Skip to main content
. 2019 Apr 5;2(4):e191860. doi: 10.1001/jamanetworkopen.2019.1860

Table 2. Summary Measures of Algorithm Performance for Phase Classification.

Metric SVM, Algorithm 1, Instrument Labels RNN, Algorithm 2, Instrument Labels CNN, Algorithm 3, Images CNN-RNN, Algorithm 4, Images CNN-RNN, Algorithm 5, Images and Instrument Labels
Unweighted accuracy (95% CI) 0.938 (0.937-0.939) 0.959 (0.958-0.960) 0.956 (0.954-0.957) 0.921 (0.920-0.923) 0.915 (0.913-0.916)
Frequency-weighted accuracy (95% CI) 0.935 (0.934-0.936) 0.957 (0.956-0.958) 0.955 (0.953-0.956) 0.919 (0.918-0.920) 0.913 (0.912-0.914)
Inverse variance−weighted accuracy (95% CI) 0.963 (0.962-0.965) 0.976 (0.975-0.978) 0.958 (0.957-0.960) 0.928 (0.926-0.930) 0.920 (0.918-0.922)
Unweighted AUC (95% CI) 0.737 (0.730-0.744) 0.773 (0.770-0.776) 0.712 (0.704-0.719) 0.752 (0.750-0.755) 0.737 (0.735-0.739)

Abbreviations: AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; RNN, recurrent neural network; SVM, support vector machine.