at least on par with, if not better, than the

standalone AFP algorithm. It should be noted that SSP—with or

without LSDR—achieves much better Fp and AUPRCp than the

baselines in this plant-only dataset, while doing slightly worse than

MS-kNN on SDp.

3.2 Similar cross-validation and CAFA performances
To better compare LSDR methods among each other, we used a

larger dataset containing 7834 A.thaliana proteins with experimen-

tal or computational BPO annotations and repeated the evaluation

using cross-validation (Supplementary Material SM5,

Supplementary Figs S11–S15 and Table S2). SSP is the top-

performing non-LSDR method in this dataset based on three out of

the five evaluation metrics (Fp, AUPRCp and Ft) and is on par with

the best method based on SDp. CAFABLAST achieved the top

AUROCt with SSP ranking second. Similar to the CAFA2/3 experi-

ments, the use of LSDR, and especially GO-aware LSDR, also gives

a performance boost on this A.thaliana experiment, with the excep-

tion of Ft.

Supplementary Table S4 (Supplementary Material SM5) shows

the best performance achieved in each of the three datasets (CAFA2/

3, A.thaliana) regardless of the AFP method. The F-measure and the

AUPRC are affected most by the fraction of positive examples in

each class (Powers, 2011), which varies a lot among the datasets.

Therefore, comparing the values of these metrics is not straightfor-

ward. The same holds for SDp, as the Information Content (IC) of

terms also changes per dataset. The AUROCt is the only metric that

allows for a fairer comparison. Based on that, CAFA2 and CAFA3

performances are similar to that in the cross-validation dataset as

obtained with cross-validation (0.77, 0.7 and 0.73, respectively).

3.3 Ranking of methods robust to evaluation set-up
Since a direct comparison of the performances of methods across

datasets is not trivial, we investigated how sensitive the relative

ranking of methods was to different evaluation schemes. We calcu-

lated the rank correlation between the performances of all AFP-

LSDR combinations across the three different datasets

(Supplementary Material SM8, Supplementary Figs S17–S21). For

all metrics except for Ft, the correlations were positive, although not

always statistically significant. The CAFA3 and cross-validation

datasets demonstrate the highest similarity, as they contain proteins

from the same species. Furthermore, in our CAFA2 results there

were a lot of ties which were not observed in the other two datasets

and that is bound to have a negative effect on the rank correlations.

Since the CAFA3 dataset (containing only experimental annota-

tions) and the cross-validation dataset (containing in addition com-

putational annotations) gave a similar ranking of the methods, we

tested what happens if even more annotations were used. We add-

itionally included IEA annotations obtained from UniProt keywords

in our cross-validation dataset. Adding these annotations increased

Table 1. CAFA2 performance (rounded to two decimal places) of the tested algorithms (rows) on the 860 targets based on five different

evaluation metrics (columns), as well as the 95% confidence intervals after 1000 bootstraps

LSDR AFP method Fp" AUPRCp" SDp# Ft" AUROCt"

— CAFABLAST 0.14 [0.129, 0.144] 0.15 [0.144, 0.159] 27.36 [29.05, 39.02] 0.04 [0.043, 0.047] 0.75 [0.723, 0.746]

None SSP 0.27 [0.263, 0.280] 0.29 [0.287, 0.306] 25.07 [27.01, 34.70] 0.04 [0.038, 0.044] 0.55 [0.548, 0.564]

MS-kNN 0.27 [0.263, 0.279] 0.31 [0.300, 0.321] 25.05 [27.16, 34.93] 0.03 [0.036, 0.040] 0.55 [0.548, 0.563]

TRANSFERBLAST 0.15 [0.138, 0.156] 0.06 [0.060, 0.072] 37.64 [39.83, 50.89] 0.02 [0.025, 0.027] 0.50 [0.502, 0.507]

PLST SSP 0.28 [0.272, 0.289] 0.33 [0.317, 0.336] 24.90 [27.04, 34.78] 0.03 [0.038, 0.043] 0.77 [0.737, 0.764]

MS-kNN 0.29 [0.277, 0.294] 0.33 [0.320, 0.341] 24.72 [26.83, 34.42] 0.03 [0.034, 0.039] 0.77 [0.744, 0.768]

TRANSFERBLAST 0.24 [0.233, 0.251] 0.30 [0.292, 0.310] 26.98 [29.18, 38.01] 0.04 [0.041, 0.046] 0.75 [0.715, 0.738]

CPLST SSP 0.28 [0.273, 0.289] 0.33 [0.317, 0.336] 24.87 [27.06, 34.76] 0.04 [0.040, 0.045] 0.77 [0.742, 0.768]

MS-kNN 0.29 [0.277, 0.293] 0.33 [0.320, 0.341] 24.72 [26.85, 34.45] 0.03 [0.034, 0.039] 0.77 [0.745, 0.769]

TRANSFERBLAST 0.24 [0.237, 0.253] 0.30 [0.290, 0.310] 27.11 [28.91, 38.78] 0.04 [0.044, 0.048] 0.77 [0.739, 0.764]

DAG SSP 0.27 [0.265, 0.282] 0.32 [0.311, 0.330] 25.15 [27.13, 34.81] 0.03 [0.032, 0.037] 0.76 [0.734, 0.757]

MS-kNN 0.28 [0.275, 0.291] 0.33 [0.319, 0.339] 24.76 [26.93, 34.54] 0.03 [0.031, 0.036] 0.77 [0.741, 0.763]

TRANSFERBLAST 0.20 [0.190, 0.204] 0.24 [0.230, 0.251] 26.92 [28.95, 38.01] 0.02 [0.025, 0.030] 0.77 [0.740, 0.762]

GOAT SSP 0.28 [0.272, 0.289] 0.33 [0.317, 0.336] 24.90 [27.04, 34.80] 0.03 [0.038, 0.043] 0.77 [0.737, 0.763]

MS-kNN 0.29 [0.277, 0.293] 0.33 [0.320, 0.341] 24.71 [26.83, 34.44] 0.03 [0.034, 0.039] 0.77 [0.739, 0.762]

TRANSFERBLAST 0.24 [0.229, 0.247] 0.30 [0.289, 0.309] 26.97 [29.16, 37.99] 0.04 [0.041, 0.046] 0.75 [0.723, 0.746]

SEM SSP 0.28 [0.277, 0.293] 0.33 [0.321, 0.341] 24.68 [26.62, 34.34] 0.04 [0.043, 0.047] 0.77 [0.739, 0.765]

MS-kNN 0.29 [0.277, 0.293] 0.33 [0.321, 0.341] 24.65 [26.56, 34.27] 0.03 [0.038, 0.043] 0.77 [0.747, 0.770]

TRANSFERBLAST 0.28 [0.275, 0.290] 0.33 [0.318, 0.337] 24.76 [26.80, 34.37] 0.04 [0.042, 0.048] 0.77 [0.747, 0.769]

Note: The top performances for each metric are shown in bold. An upwards-pointing arrow next to the metric means that higher values are better and a down-

wards-pointing arrow that lower values are better.

Improving protein function prediction using protein sequence and GO-term similarities 1119

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty751#supplementary-data


the performance of all methods. The increases were statistically sig-

nificant for three out of the five metrics (Supplementary Material

SM9) but the relative ranking of the methods was not affected (rank

correlations >0.7, Supplementary Material SM9), again supporting

that LSDR improves AFP.

3.4 Tuning of LSDR parameters
For all methods and datasets, parameters were tuned to optimize for

AUPRCp. We repeated the cross-validation experiments on

A.thaliana while optimizing the parameters for term-centric criteria

and the ranking of the methods remained similar (Supplementary

Table S5, Supplementary Material SM10). Again, Ft was an excep-

tion to that pattern. The optimal values for parameter k of the

standalone SSP and MS-kNN are similar to their LSDR variants

(Supplementary Table S3, Supplementary Material SM5). The opti-

mal number of dimensions of the reduced label-space (L’) was found

to be either 500 or 1000, reducing the number of labels at least 2-

fold (Supplementary Table S3, Supplementary Material SM5), indi-

cating a minimum required number of dimensions to encapsulate

the expressiveness of the GO terms.

3.5 LSDR useful regardless of term informativeness
We were interested in whether the improvement of SSP-SEM in SDp

was because SSP-SEM performed better than SSP at more inform-

ative GO terms. We used the maximum path length to the ontology

root as a proxy for the informativeness of a term. Figure 1 shows the

distribution of the differences in AUROCt’s between SSP-SEM and

SSP for different path lengths of the individual terms (term inform-

ativeness). The variance is relatively large at all levels. Nevertheless,

SSP-SEM does perform significantly better than SSP for levels 1–11

(FDR < 0.05, Bonferroni-adjusted Wilcoxon rank-sum test) with

the improvement being consistently around 0.03. The differences

are not significant for levels 12 and 13 (FDR ¼ 1.0, Bonferroni-

adjusted Wilcoxon rank-sum test), but these levels also contain only

a few terms. From this we conclude that LSDR is on average useful

regardless of the informativeness of the terms. Although intuitive,

path length does not accurately capture the IC for a term. Therefore,

we also checked how SSP-SEM performs with respect to SSP when

ranking terms based on Resnik IC (Supplementary Fig. S22,

Supplementary Material SM11). From that, the same conclusions

can be drawn, i.e. the improvement is not depending on the IC of a

term.

3.6 LSDR captures GO term correlations
LSDR reduces the number of dimensions in the label-space by

exploiting the correlations between the GO terms, which potentially

improves the power of the term-specific predictors (they can be

learned from more examples in the created meta-terms). A schematic

explanation of this is given in Supplementary Figure S23

(Supplementary Material SM12). The predictions in the reduced

label-space do, however, not guarantee to comply with the GO hier-

archy. In the cross-validation dataset, the posterior scores need to be

corrected with Equation (2) for 57–70% of the cases depending on

the LSDR method (Supplementary Material SM13). Nevertheless,

after this correction, LSDR improves the performance of all AFP

methods. Interestingly, all LSDR methods generate a similar fraction

of inconsistent parent–child pairs, but GO-aware ones have a higher

total fraction of inconsistencies (Supplementary Table S6,

Supplementary Material SM13). This implies that GO-aware LSDR

methods tend to produce more confident predictions for the more

specific terms than for the generic ones (Supplementary Table S7,

Supplementary Material SM13). Also, GO-aware LSDR can identify

GO-term correlations, which cannot be done by generic methods

(Supplementary Tables S8–S9, Supplementary Material SM14).

As an example, consider GO term GO: 0009798 (axis specifica-

tion), which can be predicted reasonably well by both SSP and SSP-

SEM, having an AUROCt of 0.71 and 0.86, respectively (averaged

across the 3-folds). A term related to that is GO: 0009956 (radial

pattern formation). The two terms share a common ancestor namely

GO: 0007389 (pattern specification process) (Fig. 2), which is a par-

ent of the former and a grandparent of the latter. SSP, which essen-

tially treats each term independently, achieves random performance

on GO: 0009956 (AUROCt 0.499). However, SSP-SEM perform-

ance was 0.79 for this term, as it could exploit the semantic similar-

ity of the term with GO: 0009798.

3.7 SSP selects more informative proteins in

Arabidopsis
The optimal value of parameter k, as chosen with a double cross-

validation loop, was 1 for both SSP and MS-kNN (Supplementary

Material SM5, Supplementary Table S3), which means that both

methods predict annotations for a protein based on the single most

similar training protein. On average, over the three outer folds in

our cross-validation experiment, the training protein that is most

Fig. 1. Differences in term-centric AUROCt performance of SSP-SEM with re-

spect to SSP as a function of term specificity. At every path length from the

ontology root (x axis), the distribution of the difference in AUROCt for all

terms having that length is plotted using a violin plot. The medians of these

differences are designated by the black stripes. The difference between the

two medians is shown below the distribution and is marked in boldface if that

difference is significant with an FDR of 0.05. The black horizontal line at y¼0.0

indicates no difference in performance. The numbers on top of the figure de-

note the number GO terms with that particular path length

Fig. 2. Example subgraph of the BPO. SSP achieves reasonable performance

for term ‘axis specification’, but its performance is much worse on the other

branch of this subgraph. SEM can exploit the similarity of the terms in the

right branch to that on the left and achieve reasonable performance for both

branches
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similar to the test protein based on the SSP, NSSP
1 ðiÞ, is different from

the protein with the highest sequence similarity, Nseq
1 ðiÞ, in 61.6% of

the cases. Importantly, we found that in all three folds, when

NSSP
1 ið Þ 6¼ Nseq

1 ðiÞ, the Jaccard similarity of the GO annotations of i

and NSSP
1 ið Þ was significantly larger than the Jaccard similarity

of the GO annotations of i and Nseq
1 ið Þ (P-values ¼ 10�70;

10�78; 10�18 Wilcoxon rank-sum test for each fold,

Supplementary Fig. S24, Supplementary Material SM15). In other

words, the SSP representation selects more informative proteins

than the MS-kNN to predict functional annotations in this large

plant dataset.

As an example, consider query protein Q9SL78, whose best

BLAST hit in Arabidopsis is P33207. These two proteins have 48%

sequence identity and a BLAST E-value in the order of 10�74.

However, their Jaccard semantic similarity in the BPO is 0.0. They

are also dissimilar in the other two GO branches, as they are

involved in different reactions and are present in different cell com-

partments. On the other hand, SSP chose Q5EAE9 as the nearest

neighbor of Q9SL78. These two proteins have exactly the same GO

annotations: GO: 0016567 and GO: 0043161, and they both belong

to the ATL subfamily of the RING-type zinc finger family.

However, they have lower sequence similarity than the query and

P33207 (39%). Their profile similarity was more similar, though.

Importantly, they are both roughly equally similar (�40%) to all the

remaining members of the ATL subfamily, 30 of which were present

in the training set in this case. As shown in Supplementary Figure

S25 (Supplementary Material SM16), the proteins are similar on a

specific part of their sequence, which corresponds to a zinc finger

domain. Because SSP looks at the similarity to all proteins and not

the most similar one, and because many members of the same sub-

family were available in the training set, SSP was able to identify the

correct protein in this case.

4 Discussion

We presented new AFP methods that exploit the similarities between

GO terms (LSDR techniques) and between proteins (SSP representa-

tion) to predict GO annotations for new, unannotated proteins. We

benchmarked the new methods to MS-kNN (Lan et al., 2013), one

of the top-performing methods in CAFA2, as well as to BLAST-

based baseline methods, under different evaluation set-ups and met-

rics. We showed that LSDR remarkably improves CAFA perform-

ance of all tested methods in predicting BPO annotations and that

SSP outperforms the baselines in A.thaliana.

4.1 LSDR
AFP is a special case of multi-label learning due to the additional

constraint that the labels are by definition organized in a DAG struc-

ture. This is also known as structured output learning

(Tsochantaridis et al., 2004). Several solutions have been proposed

to tackle this problem.

Vens et al. train a separate binary decision tree classifier for

every GO term, but they use as training examples only the proteins

that are annotated with all the parents of the term (Vens et al.,

2008). This might lead to problems due to lack of negative examples

in tree-shaped sub-branches of the DAG (where each node has

exactly one parent). Other work by Zhang et al. trains independent

binary predictors for each label and then attempts to reconcile con-

flicting predictions by solving a regression problem from the outputs

of the predictors to the true labels using an L2 penalization of pre-

dictions that do not respect the hierarchy (Zhang et al., 2017).

Recently, it was proposed to train a multi-label classifier for every

level of the GO (i.e. first on all terms of distance 1 to the root, then

all terms of distance 2 and so on) (Cerri et al., 2016; Rifaioglu et al.,

2017). This approach suffers from the lack of negative examples as

well. A simpler and faster approach, which was also used here, is to

force the posterior probability of a label to be greater or equal to the

maximum posterior probability of all its descendants (Kulmanov

et al., 2017).

The machine learning community has produced many interesting

methods on how to reduce the number of target variables in a multi-

label problem (LSDR), e.g. Zitnik and Zupan used LSDR implicitly

to integrate several data sources for AFP (�Zitnik and Zupan, 2015).

Each data source (including the label matrix Y) is represented by a

lower-dimensional representation, whose dimensionality is a param-

eter of the algorithm. This method has high computational demands

as it requires solving an optimization task during training as well as

one more for every query protein (�Zitnik and Zupan, 2015).

The first DAG-aware LSDR work applied to AFP was by Bi and

Kwok and was tested on a yeast dataset (Bi and Kwok, 2011).

Recently, a study by Yu et al. learned a lower-dimensional embed-

ding of the DAG structure and used it to reduce the dimensionality

of the label-space (Yu et al., 2017). They then used semantic similar-

ity in the reduced space to infer new functions for already annotated

proteins. Our GOAT approach combines the benefits of the work of

Bi and Kwok and those of PLST (Tai and Lin, 2012), by finding pro-

jections where the variance in the label-space is high, but also mak-

ing sure that terms connected by an edge in the DAG are ‘pushed’

toward similar directions.

These techniques ignore the fact that terms not connected by an

edge might still represent related functions. For instance, GO:

0036367 (light adaptation) and GO: 0009644 (response to high

light intensity) are not connected by an edge, but are semantically

related and they are both children of GO: 0009416 (response to

light stimulus). GO term semantic similarity was used by Argot2 to

cluster similar GO terms into groups and then to perform predic-

tions per group (Falda et al., 2012). It has also been used to trans-

form the label-space by Zhang and Dai (Zhang and Dai, 2012).

However, their transformation does not reduce the dimensionality

of the label vectors.

We developed SEM, an LSDR technique that uses semantic simi-

larity of GO terms as well as annotation patterns of proteins to re-

duce the number of target variables. SEM creates an annotation

matrix similar to that of Zhang and Dai, but then reduces its dimen-

sionality with SVD to create a more compact and less noisy func-

tional representation. This method projects semantically similar

terms toward similar directions in the reduced label-space, even if

they are not connected by an edge in the DAG. Although even GO-

unaware methods were able to capture similarities between terms

that are connected by an edge, SEM captured similarities between

non-connected, but related terms much better than any other

method (Supplementary Material SM14).

The use of all LSDR techniques showed consistent improvements

on the performance of all tested AFP methods in predicting experi-

mental annotations from CAFA2 and CAFA3. These small datasets

do not show significant differences among the different LSDR tech-

niques. However, SEM combined with SSP achieved the best per-

formance in terms of protein-centric SD and term-centric AUROC,

while it performed on par with the best-performing methods under

most of the other evaluation metrics in the much larger cross-

validation dataset.

Finally, LSDR is ‘blurring’ and simplifying the GO-term space,

which is expected to have a negative effect on term-centric
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performance. This effect was partially observed for the term-centric

F-measure, but not for the AUROC, where three methods combined

with different LSDR techniques performed consistently better than

the same methods without LSDR across all levels of the GO DAG.

In terms of complexity, all LSDR techniques rely on SVD, which

takes OðL3Þ, so they are fairly efficient. In the training phase, PLST

requires only computing the SVD of a matrix. The other methods in-

clude an extra matrix multiplication step. The most computationally

demanding method is CPLST, which also computes the pseudo-

inverse of the feature matrix. The training time of LSDR techniques

on the cross-validation dataset never exceeds a few minutes on a

single-core machine. In the testing phase, only one matrix multipli-

cation is required (OðLÞ), contrary to more complicated methods

that solve optimization problems (Bi and Kwok, 2011; Hsu et al.,

2009; �Zitnik and Zupan, 2015).

Finally, all LSDR techniques tested reduce the number of target

variables by at least 2-fold with either no significant loss or even

gain in performance. This hints at the fact that the inherent dimen-

sionality of a GO annotations matrix is lower than the actual num-

ber of GO terms present, which can be expected as the DAG

structure enforces constraints on the annotations. It also means that

the training time of more complex AFP methods can be reduced

without loss of performance by applying LSDR first.

4.2 Sequence similarity profile
The rationale of SSP and MS-kNN is similar. The difference is that

MS-kNN finds neighbors based on pairwise similarities, whereas

SSP identifies the training proteins based on a similarity profile

including all training proteins. We believe that the latter approach

can be more informative, as functions can be conserved at medium

levels of sequence similarity (Wass and Sternberg, 2008) and really

low similarities might indicate low functional similarities. SSP is

expected to be particularly useful in species in which the majority of

proteins are members of expanded protein families, such as in plants

(Lockton and Gaut, 2005). In such cases, SSP can identify the shared

similarity between the query and all members of the family, even if

that similarity is not particularly high. Indeed, the proteins chosen

by SSP had on average more similar annotations (based on Jaccard

similarity) to the queries than those by MS-kNN, also explaining the

difference in F-measures between the two methods in our two

Arabidopsis (cross-validation and CAFA3) datasets. The two meth-

ods performed similarly in the CAFA2 dataset, hinting indeed to-

ward the usefulness of SSP when there are many genes from the

same family.

The notion of using distances or similarities as a feature repre-

sentation of objects is not new (PeRkalska and Duin, 2002). In bio-

informatics, the similarity-based representation of proteins is a

simple way to convert arbitrary-length sequences to fixed-length

vectors. It has been used for predicting protein families (Liao and

Noble, 2003), antimicrobial peptides (Ng et al., 2015) and allergen

sequences (Muh et al., 2009), as well as protein–protein interactions

(Zaki et al., 2009). In addition, Li et al. used this representation

along with other sequence features to predict functional annotations

of viral proteins (Li et al., 2007). Each function was treated as a sep-

arate binary classification problem.

All these studies made use of SVMs. The reason the kNN classi-

fier was employed in this work is its simplicity and efficiency. In the

other application domains, the classification task was binary, i.e.

only discriminating between two classes. In the case of AFP, we

are dealing with thousands of target classes, which would require

training one SVM per class. On the contrary, kNN is inherently

multi-label and can still capture non-linear relationships in the data

and have reasonable performance in diverse problems (Munisami

et al., 2015; Saini et al., 2013).

From our parameter tuning, a very small value for k (1–3), the

number of neighboring proteins to consider, was shown to give best

performances, both for SSP and MS-kNN. This result is contradict-

ory to the original MS-kNN study in which k was set to 20 (Lan

et al., 2013), as well as the work by Yu et al. which predicted novel

annotations for a partially annotated protein using the 250 or 500

most semantically similar proteins to the query (Yu et al., 2016).

Neither of these studies reported tuning of k, using cross-validation

or a similar procedure, but rather they set k manually. Another rea-

son for this difference might be the fact that MS-kNN was tested on

human proteins (Lan et al., 2013) and the semantic similarity ap-

proach on human and mouse proteins (Yu et al., 2016). As the anno-

tations for those species are much denser than for A.thaliana, we

expect that including more neighbors would tend to reinforce the

predictions of true annotations. In A.thaliana, many more annota-

tions are missing, so true annotations might be given a low score if k

is large, because they are present in only one neighbor. Perhaps this,

currently, is an artifact of the fact that the other neighbors have not

acquired this annotation yet.

A disadvantage of using a similarity representation is the fact

that it suffers from the curse of dimensionality (Köppen, 2000),

since there are as many features as training examples. As a result,

methods that use this representation are more susceptible to overfit-

ting, especially if a complex classifier is used. For binary classifica-

tion tasks, several methods have been proposed for prototypes

selection, i.e. identification of a small number of proteins that are

representative of the training set in order to use the similarities to

only these prototypes as features (PeRkalska and Duin, 2002). In AFP,

we are dealing with thousands of target classes (GO terms) instead

of two and different proteins are likely to be informative for differ-

ent terms. This makes prototype selection more complicated and

increases the computational burden during training significantly, so

we did not explore this option further. However, we did attempt

randomly selecting a smaller number of prototypes (PeRkalska et al.,

2006), leading to a significant deterioration in performance

(Supplementary Figs S26–S30, Supplementary Material SM17).

4.3 Importance of proper evaluation
Finding proper evaluation practices for AFP remains an open

problem (Jiang et al., 2016). In this paper, we were interested in

predicting annotations for completely unannotated proteins; No-

Knowledge evaluation (Radivojac et al., 2013). The CAFA chal-

lenges (Jiang et al., 2016; Radivojac et al., 2013) provide a unified

comparison framework, where target proteins are made available at

a certain time point and participants have a few months to submit

their predictions on these targets. The evaluation takes place based

on the subset of the targets that have accumulated experimental

annotations during a pre-defined period of time after the submission

deadline.

Experiments have shown that cross-validation performance is

not an informative predictor of performance in the CAFA challenges

(Kahanda et al., 2015). However, it remains unclear whether cross-

validation or CAFA-like experiments are more informative concern-

ing the performance of a certain method in practice, as both of them

have their own limitations. First of all, both tactics suffer from the

incompleteness of annotations, which leads to potentially correct

predictions of a classifier to be perceived as false positives, if the cor-

responding annotation has not yet been confirmed by other means.
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Indeed, we showed that the performance of all methods increases

when annotations are more complete, i.e. in our case when we

included IEA annotations. CAFA challenges are expected to suffer

more from this, as they deal with only newly-derived annotations,

whereas in cross-validation the test set consists of randomly selected

proteins, regardless of when they received their annotations. These

annotations are expected to be ‘more complete’ on average. Also,

this leads to a larger number of GO terms being available for evalu-

ation with cross-validation.

A disadvantage of cross-validation is that stratification (i.e.

maintaining an equal fraction of positive and negative examples per

label across all folds) becomes virtually impossible because of the

vast number of labels. As a consequence, some rare terms are left

with only a handful or no positive examples. To deal with the lack

of examples and its effect on performance estimation, we ignored

terms that contained <0.1% positive examples in the test set.

Furthermore, we used the inner cross-validation loops to select

the optimal parameter set of the tested predictors, using the mean

protein-centric AUPRC as a performance criterion. However, due to

the aforementioned issues, the AUPRC in different folds was calcu-

lated using not always the same target variables or the same target

variables but with considerably different priors, which can be very

misleading (Boyd et al., 2012). The different term frequencies also

lead to differences in the calculation of term IC among folds.

The impact of these differences needs to be investigated further, but

we found that optimizing for a term-centric metric give a significant-

ly similar ranking of the methods. We also found similarities

between the ranking of methods in CAFA and cross-validation

experiments.

The choice of evaluation metrics is another open problem (Jiang

et al., 2016), as the ranking of methods can vary based on the choice

of evaluation metric (Jiang et al., 2016; Radivojac et al., 2013). The

short-comings of precision, recall and F-measure are well-known.

They depend heavily on the class prior, which is different for each

GO term and whose true value is not known in this case and can

only be roughly estimated based on GO-term frequencies in the

training set (Jain et al., 2017). Moreover, they can give a seemingly

high performance for a method that restricts itself in general predic-

tions, near the ontology root. SD (Clark and Radivojac, 2013) was

designed to address these limitations, but it still relies on the calcula-

tion of IC of terms, which (again) needs to be estimated from the

training data and can change significantly from dataset to dataset.

Nevertheless, we showed that LSDR is on average useful across all

levels of the GO hierarchy, i.e. independent of term frequency or IC.

We also observed that term-centric F-measure behaved differently

from the other four (both protein- and term-centric) metrics.

4.4 Conclusion
We used similarity in GO-terms space as well as in protein sequence

space to build new AFP algorithms. These algorithms improve

CAFA and cross-validation performances. Consequently, we com-

bined known concepts from machine learning and bioinformatics

into new function prediction methods with encouraging results.

Taken together, this shows that AFP can benefit greatly from bor-

rowing ideas from related fields.
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