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Abstract

Modern bio-technologies have produced a vast amount of high-throughput data with the number of 

predictors much exceeding the sample size. Penalized variable selection has emerged as a 

powerful and efficient dimension reduction tool. However, control of false discoveries (i.e. 

inclusion of irrelevant variables) for penalized high-dimensional variable selection presents serious 

challenges. To effectively control the fraction of false discoveries for penalized variable selections, 

we propose a false discovery controlling procedure. The proposed method is general and flexible, 

and can work with a broad class of variable selection algorithms, not only for linear regressions, 

but also for generalized linear models and survival analysis.
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1 Introduction

With the advance of array and sequencing-based technologies, modern transcriptomics 

studies are capable of simultaneously measuring the expression levels for tens of thousands 

of genes, providing unprecedented insights into the etiology of many common diseases. By 

relating gene expression levels to the progression of diseases or other disease phenotypes, 

previous studies have identified many genes associated with disease-relevant clinical 

outcomes (Gui and Li, 2005; Shaughnessy et al., 2007).

The standard procedure to perform transcriptomics analysis is to evaluate one gene at a time 

and examine its relationship with disease-related outcomes. However, this approach often 

results in low statistical power to identify the disease-associated genes (Sun et al., 2017). 

Recently, penalized regression methods, such as the Lasso (Tibshirani, 1996) and the elastic 

net (Zou and Hastie, 2005), have been applied to jointly analyze all predictors to increase the 

power. These methods are also being applied to genetic association studies and 

transcriptomics analysis (e.g. Ayers and Cordell (2010); Cho et al. (2010); Wu et al. (2009)). 
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In these applications, the cross-validation procedure is commonly used to select the optimal 

regularization parameter, which, unfortunately, can not guarantee control of false 

discoveries.

Controlling for false discovery is important as it is extremely costly to validate false 

discoveries. In settings for large-scale hypothesis testing, Benjamini and Hochberg’s FDR-

controlling procedure (Benjamini and Hochberg, 1995) has been widely adopted. However, 

for penalized high-dimensional variable selections, little work has been done. A major 

challenge is that the limiting distribution for the penalized estimators in high-dimensional 

settings is unknown or difficult to obtain (Bühlmann and van de Geer, 2011). Standard 

bootstrap or sub-sampling techniques are usually not valid due to the non-continuity of 

limiting distributions (Efron, 2014). This gap motivates us to propose a novel procedure that 

improves the performance of variable selection algorithms while providing proper false 

discovery control. The proposed method is very general and flexible, and can work with a 

broad class of variable selection algorithms, including the Lasso, the elastic net and iterative 

sure independent screening (Fan and Lv, 2008), not only for linear regressions, but also for 

generalized linear models and survival analysis. Using simulations and real data examples, 

we evaluate our proposed method in combination with the Lasso procedure for variable 

selection and demonstrate the superior power of our method as compared with previous 

approaches.

2 Methods

2.1 Notation

Consider a regression model with n independent samples and p predictors. Denote the 

response vector by Y = Y1, …, Yn
T, where Yi is the outcome for the i-th subject. Let 

X = X1, …, Xn
T be the covariate matrix, where Xi = Xi1, …, Xip  is a p-dimension covariate 

vector for the i-th subject, 1 ≤ i ≤ n. Let L(β) be a loss function that link Xi to the response 

Yi, where β is a p-dimensional vector of regression parameters. Examples of loss functions 

include the square error loss function for linear regressions, L(β) = ∑i = 1
n Y i − Xi

Tβ
2,and the 

negative log-likelihood for logistic regression L(β) = − ∑i = 1
n Y iXi

Tβ − log 1 + exp Xi
Tβ .

Our overarching goal is to identify informative variables with non-zero coefficients. 

Throughout this paper, we use the Lasso (Tibshirani, 1996) as an illustrative example for 

variable selection, though other variable selection methods could be incorporated as well. 

The Lasso procedure estimates β via the L1 penalized optimization

β = argmin
β

L(β) + λ β 1 ,

where λ is the regularization parameter that determines the amount of penalization, and 

β 1 = ∑ j = 1
p β j  is the L1 norm of β. In practice, the regularization parameter is typically 

determined by K-fold cross-validation (Hastie et al., 2009). For example, split the data into 
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K roughly equal-sized parts. For the kth part, fit the model to the other K – 1 parts, and then 

calculate the prediction error of the fitted model when predicting the kth part of the data. 

Repeat for k = 1, …, K and λ is chosen to minimize the combined estimates of prediction 

error. We will show below that this procedure may lead to an excessive number of false 

discoveries in practical applications.

2.2 False discoveries

We exemplify the issue of false discoveries with simulations based on a real data example 

(Shaughnessy et al., 2007), which contains a total of 340 patients and 23,052 gene 

expressions. We simulate continuous outcomes based on real gene expression such that 50 

predictors (randomly drawn from the 23,052 predictors) have non-zero effects. The 

magnitude of the effect size follows a uniform (0.2, 1) distribution. The sign of the effects is 

randomly selected with equal probability of being positive or negative. The random error for 

the continuous outcomes is generated from the standard normal distribution. We apply the 

Lasso (implemented by R package glmnet) with 10-fold cross-validation and randomly 

repeat the procedure 10,000 times. Figure 1a shows the histogram for the proportion of false 

discoveries. The cross-validated choices of regularization parameters are data-dependent and 

the numbers of false discoveries vary substantially. Across all replicates, the algorithm tends 

to select too many irrelevant variables. In contrast, Figure 1b shows that our proposed 

procedure (termed PS-Fdr) effectively controls the false discoveries.

2.3 Statistical challenges

In the context of hypothesis testing, classical FDR-controlling procedures act on a set of 

valid P-values. For penalized variable selection, one major challenge is that the limiting 

distribution for the penalized estimators is unknown and hence valid P-values are difficult to 

obtain (Bühlmann and van de Geer, 2011). Even the standard permutation methods are 

inadequate (Barber and Candês, 2015). For example, although permutation preserves the 

correlation between the predictors, it involves an extra assumption that the variable selection 

always follows the same pattern as that under the global null (i.e. no variable is associated 

with outcomes). In other words, the fact that some of the predictors are non-null does not 

affect the selection pattern of the null predictors. However, for penalized variable selection, 

the permuted variables (under the global null so that no permuted variable is associated with 

outcomes) have much fewer chances of being selected than the non-informative variables in 

the original samples (where some of the predictors may be non-null). The resulting FDR is 

under-estimated and the corresponding FDR-controlling procedure tends to select too many 

irrelevant variables (as shown in Section 3.1 of Barber and Candes (2015)). It is not obvious 

how to use existing permutation-based techniques to effectively control for false discoveries 

for penalized variable selections. In the next subsection, we propose a possible approach to 

this problem. A key ingredient of our proposed method is to construct a valid statistics such 

that the original predictors and the permuted variables are comparable.
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2.4 False discovery controls for penalized variable selections

We consider a variable selection problem with p candidate predictors. We define the 

predictor j as “null” if it has no association with the outcome variable. Let the random 

variable FDP represent the false discovery proportion:

FDP =
N0
N+

if N+ > 0, and FDP = 0 if N+ = 0,

where N0 is the number of falsely selected variables, and N+ is the total number of selected 

variables. The false discovery rate in this context is defined as the expectation of FDP, e.g. 

FDR = E(FDP). Following the notations in Section 2.2 of Efron (2013), we define

Fdr =
e0
e+

, and an estimate of Fdr is computed as Fdr =
e0
N+

,

where e0 = E(N0) is the expectation of N0, e+ = E(N+) is the expectation of N+, and ê0 is the 

estimate of e0. In the context of hypothesis testing, Genovese and Wasserman (2004) showed 

that

FDR = Fdr + o ( 1
p ) .

In this report, we aim to estimate the Fdr for penalized variable selections. A key 

computational step is then estimating e0, which we achieve by extending stability selection 

(Meinshausen et al., 2010) and Significance Analysis of Microarrays (SAM) (Tusher et al., 

2001).

We start by implementing stability selection (Meinshausen et al., 2010), which is an 

effective procedure to rank the importance of predictors. The idea is to identify variables that 

are included in the model with high probabilities when a variable selection procedure is 

performed on a random sample of the observations. Specifically, we bootstrap (sample with 

replacement to form a new sample that is also of size n) multiple (B) times. For each 

resampled data (e.g. for b=1,..., B), we implement the Lasso and denote the selected index 

set by

𝒮(b) = j = 1, …, p: β j
(b) ≠ 0 .

The selection frequency is then computed as the empirical probability that each variable is 

selected

Π j = 1
B ∑

b = 1

B
I j ∈ 𝒮(b) , j = 1, …, p .
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We then order the selection frequencies such that Π(1) ≤ Π(2) ≤ … ≤ Π(p) , which are 

effective measures to rank the relative importance of predictors.

As successful as such a procedure is, it also has unresolved issues. For instance, to determine 

which variables should be selected, a new regularization parameter to be determined is the 

threshold based on selection frequencies. In practice, it is not obvious how to obtain such a 

threshold (He et al., 2016), making the selection results difficult to evaluate. To solve this 

issue, we determine the threshold based on a desired Fdr-controlling level.

To estimate the Fdr, we randomly permute the outcomes M times to decouple the relation 

between the covariates and the outcomes. On each permuted dataset, say m = 1, …, M, we 

implement the stability selection procedure and compute the corresponding selection 

frequencies, denoted by Π j
(m) , j = 1, …, p . To avoid under-estimation of e0, instead of 

implementing cross-validation to select the number of variables on each permuted sample, 

we fix the number of selected variables (e.g. the medium number of selected variables using 

the stability selection procedure on the original sample). We order the selection frequencies 

such that Π(1)
(m) ≤ Π(2)

(m) ≤ … ≤ Π(p)
(m) , and then define Π( j) = ∑m = 1

M Π( j)
(m) /M, the permuted 

counterpart of Π( j) .

To compare original predictors with their permuted counterparts, we compute the 

normalized statistics, Z( j) = D Π( j) ,Z( j)
(m) = D Π( j)

(m) , and Z( j) = D Π( j) , where for 

0 ≤ u ≤ 1, D(u) = u/( u(1 − u) + ν) . These normalized statistics share the virtue of the original 

SAM statistics and further tease apart variables by providing larger values for most of the 

informative variables and smaller values for most of the non-informative ones. To ensure 

that the denominator of normalized statistics is non-zero, we add a small positive number v 
(e.g. v = 1/B). The proposed post-selection Fdr-controlling procedure (termed as PS-Fdr) is 

summarized as follows:

Algorithm (PS-Fdr)

(1) For a given positive constant Δ, we identify a cutoff for the ordered Z values,

Z( Δ ) = min Z( j): j = 1, …, p, Z( j) ≥ Z( j) + Δ .

Note that step (1) is a step-down procedure. For the index j = 1, …, p, starting from the left, 

moving to the right, we find the first j = j* such that the difference between Z( j)  and its 

permuted counterpart is above Δ, e.g. Z( j) − Z( j) ≥ Δ .All the indices past this j* have 

ordered Z values larger than or equal to Z(Δ), and will be selected if Z(Δ) is chosen as the 

cutoff.

(2) Count the number of Z values that are above this Z(Δ) cutoff in order to obtain 

the number of selected variables: N+( Δ ) = ∑ j = 1
p I Z( j) ≥ Z( Δ ) .
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(3) Count the average number of Z values in the permuted data that are above the 

Z(Δ) cutoff. This average number serves as an estimate of the expected number 

of false discoveries

e0( Δ ) = ∑
j = 1

p
∑

m = 1

M
I Z ( j)

(m) ≥ Z( Δ ) /M .

(4) Estimate the false discovery rate by Fdr( Δ ) = e0( Δ )/N+( Δ ) .

(5) Compute Fdr( Δ ) for a range of Δ values, e.g., for each difference 

Δ( j) = Z( j) − Z( j), compute the corresponding Fdr Δ( j) .

(6) For a pre-specified value q ∈ (0, 1), the selected index set is determined by

𝒮q = j:Fdr Δ( j) ≤ q, j = 1, …, p .

Remark 1: Such an algorithm ensures that at most q proportion of the selected variables 

would be false positives. For instance, if q = 0.1 and 10 variables are selected with Fdr ≤ q,
at most 1 of these 10 variables would be a false positive.

Remark 2: One advantage of the proposed method is that it shares the SAM virtue of not 

requiring the theoretical distribution of the summary statistics; hence it is more flexible for a 

broad class of regression layouts.

Remark 3: The accuracy of Fdr as an estimate of the false discovery rate depends on the 

variability of the denominator N+. As shown in Figure 1a, the numbers of selected variables 

may vary substantially in practice. This motivates us to compute selection frequencies, 

which are relatively insensitive to regularization parameters. As shown in Meinshausen et al. 

(2010), even the magnitudes of selection frequencies vary with different regularization 

parameters, the relative rankings among predictors are stable.

Remark 4: The proposed Fdr is motivated by the two-groups mixture model discussed in 

Efron (2008) and Section 2.2 of Efron (2013). In the context of hypothesis testing, 

e0 = π0pF0,where π0 denotes the unknown proportion of null predictors among all candidate 

variables, and F0 is the probability distributions of z-values corresponding to the null 

predictors. In this paper, we follow the practical strategy of Benjamini and Hochberg (1995) 

by setting π0 = 1 and hence, estimate an upper bound of FDR.

2.5 Related works

To quantify uncertainty of penalized estimators, a familywise error (FWER)-controlling 

procedure was provided based on multiple sample-splitting (Mein-shausen et al., 2009). This 

algorithm starts by randomly splitting the original data multiple times. It then selects 

variables based on the first half of the data, and fits conventional low-dimensional regression 

and assigns p-values based on the second half of the data. Finally, the adjusted p-values are 
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computed to correct for the multiplicity. Alternatively, the knockoff procedure was recently 

introduced by Barber and Candês (2015) to construct a set of so-called “knockoff” variables 

which imitate the correlation structure of the original variables, but are not associated with 

the response variable. Only those variables that are more associated with the response than 

their knockoff counterparts are selected. Despite their theoretical advantages, issues such as 

reduced power may be encountered in finite-sample settings. The results will further worsen 

for settings with relatively small sample sizes.

3 Simulation

We assess the performance of the proposed PS-Fdr procedure by comparing it with 10-fold 

cross-validation and the knockoff procedure (Barber and Candês, 2015). These approaches 

are all based on the Lasso (implemented by the R package glmnet; (Simon et al., 2011)). The 

PS-Fdr procedure is implemented with B = 50 bootstraps and M = 100 permutations. We 

also compare our proposed method with the classical Benjamini-Hochberg procedure based 

on univariate tests (termed Univariate FDR). A control level q = 0.1 is used for the 

Univariate FDR, the knockoff and the PS-Fdr procedures. For each configuration, a total of 

100 independent data are generated.

3.1 n > p

The knockoff procedure proposed by Barber and Candês (2015) was designed for linear 

regression with sample size greater than the number of predictors. To compare it with the 

proposed method, we first consider linear regression settings with n > p.

Model A (Linear Regression): Data are generated with n = 550 subjects and p = 
500 predictors, which come from a multivariate normal distribution with mean 0 

and a unit standard deviation and a block-diagonal covariance structure (5 

independent blocks; each with 100 predictors). Within each block the variables 

follow a first-order autoregressive (AR1) with the auto-correlation parameter 0.6. 

We generate continuous outcomes such that 20 predictors (randomly drawn from p 
= 500) are associated with the outcomes. The magnitude of the effect size varies 

from 0.25 to 0.4. The sign of the effects is randomly selected. The random error for 

the continuous outcomes follows the standard normal distribution.

Model B (Linear Regression): Data are generated with n = 1, 000 subjects and p = 

500 predictors. All other set ups are the same as those in Model A.

Tables 1 and 2 reports five measures: the average number of false discoveries (FD), 

the average number of false negatives (FN), the average proportion of false 

discoveries (FDP), the empirical probabilities of informative predictors that are 

correctly identified as such (Power), and the average number of FD and FN 

combined (FD+FN). In all settings, the number of falsely chosen variables for the 

proposed PS-Fdr procedure is well controlled at the desired level. There is clearly a 

price to pay for controlling the false discoveries, as the cross-validation detects 

more truly informative variables than other approaches. Although the cross-

validation has comparable performance in terms of fewer false negatives and high 

power, it selects in all cases too many irrelevant variables. The knockoff procedure 
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is considerably less powerful than the proposed method, especially in Model A 

with relatively small sample size.

3.2 n < p

Model C (Linear Regression): Data are generated with n = 500 subjects and p = 1,000 

predictors. The magnitude of the effect size varies from 0.2 to 0.5. All other set ups are 

similar to those in Model A.

Model D (Logistic Regression): Binary outcomes follow a Bernoulli distribution. The 

magnitude of the effect size varies from 0.5 to 1.

Model E (Survival Analysis): Death times are generated from the standard exponential 

distribution. Censoring times are generated from a uniform (0, 3) distribution. The 

magnitude of the effect size varies from 0.2 to 0.5.

Model F (Linear Regression): To assess the effect of sparsity level, we vary the number of 

informative variables from 10 to 50. The magnitude of the effect size follows a uniform (0.2, 

1) distribution. All other set ups are the same as Model C.

Model G (Logistic Regression): Binary outcomes are generated from a Bernoulli distribution 

with covariate effects similar to those in Model F.

Model H (Survival Analysis): The death and censoring distribution are similar to Model E. 

All other set ups are the same as Model F.

As shown in Figures 2 and 3, the proposed method offers a strong advantage over Univariate 

FDR. In all settings, the proposed method has the highest power while successfully 

controlling the false discovery proportions.

3.3 Performance with various tuning parameters

Figure 4a compares the performance with various choices of regularization parameters. We 

generate data under Model C with 50 informative variables. For each data configuration, let 

λmin and λmax be the minimum and maximum of the optimal regularization parameters 

selected by 1,000 replicates of cross-validation. Define

λ = λmax + γ λmin − λmax .

As we vary γ from 0 to 1 by 0.1, we obtain 11 choices of regularization parameters, which 

are applied for the proposed method. The results in Figure 4a suggest that the perturbation of 

regularization parameters has relatively small effects on the proposed PS-Fdr procedure. We 

also vary the number of permutations or the number of bootstraps to assess the performance 

of the proposed method. As illustrated in Figures 4b and 4c, the performance of the 

proposed PS-Fdr procedure is relatively robust to the number of permutations, while 50–100 

bootstraps are sufficient for reliable estimations of the Fdr.
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4 Real data study

4.1 Multiple myeloma data

We use gene expression and survival outcome from multiple myeloma patients who were 

recruited into clinical trials UARK 98–026 and UARK 2003–33, which studied total therapy 

II (TT2) and total therapy III (TT3), respectively. These data are described in Shaughnessy 

et al. (2007), and can be obtained through the MicroArray Quality Control Consortium II 

study (Shi et al., 2010), available on GEO (GSE24080). Gene expression profiling was 

performed using Affymetrix U133Plus2.0 microarrays. Expression values for a total of 

23,052 probe sets are used for our analysis. The TT2 arm is used as the training set with 340 

subjects and 126 observed deaths. The TT3 arm is used as the validation set with 214 

subjects and 55 observed deaths. The overall survival time is calculated from the date of 

diagnosis to the date of death or the date of the last follow up.

The proposed Fdr procedure is implemented based on the penalized Cox proportional 

hazards model to identify high-risk genes associated with survival time. The importance of 

predictors is evaluated by the estimated false discovery rate. We compare the proposed 

methods with the cross-validation. The cross-validation based Lasso procedure selects 21 

predictors. In contrast, no variables are selected by the MS-Split procedure. The proposed 

Fdr procedure selects 11 variables with the estimated Fdr ≤ 0.1, which are a subset of 

variables selected by the Lasso. These results are consistent with those from simulation 

section. The Lasso tends to select many irrelevant variables. The proposed method selects 

substantially fewer variables than the Lasso and provides a control for false discoveries.

To assess the selection results, we compute the C-index (i.e. concordance index, an 

extension of the area under the curve for survival analysis (Uno et al., 2007)) on the 

validation sample. The set of variables selected by the proposed method achieves a C-index 

of 0.713, which outperforms the performance of the model based on the classical cross-

validation approach (C-index of 0.677).

4.2 Type 2 diabetes data

The second dataset was collected from skeletal muscle samples of Finnish individuals (Scott 

et al., 2016) as part of the Finland-United States Investigation of NIDDM Genetics 

(FUSION) project. The data are publicly available in dbGaP with accession code 

phs001068.v1.p1. The data contains n = 271 individuals and p = 21,735 gene expression 

measurements.

The proposed PS-Fdr procedure is implemented based on the penalized linear regression to 

identify genes whose expression level is associated with insulin, a continuous trait related to 

type II diabetes. In the analysis, we include age, sex and batch labels as covariates following 

the original study (Scott et al., 2016). The 10-fold cross-validation procedure selects 235 

genes. In contrast, no variables are selected by the MS-Split procedure (50 sub-sampling). 

The proposed PS-Fdr procedure selects one gene with an estimated Fdr ≤ 0.1 and three 

genes with an estimated Fdr ≤ 0.2. Finally, we compute the prediction error by a 10-fold 

cross-validation. The average squared prediction error across 10 partitions for the proposed 
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PS-Fdr (with q = 0.2) and the cross-validation based procedure are 23.27 and 23.92 

respectively. Therefore, the proposed method, though selecting substantially fewer variables 

than the cross-validation based Lasso, maintains similar prediction accuracy.

5 Discussion and Conclusion

Choosing the amount of regularization for penalized variable selection is notoriously 

difficult for high-dimensional data. Indeed, most existing penalized variable selection 

algorithms can not guarantee a proper control of false discovery rates. In this report, we 

propose a false discovery controlling procedure for penalized variable selections in high-

dimensional settings. We show that the proposed method, in conjunction with the Lasso, can 

bring substantial improvements over conventional procedures in terms of false discovery 

control. Our proposed approach is effective in identifying disease-associated genes while 

guarding against the inclusion of an excessive number of false discoveries. The proposed 

method can be integrated with existing variable selection approaches to improve error 

control for false discoveries.
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Fig. 1: 
Histograms for the false discovery proportion (FDP). Figure 1a shows the histogram for the 

proportion of false discoveries for the Lasso with regularization parameters chosen by 10-

fold (randomly repeat the procedure 10,000 times). Figure 1b shows the histogram for the 

proposed PS-Fdr procedure.
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Fig. 2: 
Simulation results for Model C-E. Figure 2 reports two measures: the average proportion of 

false discoveries (FDP), and the empirical probabilities of informative predictors that are 

correctly identified as such (Power).
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Fig. 3: 
Simulation results for Model F-H. Figure 3 reports two measures: the average proportion of 

false discoveries (FDP), and the empirical probabilities of informative predictors that are 

correctly identified as such (Power).
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Fig. 4: 
Perturbation with various tuning parameters. (a) Figure 4a compares the performance with 

various choices of λ:λ = λmax + γ λmin − λmax , where λmin and λmax are the minimum and 

maximum of regularization parameters selected by 1,000 replicates of cross-validation; (b) 

Number of permutation; (c) Number of bootstrap.
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Tab. 1:

Summary of simulation results for Model A (n=550 and p=500). FD: numbers of false discoveries; FN: 

numbers of false negatives; FDP: proportions of false discovery; Power: empirical probabilities to identify 

informative predictors; FD+FN: FD and FN combined.

|β| Methods FD FN FDP Power FD+FN

0.25 Univariate FDR 14.91 4.15 0.485 0.793 19.06

Cross-Validation 62.22 0.09 0.758 0.996 62.31

Knockoff 0.05 18.01 0.025 0.100 18.06

PS-Fdr 1.83 1.70 0.091 0.915 3.53

0.30 Univariate FDR 19.08 2.92 0.528 0.854 22.00

Cross-Validation 62.47 0.03 0.758 0.999 62.50

Knockoff 0.03 17.94 0.014 0.103 17.97

PS-Fdr 1.83 0.65 0.086 0.968 2.48

0.35 Univariate FDR 22.31 2.27 0.557 0.887 24.58

Cross-Validation 62.81 0.01 0.759 1.000 62.82

Knockoff 0.05 17.44 0.019 0.128 17.49

PS-Fdr 1.91 0.29 0.088 0.986 2.20

0.40 Univariate FDR 24.46 1.98 0.576 0.901 26.44

Cross-Validation 62.99 0.00 0.759 1.000 62.99

Knockoff 0.11 16.92 0.034 0.154 17.03

PS-Fdr 1.85 0.05 0.085 0.998 1.90

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2019 April 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

He et al. Page 17

Tab. 2:

Summary of simulation results for Model B (n=1,000 and p=500).

|β| Methods FD FN FDP Power FD+FN

0.25 Univariate FDR 35.73 0.72 0.758 0.964 36.45

Cross-Validation 57.85 0.00 0.743 1.000 57.85

Knockoff 1.77 4.40 0.102 0.780 6.17

PS-Fdr 2.14 0.10 0.097 0.995 3.53

0.30 Univariate FDR 41.17 0.63 0.680 0.969 41.80

Cross-Validation 56.17 0.00 0.737 1.000 56.17

Knockoff 1.80 1.83 0.090 0.908 3.63

PS-Fdr 1.57 0.00 0.073 1.000 1.57

0.35 Univariate FDR 45.24 0.58 0.700 0.971 45.82

Cross-Validation 56.72 0.00 0.739 1.000 56.72

Knockoff 2.10 0.24 0.096 0.988 2.34

PS-Fdr 1.72 0.00 0.079 1.000 1.72

0.40 Univariate FDR 48.22 0.53 0.712 0.974 48.75

Cross-Validation 58.09 0.00 0.744 1.000 58.09

Knockoff 2.79 0.29 0.124 0.986 3.08

PS-Fdr 2.15 0.00 0.097 1.000 2.15
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