Table 3. Accuracy, Sensitivity, Specificity, and Precision for Algorithms Across Phases.
Algorithm and Measure | Side Incision | Main Incision | Capsulorrhexis | Hydrodissection | Phacoemulsification | Cortical Removal | Lens Insertion | Ocular Viscoelastic Device Removal | Wound Closure, Corneal Hydration | Wound Closure, Suture Incision |
---|---|---|---|---|---|---|---|---|---|---|
SVM, algorithm 1, instrument labels (95% CI) | ||||||||||
Accuracy | 0.985 (0.982-0.987) | 0.930 (0.927-0.933) | 0.963 (0.962-0.964) | 0.910 (0.907-0.914) | 0.958 (0.955-0.961) | 0.882 (0.878-0.886) | 0.987 (0.986-0.988) | 0.899 (0.897-0.900) | 0.893 (0.892-0.895) | 0.968 (0.964-0.971) |
Sensitivity | 0.936 (0.917-0.955) | 0.949 (0.949-0.949) | 0.890 (0.890-0.890) | 0.809 (0.799-0.819) | 0.904 (0.894-0.914) | 0.475 (0.446-0.504) | 0.920 (0.920-0.920) | 0.247 (0.247-0.247) | 0.005 (0.000-0.015) | 0.852 (0.784-0.920) |
Specificity | 0.990 (0.989-0.991) | 0.927 (0.924-0.931) | 0.972 (0.971-0.973) | 0.923 (0.919-0.926) | 0.965 (0.962-0.968) | 0.932 (0.930-0.934) | 0.996 (0.994-0.997) | 0.976 (0.975-0.978) | 0.999 (0.998-1.000) | 0.972 (0.970-0.975) |
Precision | 0.906 (0.896-0.916) | 0.615 (0.604-0.625) | 0.798 (0.791-0.805) | 0.555 (0.542-0.568) | 0.759 (0.742-0.776) | 0.459 (0.442-0.476) | 0.963 (0.953-0.973) | 0.556 (0.539-0.573) | 0.517 (0.000-1.000) | 0.553 (0.524-0.582) |
RNN, algorithm 2, instrument labels (95% CI) | ||||||||||
Accuracy | 0.989 (0.987-0.991) | 0.985 (0.982-0.987) | 0.973 (0.971-0.976) | 0.960 (0.957-0.962) | 0.962 (0.959-0.965) | 0.915 (0.911-0.919) | 0.988 (0.987-0.990) | 0.927 (0.924-0.930) | 0.909 (0.905-0.914) | 0.984 (0.981-0.987) |
Sensitivity | 0.940 (0.925-0.956) | 0.974 (0.957-0.991) | 0.925 (0.915-0.935) | 0.716 (0.706-0.727) | 0.812 (0.795-0.829) | 0.583 (0.552-0.614) | 0.943 (0.934-0.952) | 0.508 (0.494-0.521) | 0.765 (0.745-0.784) | 0.800 (0.728-0.873) |
Specificity | 0.994 (0.992-0.996) | 0.986 (0.985-0.987) | 0.979 (0.977-0.981) | 0.989 (0.986-0.991) | 0.980 (0.978-0.983) | 0.956 (0.952-0.959) | 0.994 (0.992-0.996) | 0.977 (0.974-0.980) | 0.926 (0.922-0.931) | 0.991 (0.990-0.993) |
Precision | 0.942 (0.927-0.957) | 0.893 (0.885-0.902) | 0.847 (0.834-0.860) | 0.883 (0.859-0.907) | 0.836 (0.819-0.852) | 0.615 (0.594-0.637) | 0.951 (0.938-0.964) | 0.722 (0.695-0.749) | 0.554 (0.537-0.570) | 0.781 (0.749-0.813) |
CNN, algorithm 3, images (95% CI) | ||||||||||
Accuracy | 0.962 (0.958-0.966) | 0.970 (0.966-0.974) | 0.928 (0.923-0.932) | 0.957 (0.955-0.958) | 0.959 (0.956-0.962) | 0.940 (0.935-0.944) | 0.964 (0.960-0.967) | 0.959 (0.956-0.963) | 0.953 (0.948-0.958) | 0.966 (0.963-0.970) |
Sensitivity | 0.723 (0.689-0.756) | 0.870 (0.845-0.895) | 0.920 (0.920-0.920) | 0.623 (0.613-0.634) | 0.884 (0.874-0.894) | 0.793 (0.762-0.823) | 0.813 (0.796-0.830) | 0.799 (0.782-0.816) | 0.749 (0.722-0.775) | 0.279 (0.210-0.347) |
Specificity | 0.987 (0.984-0.990) | 0.982 (0.979-0.985) | 0.929 (0.924-0.934) | 0.996 (0.995-0.998) | 0.968 (0.965-0.971) | 0.958 (0.954-0.961) | 0.982 (0.979-0.985) | 0.978 (0.975-0.982) | 0.978 (0.973-0.982) | 0.994 (0.992-0.996) |
Precision | 0.858 (0.829-0.886) | 0.856 (0.835-0.877) | 0.614 (0.597-0.630) | 0.952 (0.932-0.972) | 0.770 (0.753-0.787) | 0.696 (0.677-0.716) | 0.850 (0.828-0.873) | 0.816 (0.793-0.838) | 0.802 (0.769-0.834) | 0.646 (0.555-0.738) |
CNN-RNN, algorithm 4, images (95% CI) | ||||||||||
Accuracy | 0.939 (0.934-0.945) | 0.930 (0.926-0.935) | 0.931 (0.928-0.934) | 0.936 (0.932-0.939) | 0.938 (0.935-0.940) | 0.841 (0.837-0.845) | 0.930 (0.927-0.933) | 0.900 (0.896-0.903) | 0.916 (0.911-0.921) | 0.951 (0.948-0.955) |
Sensitivity | 0.609 (0.569-0.649) | 0.745 (0.720-0.770) | 0.745 (0.735-0.755) | 0.557 (0.557-0.557) | 0.692 (0.682-0.702) | 0.546 (0.521-0.571) | 0.486 (0.477-0.496) | 0.545 (0.531-0.558) | 0.594 (0.568-0.621) | 0.414 (0.352-0.477) |
Specificity | 0.974 (0.971-0.978) | 0.953 (0.949-0.957) | 0.954 (0.950-0.957) | 0.981 (0.977-0.984) | 0.968 (0.965-0.970) | 0.877 (0.874-0.880) | 0.984 (0.982-0.987) | 0.942 (0.939-0.946) | 0.955 (0.95-0.959) | 0.973 (0.970-0.976) |
Precision | 0.715 (0.684-0.747) | 0.659 (0.639-0.679) | 0.665 (0.649-0.682) | 0.775 (0.743-0.806) | 0.723 (0.709-0.737) | 0.351 (0.340-0.363) | 0.795 (0.764-0.825) | 0.529 (0.513-0.545) | 0.613 (0.586-0.640) | 0.378 (0.334-0.422) |
CNN-RNN, algorithm 5, images and instrument labels (95% CI) | ||||||||||
Accuracy | 0.932 (0.927-0.937) | 0.947 (0.943-0.951) | 0.902 (0.899-0.906) | 0.900 (0.896-0.904) | 0.920 (0.918-0.922) | 0.861 (0.858-0.865) | 0.914 (0.910-0.917) | 0.909 (0.905-0.913) | 0.925 (0.922-0.929) | 0.937 (0.933-0.941) |
Sensitivity | 0.512 (0.475-0.550) | 0.709 (0.681-0.737) | 0.625 (0.615-0.635) | 0.495 (0.495-0.495) | 0.666 (0.653-0.680) | 0.520 (0.503-0.537) | 0.547 (0.530-0.563) | 0.619 (0.597-0.642) | 0.518 (0.499-0.537) | 0.421 (0.338-0.503) |
Specificity | 0.976 (0.973-0.980) | 0.976 (0.973-0.979) | 0.937 (0.933-0.940) | 0.949 (0.944-0.953) | 0.951 (0.949-0.953) | 0.903 (0.900-0.906) | 0.959 (0.956-0.963) | 0.943 (0.940-0.947) | 0.974 (0.970-0.978) | 0.957 (0.955-0.960) |
Precision | 0.697 (0.661-0.734) | 0.782 (0.762-0.802) | 0.549 (0.535-0.564) | 0.535 (0.513-0.558) | 0.624 (0.615-0.633) | 0.396 (0.385-0.407) | 0.624 (0.603-0.644) | 0.566 (0.549-0.583) | 0.704 (0.674-0.733) | 0.283 (0.241-0.325) |
Abbreviations: CNN, convolutional neural network; RNN, recurrent neural network; SVM, support vector machine.