Skip to main content
. 2019 Apr 5;2(4):e191860. doi: 10.1001/jamanetworkopen.2019.1860

Table 3. Accuracy, Sensitivity, Specificity, and Precision for Algorithms Across Phases.

Algorithm and Measure Side Incision Main Incision Capsulorrhexis Hydrodissection Phacoemulsification Cortical Removal Lens Insertion Ocular Viscoelastic Device Removal Wound Closure, Corneal Hydration Wound Closure, Suture Incision
SVM, algorithm 1, instrument labels (95% CI)
Accuracy 0.985 (0.982-0.987) 0.930 (0.927-0.933) 0.963 (0.962-0.964) 0.910 (0.907-0.914) 0.958 (0.955-0.961) 0.882 (0.878-0.886) 0.987 (0.986-0.988) 0.899 (0.897-0.900) 0.893 (0.892-0.895) 0.968 (0.964-0.971)
Sensitivity 0.936 (0.917-0.955) 0.949 (0.949-0.949) 0.890 (0.890-0.890) 0.809 (0.799-0.819) 0.904 (0.894-0.914) 0.475 (0.446-0.504) 0.920 (0.920-0.920) 0.247 (0.247-0.247) 0.005 (0.000-0.015) 0.852 (0.784-0.920)
Specificity 0.990 (0.989-0.991) 0.927 (0.924-0.931) 0.972 (0.971-0.973) 0.923 (0.919-0.926) 0.965 (0.962-0.968) 0.932 (0.930-0.934) 0.996 (0.994-0.997) 0.976 (0.975-0.978) 0.999 (0.998-1.000) 0.972 (0.970-0.975)
Precision 0.906 (0.896-0.916) 0.615 (0.604-0.625) 0.798 (0.791-0.805) 0.555 (0.542-0.568) 0.759 (0.742-0.776) 0.459 (0.442-0.476) 0.963 (0.953-0.973) 0.556 (0.539-0.573) 0.517 (0.000-1.000) 0.553 (0.524-0.582)
RNN, algorithm 2, instrument labels (95% CI)
Accuracy 0.989 (0.987-0.991) 0.985 (0.982-0.987) 0.973 (0.971-0.976) 0.960 (0.957-0.962) 0.962 (0.959-0.965) 0.915 (0.911-0.919) 0.988 (0.987-0.990) 0.927 (0.924-0.930) 0.909 (0.905-0.914) 0.984 (0.981-0.987)
Sensitivity 0.940 (0.925-0.956) 0.974 (0.957-0.991) 0.925 (0.915-0.935) 0.716 (0.706-0.727) 0.812 (0.795-0.829) 0.583 (0.552-0.614) 0.943 (0.934-0.952) 0.508 (0.494-0.521) 0.765 (0.745-0.784) 0.800 (0.728-0.873)
Specificity 0.994 (0.992-0.996) 0.986 (0.985-0.987) 0.979 (0.977-0.981) 0.989 (0.986-0.991) 0.980 (0.978-0.983) 0.956 (0.952-0.959) 0.994 (0.992-0.996) 0.977 (0.974-0.980) 0.926 (0.922-0.931) 0.991 (0.990-0.993)
Precision 0.942 (0.927-0.957) 0.893 (0.885-0.902) 0.847 (0.834-0.860) 0.883 (0.859-0.907) 0.836 (0.819-0.852) 0.615 (0.594-0.637) 0.951 (0.938-0.964) 0.722 (0.695-0.749) 0.554 (0.537-0.570) 0.781 (0.749-0.813)
CNN, algorithm 3, images (95% CI)
Accuracy 0.962 (0.958-0.966) 0.970 (0.966-0.974) 0.928 (0.923-0.932) 0.957 (0.955-0.958) 0.959 (0.956-0.962) 0.940 (0.935-0.944) 0.964 (0.960-0.967) 0.959 (0.956-0.963) 0.953 (0.948-0.958) 0.966 (0.963-0.970)
Sensitivity 0.723 (0.689-0.756) 0.870 (0.845-0.895) 0.920 (0.920-0.920) 0.623 (0.613-0.634) 0.884 (0.874-0.894) 0.793 (0.762-0.823) 0.813 (0.796-0.830) 0.799 (0.782-0.816) 0.749 (0.722-0.775) 0.279 (0.210-0.347)
Specificity 0.987 (0.984-0.990) 0.982 (0.979-0.985) 0.929 (0.924-0.934) 0.996 (0.995-0.998) 0.968 (0.965-0.971) 0.958 (0.954-0.961) 0.982 (0.979-0.985) 0.978 (0.975-0.982) 0.978 (0.973-0.982) 0.994 (0.992-0.996)
Precision 0.858 (0.829-0.886) 0.856 (0.835-0.877) 0.614 (0.597-0.630) 0.952 (0.932-0.972) 0.770 (0.753-0.787) 0.696 (0.677-0.716) 0.850 (0.828-0.873) 0.816 (0.793-0.838) 0.802 (0.769-0.834) 0.646 (0.555-0.738)
CNN-RNN, algorithm 4, images (95% CI)
Accuracy 0.939 (0.934-0.945) 0.930 (0.926-0.935) 0.931 (0.928-0.934) 0.936 (0.932-0.939) 0.938 (0.935-0.940) 0.841 (0.837-0.845) 0.930 (0.927-0.933) 0.900 (0.896-0.903) 0.916 (0.911-0.921) 0.951 (0.948-0.955)
Sensitivity 0.609 (0.569-0.649) 0.745 (0.720-0.770) 0.745 (0.735-0.755) 0.557 (0.557-0.557) 0.692 (0.682-0.702) 0.546 (0.521-0.571) 0.486 (0.477-0.496) 0.545 (0.531-0.558) 0.594 (0.568-0.621) 0.414 (0.352-0.477)
Specificity 0.974 (0.971-0.978) 0.953 (0.949-0.957) 0.954 (0.950-0.957) 0.981 (0.977-0.984) 0.968 (0.965-0.970) 0.877 (0.874-0.880) 0.984 (0.982-0.987) 0.942 (0.939-0.946) 0.955 (0.95-0.959) 0.973 (0.970-0.976)
Precision 0.715 (0.684-0.747) 0.659 (0.639-0.679) 0.665 (0.649-0.682) 0.775 (0.743-0.806) 0.723 (0.709-0.737) 0.351 (0.340-0.363) 0.795 (0.764-0.825) 0.529 (0.513-0.545) 0.613 (0.586-0.640) 0.378 (0.334-0.422)
CNN-RNN, algorithm 5, images and instrument labels (95% CI)
Accuracy 0.932 (0.927-0.937) 0.947 (0.943-0.951) 0.902 (0.899-0.906) 0.900 (0.896-0.904) 0.920 (0.918-0.922) 0.861 (0.858-0.865) 0.914 (0.910-0.917) 0.909 (0.905-0.913) 0.925 (0.922-0.929) 0.937 (0.933-0.941)
Sensitivity 0.512 (0.475-0.550) 0.709 (0.681-0.737) 0.625 (0.615-0.635) 0.495 (0.495-0.495) 0.666 (0.653-0.680) 0.520 (0.503-0.537) 0.547 (0.530-0.563) 0.619 (0.597-0.642) 0.518 (0.499-0.537) 0.421 (0.338-0.503)
Specificity 0.976 (0.973-0.980) 0.976 (0.973-0.979) 0.937 (0.933-0.940) 0.949 (0.944-0.953) 0.951 (0.949-0.953) 0.903 (0.900-0.906) 0.959 (0.956-0.963) 0.943 (0.940-0.947) 0.974 (0.970-0.978) 0.957 (0.955-0.960)
Precision 0.697 (0.661-0.734) 0.782 (0.762-0.802) 0.549 (0.535-0.564) 0.535 (0.513-0.558) 0.624 (0.615-0.633) 0.396 (0.385-0.407) 0.624 (0.603-0.644) 0.566 (0.549-0.583) 0.704 (0.674-0.733) 0.283 (0.241-0.325)

Abbreviations: CNN, convolutional neural network; RNN, recurrent neural network; SVM, support vector machine.