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Research Article

Introduction

In 2017, breast cancer became the most common cancer type 
(30% incidence) among women in the United States; a 
woman living in the United States has a 12.4% risk of being 
diagnosed with the disease over the course of her lifetime.1 
There are many risk factors linked to the development of 
breast cancer, including advancing age and familial his-
tory.2,3 Among these, accumulating evidence has shown that 
circadian alterations elicit pathological changes in breast tis-
sues, resulting in the formation of invasive breast tumors.4,5 
Disruption of circadian rhythms can be induced through 
clock gene mutations or environmental contributors.6 While 

relevant genetic factors are yet to be identified, it is widely 
believed that particular activities will trigger circadian 
disruptions, including night and other shift-work, chronic 
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Abstract
From an epidemiological standpoint, disruptions to circadian rhythms have been shown to contribute to the 
development of various disease pathologies, including breast cancer. However, it is unclear how altered circadian 
rhythms are related to malignant transformations at the molecular level. In this article, a series of isogenic breast 
cancer cells representing disease progression was used to investigate the expression patterns of core circadian 
clock proteins BMAL1 and PER2. Our model is indicative of 4 stages of breast cancer and includes the following 
cells: MCF10A (non-malignant), MCF10AT.Cl2 (pre-malignant), MCF10Ca1h (well-differentiated, malignant), and 
MCF10Ca1a (poorly differentiated, malignant). While studies of circadian rhythms in cancer typically use low-
resolution reverse transcription polymerase chain reaction assays, we also employed luciferase reporters BMAL1:Luc 
and PER2:Luc in real-time luminometry experiments. We found that across all 4 cancer stages, PER2 showed 
relatively stable oscillations compared with BMAL1. Period estimation using both wavelet-based and damped-sine-
fitting methods showed that the periods are distributed over a wide circadian range and there is no clear progression 
in mean period as cancer severity progresses. Additionally, we used the K-nearest neighbors algorithm to classify 
the recordings according to cancer line, and found that cancer stages were largely differentiated from one another. 
Taken together, our data support that there are circadian discrepancies between normal and malignant cells, but it 
is difficult and insufficient to singularly use period evaluations to differentiate them. Future studies should employ 
other progressive disease models to determine whether these findings are representative across cancer types or are 
specific to this series.
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exposure to light at night, chronic jet lag, exposure to low-fre-
quency electromagnetic waves, and diet disorders.7-10 The 
International Agency for Research on Cancer states that “shift 
work that includes circadian disruption is probably carcino-
genic to humans (Group 2A).”11

While circadian disruption has been associated with breast 
cancer development, the molecular mechanisms underlying 
this relationship are still unclear. To reveal the systematic 
interactions between circadian rhythms and malignant trans-
formations at the cellular level, several studies have manipu-
lated the expression of core clock proteins in cell culture 
models of breast cancer, and show that circadian rhythms 
may have opposing roles. BMAL1 and PER2 have been 
strongly implicated as tumor suppressors. When BMAL1 
and PER2 levels are reduced via siRNA knockdown, breast 
cancer cells exhibit faster growth and migration rates while 
overexpression of BMAL1 and PER2 has been shown to 
decrease cancer cell invasiveness and inhibit the formation of 
tumors.12,13 PER2 expression has been found to be variable in 
cancerous tissues in comparison with near-by noncancerous 
tissue samples,14 whereas BMAL1 has shown no significant 
changes in comparison with normal cells in patients.15 
Conversely, CLOCK and REV-ERBβ have been suggested to 
be tumor drivers, as they are found to be upregulated in breast 
cancer cells and downregulated in healthy breast tissues.16 
While these studies provide valuable insights toward under-
standing the roles of circadian rhythms in breast cancer 
development, in most cases, the dynamic nature of circadian 
oscillations was not taken into account.

Circadian oscillations are dynamic processes that cycle 
with a ~24-hour period. The rhythms of cancer cells have 
been proposed to be altered through effects on period, 
amplitude, phase, and/or damping rate, which may result in 
promotion of proliferation and metastasis.17-20 The expres-
sion profiles of endogenous mRNA have been widely used 
to assess changes,21-24 but these experiments inherently suf-
fer from short tracking time, infrequent sampling, and low 
data resolution, resulting in poor mathematical estimations. 
To overcome these limitations, real-time bioluminescence 
monitoring of in vitro cell or ex vivo organ cultures has 
been utilized to reveal intrinsic circadian oscillations in a 
time-dependent manner. For example, using a luciferase 
reporter system in cultured peripheral tissues of PER2::Luc 
mice, Yoo et al25 were the first to show robust and persistent 
circadian oscillations for >20 cycles. Their results have led 
to the employment of luciferase reporter systems to analyze 
circadian changes in various cell models to study dynamic 
processes, including signal transduction and tissue develop-
ment.26,27 However, for circadian studies in the context of 
cancer, luciferase reporters have largely been used to study 
how rhythms respond to changes in a single cell line, either 
via genetic alteration (eg, knock-down or overexpression) 
or chemical modulation (eg, small molecule antagonist/
agonist). Reporter systems have been rarely used with serial 

and isogenic cancer cell models to track cancer-induced cir-
cadian alterations; the only previous instance known 
assessed a serial model of skin cancer.17

In this study, we use real-time luminometry to uncover 
changes in core clock gene expression (specifically, 
BMAL1 and PER2) following malignant transformations 
in breast cancer. To mimic these genetic alterations we 
used the MCF10 series of breast cancer cells representing 
disease progression, which spans from nontumorigenic 
epithelial to highly malignant metastatic cancer.28 Cell 
lines within this series are isogenic and originally derived 
from an immortalized breast epithelial cell line, MCF10A 
(nontumorigenic). Following H-Ras transformation of 
MCF10A, the daughter cell line MCF10AT.Cl2 (premalig-
nant) was produced. In turn, these cells were also modified 
to give rise to MCF10Ca1h (malignant, well-differenti-
ated), and MCF10Ca1a (malignant, poorly differentiated) 
cells. According to a whole genome, exome, and RNA 
sequencing study, the driving mutations of TP53 and 
PIK3CA are acquired during the malignant transformation 
in this series of cells.29 While MCF10A cells are incapable 
of forming tumors in vivo, MCF10AT.Cl2 cells yield 
tumors 25% of the time, and MCF10Ca1h and MCF10Ca1a 
result in tumors almost 100%.30

We initially obtained lower-resolution results of BMAL1 
and PER2 expression patterns using reverse transcription 
polymerase chain reaction (RT-PCR). We also generated 
stable BMAL1:Luc and PER2:Luc versions of each cell line 
in the series, and used real-time luminometry to follow their 
oscillations for 5 to 6 cycles. We estimated periods using 
continuous wavelet transformation (CWT) and damped-sine 
(DS) fitting methods. Overall, we found that both BMAL1 
and PER2 were rhythmic, but BMAL1 tended to have more 
unstable oscillations than PER2, concomitant with cancer 
progression. Additionally, the durations of periods slightly 
increased with time of recording/cycles recorded, but no 
clear trends in period distributions were observed. However, 
when we used the K-nearest neighbors algorithm to classify 
each time-series according to its cancer line, we found it was 
moderately successful. Altogether, our data indicate that 
while subtle, differences in circadian rhythms indeed exist as 
cells transform from normal to malignant, and more detailed 
analyses than period estimations are required.

Materials and Methods

Cell Culture

The MCF10 series of cells was obtained from the Barbara 
Ann Karmanos Cancer Institute, Detroit, MI. MCF10A, 
MCF10AT.Cl2, MCF10Ca1h, and MCF10Ca1a breast can-
cer cells were maintained in DMEM/F12 culture medium 
(Gibco), supplemented with 1% HEPES (Gibco), 5% fetal 
bovine serum (Gibco), 1% penicillin-streptomycin (Gibco), 
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1% L-glutamine (Gibco), 15 µg/mL gentamicin (Fisher 
Scientific), 10 µg/mL insulin (Sigma), 20 ng/mL human 
EGF (Gibco), 0.1 µg/mL cholera enterotoxin (Sigma), and 
0.5 µg/mL hydrocortisone (Sigma). All cells were incubated 
at 37°C with 5% CO

2
 atmosphere. For all experiments con-

ducted, no cell line was passaged more than 5 times.

Synchronization of Cells by Serum Shock

Cells were seeded in 35 mm culture dishes at a density of 1 
× 105 cells/mL and incubated for approximately 24 hours to 
reach 100% confluence. Culture media was removed and 
cells were washed with phosphate-buffered saline (Gibco). 
Cells were then starved in DMEM/F12 medium without 
any growth supplements for 12 hours (for both RT-PCR and 
real-time luminometry experiments). After starvation, cells 
were serum shocked using growth medium containing 50% 
fetal bovine serum (batch bought) for 2 hours, followed by 
replacement with standard growth or recording media 
(described below).

RNA Extraction and cDNA Synthesis

Following synchronization of cells by serum shock as 
described above, cells were washed with phosphate-buff-
ered saline and returned to starvation conditions. Cells were 
harvested with the first time point (T = 0) taken prior to 
serum shock, and every 4 hours thereafter for 48 or 60 
hours. Cells were harvested from separate dishes at each 
time point to avoid longitudinal effects/trends. Total RNA 
was extracted via TRIzol Reagent (Gibco) according to the 
manufacturer’s instructions. Briefly, 1 mL TRIzol Reagent 
was added to lyse the cells. Cell lysates were incubated at 
room temperature for 5 minutes to allow complete dissocia-
tion of nucleoprotein complexes. After addition of 200 µL 
chloroform per 1 mL TRIzol, samples were shaken vigor-
ously by hand for 15 seconds and incubated at room tem-
perature for 3 minutes. Samples were then centrifuged at 12 
000 × g for 15 minutes at 4°C to separate the RNA-
containing, upper aqueous phase, from the lower chloro-
form phase. The RNA samples were further purified via 
PureLink RNA kit (Ambion) according to the manufactur-
er’s instructions. Total RNA concentration was determined 
via Nanodrop UV/Vis (Thermo Fisher Scientific). Overall, 
1 µg of total RNA was reverse-transcribed to cDNA using 
50 µM random hexamers, 40 U/µL RNaseOut, 10 mM 
dNTPs, and 200 U/µL SuperScript IV Reverse Transcriptase 
(Thermo Fisher Scientific).

Quantitative RT-PCR

RT-PCR was performed in 96-well plates. The reaction 
(20 µL per well) consisted of 100 ng cDNA, 10 µL iTaq 
universal SYBR Green Supermix (Biorad), 4 µM of 

forward and reverse primers each, and RNAse free water 
to a final volume of 20 µL. All DNA primers were pur-
chased from Integrated DNA Technologies (Coralville, 
IA). The following sequences were used: GAPDH Forward 
(5′-CTT CTT TTG CGT CGC CAG CC-3′), Reverse  
(5′-ATT CCG TTG ACT CCG ACC TTC-3′); BMAL1 
Forward (5′- CTA CGC TAG AGG GCT TCC TG-3′), 
Reverse (5′-CTT TTC AGG CGG TCA GCT TC-3′); and 
PER2 Forward (5′-TGT CCC AGG TGG AGA GTG 
GT-3′), Reverse (5′-TGT CAC CGC AGT TCA AAC 
GAG-3′). After brief centrifugation, samples were ana-
lyzed via CFX Connect real-time system (Biorad) pro-
grammed with an initial activation at 95°C for 3 minutes, 
followed by 40 cycles of 95°C denaturation for 10 sec-
onds, and 60°C annealing/extension for 30 seconds. 
Relative BMAL1 and PER2 expression were determined 
by comparing the C

t
 values of BMAL1 and PER2 with 

GAPDH control via the 2∧ΔΔC
t
 method.31 Three biologi-

cal replicates and three technical replicates per biological 
replicate were analyzed for each condition. RAIN was 
used to classify RT-PCR recordings as rhythmic (P < .05) 
or arrhythmic with a circadian period (24 hours).32

Plasmid and Recombinant DNA

The BMAL1-luciferase reporter construct (pABpuro-BluF, 
herein referred to as BMAL1:Luc) was obtained from 
Addgene (plasmid #46824, deposited by Dr Steven Brown). 
For generation of PER2-luciferase (PER2:Luc) plasmid, a 
159-bp EcoRI/NotI fragment was isolated from a pGL3 
basic PER2 construct, obtained from Addgene (plasmid 
#48747, deposited by Dr Joseph Takahashi). The PER2 pro-
moter-containing fragment was subcloned into the lentiviral 
construct pMA3160 (Addgene plasmid #35043, deposited 
by Dr Mikhail Alexeyev) to generate a PER2-luciferase 
reporter construct using the following primers: Forward 
primer containing EcoRI restriction site (5′-CCG GAA TTC 
AGC GTA GCT CTC AGG TTC CG-3′) and Reverse primer 
containing NotI restriction site (5′-ATA AGA ATG CGG 
CCG CGG AGC CGC TAG TCC CAG TAG-3′). Lentiviral 
packaging (psPAX2) and envelope (pMD2.G) plasmids 
were obtained from Prof. D. Joseph Jerry (UMass Amherst).

Lentiviral Transductions

Overall, 3 × 106 HEK293T cells were seeded in 60 mm cul-
ture dishes and transiently transfected with 3 µg psPAX2 
packaging plasmid, 2 µg pMD2.G envelope plasmid, and 3 
µg BMAL1:Luc or PER2:Luc reporter constructs using 
Lipofectamine3000 (Thermo Fisher Scientific) according 
to the manufacturer’s instructions. After 48 hours of incuba-
tion, lentiviral particles were harvested from the superna-
tant and passed through a 45 µm filter. 9 mL of 
lentivirus-containing supernatant was combined with 9 mL 
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of DMEM/F12 culture medium containing 10 µg/mL  
polybrene (Sigma). All MCF10 series cell lines were seeded 
in T25 culture flasks at a density of 2 × 105 cells/mL and 
incubated under standard cell culture conditions until 70% 
to 80% confluence was reached. Culture medium was 
removed and 6 mL of lentiviral-containing media was added 
to each flask. After 2 days of infection, the medium was 
replaced with selection medium (DMEM/F12 with all 
growth supplements plus 4 µg/mL puromycin). At the 
beginning of selection (within the first ~3 days), approxi-
mately 10% of cell population survived, which contained 
BMAL1:Luc and PER2:Luc in their genomes. The selection 
medium was changed every 3 days for 4 weeks. Following 
transfection/selection, cell lines were frozen and stored in 
liquid nitrogen at passage 10. All cells were incubated at 
37°C under 5% CO

2
 atmosphere.

Bioluminescence Recording and Analysis

All bioluminescence experiments were conducted at pas-
sage number 15 or less. Cells were seeded in 35 mm cul-
ture dishes at a density of 1 × 105 cells/mL and incubated 
to reach 100% confluence; cells were starved and serum 
shocked as described above. After 2 hours of synchroni-
zation, cells were incubated in recording medium (phe-
nol-red free DMEM/F12 [Gibco] containing 20% of 
normal growth supplement concentrations, 6.5 mM 
sodium bicarbonate, 10 mM HEPES, 50 units/mL penicil-
lin/streptomycin, and 0.5 mM luciferin; Thermo Fisher 
Scientific). Dishes were sealed with 40 mm sterile cover 
glass using silicon vacuum grease and subjected to con-
tinuous monitoring using a LumiCycle 32 (Actimetrics) 
at 36.5°C for 5 to 7 days.

Bioluminescence recordings were preprocessed by dis-
carding the first 24 hours, removing spikes (a point that is 
more than one third the range of the data greater than the 
previous point), and filling in missing points (using the 
mean of the previous and subsequent points). To remove 
both low-frequency trends and high-frequency noise, the 
maximum overlap discrete wavelet transform (12-tap sym-
mlet) with reflective boundary condition isolated the signal 
in the frequency band that contains a period of 24 hours 
(periods of 21 to 42 hours; wavelet methods33 implemented 
by Charles Cornish in the WMTSA MATLAB package). 
Using the same discrete wavelet analysis, time-series were 
determined to be rhythmic if the energy in the 24-hour band 
was greater than the sum of the energies in all higher fre-
quency bands.34 If a time-series failed this initial test, it was 
visually inspected to determine if the initial transient had 
lasted beyond hour 24 (ie, that there was an initial peak that 
appeared to be biasing the wavelet results). If so, we 
repeated the analysis, using data after hour 36.

A bioluminescence recording was labeled as an outlier 
if its first trough or peak was out of phase with the 

majority (for BMAL1:Luc outliers first trough after t = 48 
hours, for PER2:Luc outliers peak before t = 35 hours). 
Periods were estimated using 2 methods: (1) continuous 
wavelet analysis and (2) DS curve fitting. Continuous 
wavelet analysis was performed with the WAVOS pack-
age,35 using the Morlet wavelet, excluding edge data, with 
a tuning parameter η of 5, seeking a period within the 
range of 6 to 60 hours. DS curve fitting was performed by 
minimizing the least squares distance between a sine curve 
with exponential damping (Ae-λtsin(2π/τ + φ) + c) and the 
preprocessed, de-trended time series, using scipy.opti-
mize.differential_evolution (Scipy version 0.19.0) to 
determine a rough estimate, and then scipy.optimize.mini-
mize to find the precise estimate (using SLSQP method 
with 10 000 maximum iterations). Each parameter was 
constrained to a given range: the period τ between 10 and 
50 hours, the phase offset φ between −π and π radians, the 
amplitude offset c between the maximum of the time-
series and its negative, the amplitude A between half and 
twice the range of the time series, and the damping rate λ 
between 0 and 0.04 1/h.

K-nearest neighbors (KNN) classifiers were trained to 
classify preprocessed bioluminescence recordings by can-
cer lines.36 Because the numbers of recordings were small 
(N = 84 for BMAL1:Luc and N = 80 for PER2:Luc across all 
cell lines), K-fold cross-validation was used to assess their 
effectiveness. All code was written in Python 3.6 using 
Scikit-learn.36 For each of the BMAL1:Luc and PER2:Luc 
recordings, we used stratified K-fold cross-validation (K = 
8 folds) with a KNN classifier (with K = 3 nearest neigh-
bors) to compute the accuracy (number of correctly classi-
fied recordings divided by the total number of recordings). 
To determine whether this accuracy could be achieved by 
random chance, we repeated the cross-validation for 1000 
permutations of the cancer line labels. If the largest accu-
racy from randomly permuted labels was smaller than the 
accuracy from the correct labels, then we deemed the clas-
sifier acceptable.

Results

BMAL1 and PER2 Display Different Circadian 
Phenotypes Across the MCF10 Series of Cells

The advantage of using the MCF10 series of cells is that it 
can recapitulate genetic changes that may occur during 
breast cancer progression. This isogenic cell model reflects 
characteristics of in vivo human breast lesions during pro-
gressive breast tumorigenesis. We have assessed the pheno-
typic characteristics of the component cell lines via colony 
formation (Figure S1; available online), proliferation 
(Figure S2), and wound-healing (Figure S3) assays. We 
found that the premalignant MCF10AT.Cl2 cells have the 
fastest proliferation and migration rates. As expected, the 

https://journals.sagepub.com/doi/suppl/10.1177/1534735419836494
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nontumorigenic MCF10A cells display the slowest prolif-
eration and migration rates.

As it is the most common strategy for assessing circa-
dian rhythms in breast and other cancer cell models, we 
first determined the endogenous mRNA expression pat-
terns for BMAL1 and PER2 in cells across the MCF10 
series via RT-PCR (Figure 1). While it is a relatively low-
resolution method, it can be used to reveal relative 
changes in gene expression. Following synchronization, 
the mammary epithelial, nontumorigenic MCF10A cells 
showed BMAL1 (ARNTL; positive clock oscillator) peaks 
at ~8 to 12 hours and ~40 hours, while PER2 (negative 
clock oscillator) showed peaks at ~0 to 4 hours and ~24 to 
28 hours. Therefore, the phase difference between BMAL1 
and PER2 was approximately 12 hours, and the two had 
expression profiles in opposition to one another, as 
expected.23 Similar mRNA expression patterns for 
BMAL1 and PER2 were observed in the premalignant 
MCF10AT.Cl2 cells and malignant MCF10Ca1h and 
MCF10Ca1a cells. It is noteworthy that the fold changes 
in amplitude of BMAL1 were significantly higher (~4-
fold) in MCF10A cells versus the cancer cells (<2-fold in 
MCF10AT.Cl2, MCF10Ca1h, and MCF10Ca1a). 
However, the relative changes in expression amplitudes 
of PER2 were similar (~3-fold) across the cells, with the 
exception of MCF10AT.Cl2. Most expression patterns 
were found to be rhythmic with a period of 24 hours (P < 
.05) using RAIN.32 Only BMAL1 expression in 
MCF10Ca1a was not clearly rhythmic (P = .055). 
However, the coarse resolution (time points every 4 
hours) of the data obtained via RT-PCR cannot facilitate 
more accurate analysis of circadian oscillations, includ-
ing a precise period estimation. In addition, the short 
duration (≤60 hours) means that the number of cycles that 
can be observed via RT-PCR is typically low (1-2 cycles), 
increasing uncertainty for assessments.

To overcome these issues, we generated luciferase 
reporter systems composed of these cell lines in order to 
track BMAL1 and PER2 expression in real time. This method 
also enables the recording of circadian oscillations over 
higher cycle numbers (ie, 5-7 days). Firefly luciferase has 
been widely used in many organisms and cells for circadian 
rhythms analysis.37-39 Unlike fluorescent reporter systems 
(ie, GFP), which require external excitation and may have 
problems associated with photo-bleaching and signal-to-
noise ratios,40 luciferase rapidly generates bioluminescence 
in the presence of its substrate luciferin, and is highly sensi-
tive. In the present study, all cells in the MCF10 series were 
separately lentivirally transduced with BMAL1- and PER2-
driven luciferase reporters. Luciferase expression was vali-
dated via luciferase assay (Figure S4). All transfected cells 
showed significant levels of luciferase compared with non-
transfected cells (P < .001), indicating successful insertion 
of BMAL1:Luc and PER2:Luc into host genomes.

The expression of luciferase protein driven by BMAL1- 
(Figure 2A and Figure S5A) and PER2-promoters (Figure 
2B and Figure S5B) were tracked for 6 days via LumiCycle 
32 (Actimetrics). In all cell lines, BMAL1 and PER2 
exhibited antiphase oscillations. Using a discrete wavelet 
transform, we determined that all recordings were rhyth-
mic, with all but 3 passing a test for rhythmicity that took 
into consideration the entire time-series and the remaining 
3 passing when only data after t = 36 hours was considered 
(see Methods and Leise and Harrington34). Of the 84 total 
BMAL1:Luc recordings (21 per cancer line), 16 troughed 
too late (t > 48 hours) and were classified as outliers 
(Figure 3A; 1 from MCF10A, 2 from MCF10Cl2, 4 from 
MCF10Ca1h, and 6 from MCF10Ca1a). Of the 80 total 
PER2:Luc recordings (20 per cancer line), 5 (all from non-
tumorigenic MCF10A cells) peaked too early (t < 35 
hours) in the first cycle and were classified as outliers 
(Figure 3B). This may be the result of inherent heteroge-
neity in the MCF10A cell line.41 Our data show that PER2 
displays relatively stable oscillations at the transcriptional 
level across all 4 cancer stages, while BMAL1 appears to 
be more unstable. The consistency of PER2 expression 
was corroborated by western blot (Figure S6). We found 
that PER2 protein levels were relatively similar in all cell 
lines, while BMAL1 was significantly increased in prema-
lignant MCF10AT.Cl2 cells. Our results lead to an infer-
ence that BMAL1 may be disrupted to a greater extent than 
PER2 when certain malignant transformations occur, or in 
particular cancer subtypes. Our data also raise an interest-
ing conjecture, that in some cases, BMAL1 may play a 
more dominant role in suppressing tumors than PER2, 
which is universally thought as a tumor suppressor in 
breast cancer.14,42,43

To provide a clear view of how the oscillations of 
BMAL1 and PER2 change in each cancer cell line with 
time/cycle, we generated heat maps of the peaks and 
troughs in each recording trace (after removing the trend 
and noise with a discrete wavelet transform). As shown in 
Figure 3, the first 3 cycles of BMAL1 in nontumorigenic 
MCF10A cells and poorly differentiated malignant 
MCF10Ca1a cells showed stronger relative amplitudes 
than premalignant MCF10AT.Cl2 and well-differentiated 
malignant MCF10Ca1h cells. While in the case of the 
MCF10AT.Cl2 cells, the relative change in amplitude 
may be attributed to lower transfection efficiency, 
MCF10Ca1a cells resulted in the highest average levels 
of luciferase produced across all cell lines (Figure S4). In 
all cell lines evaluated, the peaks and troughs in BMAL1 
traces grew quickly out of phase. For PER2, only MCF10A 
cells showed 2 strong cycles, while the other 3 cell lines 
showed only one high-amplitude cycle before losing 
amplitude (ANOVA [analysis of variance] permutation 
test comparing ratio of heights of second and third peaks 
with 100 000 trials, P < .05). Of note, most of the peaks 
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Figure 1.  Endogenous mRNA expression of BMAL1 and PER2 in synchronized cell lines belonging to the MCF10 series. Relative 
mRNA expression levels were determined via RT-PCR, normalized to GAPDH, using 3 biological replicates with 3 technical replicates 
each. Error bars represent relative error.
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and troughs in PER2 were in phase with each other. This 
result indicates again that BMAL1 is a more unstable 
oscillator than PER2 and is highly disrupted as breast epi-
thelial cells (eg, MCF10A) transform into more aggres-
sive and malignant stages (eg, MCF10Ca1a).

Cells in the MCF10 Series Exhibit Periodic 
Oscillations in a Wide Circadian Range

To further understand how circadian oscillations change 
across cancer progression, we analyzed changes in the peri-
ods of BMAL1 and PER2 when all data were included (from 
day 1 to day 6) using 2 different methods. The first is the 
wavelet-based method, CWT (Figure 4), which provides 

reliable estimations when the speed of rhythms change over 
time (eg, nonstationary oscillations). However, if the rhythms 
are dramatically unstable (eg, exhibit amplitude variations), 
the wavelet-based method may fail to estimate a period. The 
second approach used is the DS (Figure S7) fitting method, 
which can always estimate a period from an oscillation curve 
(eg, stationary oscillation), but the goodness of fit decreases 
when rhythms change over time. DS fitting is widely used, 
including in commercially available software, for example, 
LumiCycle Analysis (Actimetrics). The CWT-based method 
showed that the periods of both BMAL1 and PER2 changed 
from t = 0 hours to t = 144 hours, but not dramatically, across 
all cell lines (Figure 4). Similarly, the DS fitting period esti-
mates for both BMAL1 and PER2 were largely consistent 

Figure 2.  Circadian oscillations of (A) BMAL1:Luc and (B) PER2:Luc in the MCF10 series of cells. Shown for each cell line are the 
21 time series for BMAL1 and 20 for PER2 obtained, de-trended and de-noised using a discrete wavelet transform. Both reporters 
show stable oscillations across cellular transformations from nonmalignant MCF10A (blue) to premalignant MCF10AT.Cl2 
(orange) to malignant MCF10Ca1h (yellow) and MCF10Ca1a cells (purple). However, BMAL1 has more time-series out of phase 
with the majority (gray; N = 4 for MCF10A, N = 2 for MCF10A.Cl2, N = 4 for MCF10Ca1h, and N = 6 for MCF10Ca1a) versus 
PER2 (gray; N = 5 for MCF10A).
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Figure 3.  Peaks and troughs of normalized (A) BMAL1:Luc and (B) PER2:Luc show that the first cycles of most oscillations are in 
phase and that PER2 and BMAL1 are antiphase. Heat maps are included, representing low (blue) to high (yellow) bioluminescence with 
one row per time series, organized by cell line (color bar on right indicating blue for MCF10A, orange for MCF10AT.Cl2, yellow for 
MCF10Ca1h, and purple for MCF10Ca1a cells). Black bars indicate recordings where no data were recorded at that time. Peaks (black 
triangles) and troughs (white triangles with black outline) are indicated for each recording and are used to determine outliers (for 
BMAL1:Luc, outliers trough after t = 48 hours, for PER2:Luc, outliers peak before t = 35 hours). Outliers are indicated by a gray entry 
in the first column, versus white for non-outliers.
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regardless of how many cycles were fit (Figure S7). All CWT 
period estimates and 88% of DS fitting estimates were within 
the circadian range of 16 to 32 hours even though neither 
method was constrained to that range (DS fitting was con-
strained to 10 to 50 hours and the CWT method was implic-
itly constrained to 21 to 42 hours by discrete wavelet 
de-trending). This supports the notion that the circadian 
oscillations are relatively stable. Taken together, our data 
indicate that the cells still express periodic oscillations during 
cancer progression, but the cycling time subtly changes as 
recording time increases.

Because both period estimation methods led to a wide 
range of values, we sought to determine if their distribu-
tions differed across cancer lines and reporters (Figure 5). 
We evaluated both the average CWT estimate over time 
(Figure 5A) and the DS fitting period estimate (Figure 5B) 
for the longest time-series (t = 24 hours to t = 144 hours). 
Visual inspection reveals that the distributions are not con-
sistently Gaussian and that period estimates cover a wide 

range of values. In general, the wavelet-based estimates fall 
into a narrower range than the damped sine curve-based 
estimates, but there are clear outliers in the sine-based esti-
mates of MCF10Ca1a for both reporters. For individual 
traces, the DS-estimates were longer and, for MCF10A and 
MCF10Ca1h, weakly correlated (R2 = 0.39 and 0.28, 
respectively) with CWT estimates. The widest range esti-
mates occur for MCF10Ca1h, which are 23 to 32 hours 
using CWT (Figure 5A), and 25 to 40 hours using DS 
(Figure 5B). There is no obvious trend in the distributions 
of period estimation as cancer progresses.

We sought to quantify the differences in distributions by 
testing whether they shared the same means. Because the 
data did not meet the requirements for a stand-alone 
ANOVA, we used ANOVA to compute an F-statistic and a 
permutation test (100 000 permutations) to determine the P 
value. We first quantified differences between reporters. 
Both the DS curve fitting and wavelet-based methods com-
puted different means (Bonferroni-corrected P < .05) for 
MCF10Ca1h and MCF10Ca1a. We then quantified differ-
ences across cancer lines with pairwise comparisons 
between cancer lines for each reporter and each period esti-
mation method. For data collected with the PER2 reporter, 
there were no statistically significant (Bonferroni-corrected 
P < .05) differences between period estimates for different 
cancer lines. For data collected with the BMAL1 reporter, 
both methods led to different mean estimates when 
MCF10Ca1a was compared with either MCF10A or 
MCF10AT.Cl2 (Bonferroni-corrected P < .05).

Oscillations in MCF10 Series of Cells are 
Characterized by Cell Line

The period distributions from bioluminescence analyses 
exhibited no clear pattern differentiating cells lines, but were 
clearly varied within and among cell lines. Given that 
period-estimation methods provide a summary statistic and 
therefore may not reflect important characteristics, we 
sought an alternative approach that would analyze the time-
series directly to determine whether they could be character-
ized by cell line. Thus, we tested whether a classifier could 
be trained to classify time-series according to their cell lines. 
We chose a KNN algorithm (see Materials and Methods) 
because it relies on the data directly rather than on a sum-
marizing statistic, and is straight-forward to train and test.

In separate analyses, we considered the pre-processed 
(but not de-trended) and the DWT-de-trended and de-noised 
time-series. In both cases, the time-series were normalized 
to the range of 0 to 1 so that baseline amplitude would not 
have an effect. We tested classifiers built to classify time-
series of similar amplitude and waveform (using the squared 
Euclidean distance measure) and to classify time-series of 
similar phase (using the correlation distance measure). 

Figure 4.  Continuous wavelet transforms (CWT) estimate 
circadian periods for (A) BMAL1 and (B) PER2 over time. 
Shown are Morlet-wavelet estimates of the period of 
oscillation for each cell line and reporter (blue for MCF10A, 
orange for MCF10AT.Cl2, yellow for MCF10Ca1h, and purple 
for MCF10Ca1a). The periods of outlier time series are 
shown in gray.



10	 Integrative Cancer Therapies 

Using K-fold cross-validation, we measured the accuracy 
(percent of time-series classified correctly) of each classi-
fier and found that the values ranged from 57% to 75% 
(Table S1). For reference, a perfect classifier would have an 
accuracy of 100% and a random classifier would have an 
accuracy of 25%.

We also sought to quantify the probability that we would 
reach an accuracy as high as that observed by random 
chance. For each classifier, we used a permutation test to 
build a distribution of accuracy values for time-series with 
randomly assigned cancer line labels and found that all 
accuracies were lower than the accuracy of the data with the 
true cancer line labels (permutation test, P = 0). This result 
held regardless of data de-trending, reporter used, inclusion 
of outliers, and distance measure.

Discussion

Circadian disruptions have been implied to elicit pathologi-
cal developments, including but not limited to breast can-
cer. Conversely, malignant transformation(s) in cells have 

also been proposed to provoke alterations to circadian func-
tions, resulting in primary tumor formation and metastases. 
While genetic manipulations (eg, knockdown, overexpres-
sion, and mutation) of circadian genes/proteins can provide 
valuable insights into their roles in regulating cancer devel-
opment, a basic understanding of the kinetic profiles of cir-
cadian disruptions occurring in cancer is still lacking. To 
investigate the dynamic changes of circadian clocks in can-
cer cells, most studies have characterized mRNA expres-
sion patterns using RT-PCR. As shown in Figure 1, we 
follow this commonly used strategy to observe the expres-
sion profiles of BMAL1 and PER2 in 4 isogenic breast can-
cer cells representing disease progression: MCF10A 
(non-tumorigenic), MCF10AT.Cl2 (pre-malignant), 
MCF10Ca1h (well-differentiated malignant), and 
MCF10Ca1a (poorly differentiated malignant). Our data 
show that BMAL1 and PER2 are rhythmic with a period of 
24 hours (P < .05 using RAIN), and only BMAL1 expres-
sion in MCF10Ca1a was not clearly rhythmic (P = .055). 
Although this analysis method can provide fundamental 
information on rhythmic expression, the coarse resolution 

Figure 5.  Period estimates from 2 methods reveal similar distributions across the MCF10 series. For each cell line, shown are the 
distributions of period estimates computed using (A) the average CWT-estimated period over hours t = 24 hours to t = 144 hours of 
recording and (B) the period of best-fit damped sine curve over hours t = 24 hours to t = 144 hours of recording. The distributions 
are represented as violin plots (the wider the violin, the more frequent the period) with their means (yellow asterisks) and medians 
(pink boxes). The periods of outlier time series are excluded from these distributions.
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(eg, 4 hours) and short tracking duration (eg, 48-60 hours) 
raise the uncertainty of period estimation, and make evalu-
ation of other circadian parameters (eg, phase, amplitude, 
and decay rate) difficult.

To overcome these issues, we used firefly luciferase 
reporters, whose expressions are driven via BMAL1 or 
PER2 promoters, to perform real-time analyses of circadian 
oscillations in the MCF10 series of cells. With this method, 
we collected nearly 900 data points over the course of 5 to 
7 recording days of BMAL1 and PER2 oscillations (Figure 
2 and Figure S5), allowing us to use period-estimation 
methods that take into account damping or nonstationary 
rhythms. After de-trending the raw data via DWT, BMAL1 
and PER2 displayed antiphase oscillation patterns in all 
cancer lines, which can be clearly observed on a heat map 
annotated with peaks and troughs of BMAL1 (Figure 3A) 
and PER2 (Figure 3B). We further examined rhythmicity 
and found that 16 out of 84 total BMAL1 traces were classi-
fied as outliers, while the same held for only 5 out of 80 
total PER2 traces (see Methods and Figure 3). This result 
indicates that BMAL1 is more unstable than PER2 across 
different cancer stages. In addition to its instability, BMAL1 
also exhibits smaller relative amplitude changes than PER2. 
While in luminometry this may be attributable to lower 
transfection efficiencies, reduced levels were also observed 
using RT-PCR (Figure 1) and western blots (Figure S6). 
Across the series’ progression, our data indicate that as cells 
transform into premalignant and malignant states, BMAL1 
is downregulated at both transcriptional and translational 
levels, while PER2 remains fairly consistent. However, it is 
unclear why premalignant MCF10AT.Cl2 cells exhibited 
significantly higher BMAL1 protein levels than found in 
the other 3 cell lines (Figure S6B). Future studies will 
include assessment of the translational profiles of clock 
proteins in a time-dependent manner.

To further characterize the oscillation patterns of BMAL1 
and PER2 across the cell lines, we used 2 distinct mathe-
matical methods to estimate periods: CWT and DS fitting 
methods. Both showed that the periods of BMAL1 and 
PER2 exhibit minor changes with time. CWT-based estima-
tion shows that the periods increase slightly over time 
(Figure 4). DS fitting-based estimation indicates even more 
subtle changes: BMAL1 periods increase slightly across the 
first few cycles and then plateau, while PER2 appears to 
remain mostly stable (Figure S7). We hypothesize that this 
period deviation may be caused by (1) desynchronization 
between individual cells or (2) loss of regular entraining 
stimuli in the culture environment. Desynchronization may 
be the result of changes in the cycling rate of individual 
oscillators or changes in the relationships among oscilla-
tors. Future studies could use alternative synchronization 
methods (ie, temperature entrainment, heat shock, or chem-
ical stimulations) to synchronize inherent clocks, which can 
provide additional data for period calculations. The latter 

hypothesis could be tested via media change every few 
cycles to re-stimulate cellular clock oscillations. Single-cell 
analysis may also be used to study desynchronization 
among rhythmic cells.

Since all estimated periods are within the circadian 
range, we computed the distributions of periods to investi-
gate differences across cancer lines and reporters. All cell 
lines with either reporter exhibited non-Gaussian distribu-
tions with a wide range (Figure 5), and there is no clear 
trend in the distributions of period estimation concomitant 
with cancer progression. Together, our data illustrate the 
difficulty of estimating the “true” period within each oscil-
lator in these cancer cells. Furthermore, the “true” period 
may not be fixed. Additionally, the mean period appears to 
be different between MCF10Ca1a and 2 others (MCF10A 
and MCF10AT.Cl2) when BMAL1 is used as the reporter. 
However, if we use the KNN algorithm to classify traces 
with the entire time-series, we can classify each cancer line 
with moderate success (Table S1). This is true regardless of 
what preprocessing methods were applied to the raw data.

Altogether, we show that circadian rhythms are altered 
as cancer progresses from normal to malignant state. 
However, the changes to BMAL1 and PER2 oscillations are 
not limited to periodic ones. Other factors, such as ampli-
tude changes, stochasticity, and loss of synchrony, need to 
be taken into consideration. Single-cell-level analysis 
could provide further insights, since cancer is heteroge-
neous even within the same culture environment.41 
Additionally, next-generation sequencing could elucidate 
the genetic changes throughout the entire cell. Potential 
driver mutations also need to be considered. As mentioned 
above, the generation of MCF10 series of cells was initi-
ated by H-Ras mutation, followed by other genetic altera-
tions, including TP53 and PIK3CA.29 Although studies of 
the influence of mutations across isogenic and serial cell 
lines are limited, Relógio et  al17 reported that Ras muta-
tions can cause changes to the period of BMAL1 in a series 
of human HaCaT skin keratinocytes. Collectively, the data 
presented here and in that study only address Ras muta-
tions, albeit in 2 different types of cancer. Future studies 
should evaluate other mutations and cancer types. By cor-
relating circadian rhythm alterations with cancer severity, 
we may be able to offer significant insights to this devastat-
ing disease, leading to improved means for prevention, and 
the development of new drugs and targets.
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