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Abstract

Current methods for cancer detection rely on tissue biopsy, chemical labeling/staining, and 

examination of the tissue by a pathologist. Though these methods continue to remain the gold 

standard, they are non-quantitative and susceptible to human error. Fourier transform infrared 

(FTIR) spectroscopic imaging has shown potential as a quantitative alternative to traditional 

histology. However, identification of histological components requires reliable classification based 

on molecular spectra, which are susceptible to artifacts introduced by noise and scattering. Several 

tissue types, particularly in heterogeneous tissue regions, tend to confound traditional 

classification methods. Convolutional neural networks (CNNs) are the current state-of-the-art in 

image classification, providing the ability to learn spatial characteristics of images. In this paper, 

we demonstrate that CNNs with architectures designed to process both spectral and spatial 

information can significantly improve classifier performance over per-pixel spectral classification. 

We report classification results after applying CNNs to data from tissue microarrays (TMAs) to 

identify six major cellular and acellular constituents of tissue, namely adipocytes, blood, collagen, 

epithelium, necrosis, and myofibroblasts. Experimental results show that the use of spatial 

information in addition to the spectral information brings significant improvements in the classifier 

performance and allows classification of cellular subtypes, such as adipocytes, that exhibit 

minimal chemical information but have distinct spatial characteristics. This work demonstrates the 

application and efficiency of deep learning algorithms in improving the diagnostic techniques in 

clinical and research activities related to cancer.
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1. Introduction

Histopathology is the gold standard for cancer diagnosis and determining initial directions 

for treatment. Standard steps consist of biopsy collection, tissue preparation and sectioning, 

chemical staining, and analysis by expert pathologists. Typical stains include hematoxylin 

and eosin (H&E), Masson’s trichrome, and immunohistochemical labels such as cytokeratin 

for epithelial cells (Fig. 1). The high level of morphological detail present in stained biopsies 

enables pathologists to determine the presence of cancer, as well as characteristics of tumor 

such as grade and extent. However, these examinations are performed manually and can be 

time-consuming and susceptible to human error, which can delay effective treatment. 

Furthermore, staining techniques are difficult to quantify, with clinical settings relying on 

various protocols and imaging systems for analysis. Nevertheless, the manual assessment of 

stained tissue by pathologists is the standard in cancer diagnosis and is heavily relied upon 

in clinical assessment.1

IR spectroscopic imaging is an attractive tool since it can extract molecular microstructure 

and spatial information in a non-destructive manner.2–5 Absorption spectra provide 

molecular fingerprints for each pixel, which translates to key cellular biomolecules, such as 

proteins, lipids, DNA, collagen, glycogen, and carbohydrates. Numerous studies have shown 

that FTIR microscopy can be used to distinguish different histological entities across a wide 

variety of tissue types, including colon,6–9 prostate,2,10–13 lung,14,15 breast,16,17 cervex,18 

brain,19 and kidney.20 Methods have also been proposed to digitally apply standard 

histological stains to tissue samples.21

Tissue classification is achieved in most IR imaging studies using pixel-level methods, 

including unsupervised techniques such as K-means clustering22 or hierarchical cluster 

analysis (HCA),23 and supervised techniques such as Bayesian classification10,14,24 random 

forests,14,15,25 artificial neural networks (ANNs),14,26 kernel classifiers such as support 

vector machines (SVMs)14 and linear discriminant classifiers.27 FTIR spectroscopic data 

contains an abundance of spatial information that is often unused due to difficulty 

identifying useful features. Spatial information has been utilized in multi-modal applications 

involving FTIR and traditional histology28 since spatial features are more clearly understood 

in standard color images. Spatial information has also been used as a post-classification step 

on the classified output.29 However, these approaches are sequential to spectral analysis and 

do not take advantage of the spectral–spatial relationships within the IR data set.

While spatial information is being increasingly appreciated in IR imaging,30 deep learning 

methods have been successfully applied to a variety of other image analysis problems. 

Increases in processing power, inexpensive storage, and access to parallel computing (such 

as GPUs) allow traditional laboratories to use deep learning for image classification 

problems. Convolutional neural networks (CNNs) have been shown to outperform many 

other techniques for 2D image analysis,31,32 since they exploit spatial features by enforcing 

local patterns within the image. The major benefit of CNNs is their ability to identify spatial 

features optimized on the training data. In addition to extracting spatial correlations between 

pixels, CNNs can be implemented for hyperspectral images, extracting correlations across 

the entire spectrum for a given pixel.33,34 CNNs have therefore become an effective machine 
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learning tool for image classification tasks.35,36 Unlike many other classification techniques 

that depend on complex hand-crafted features as input, CNNs automatically learn and 

hierarchically construct a unique set of high-level features optimized for a given task. While 

a traditional ANN is often used for the final classification phase, any classifier can be 

applied to the extracted CNN features.37–40

More traditional artificial neural network (ANN) architectures have been used for 

classification and regression problems in vibrational spectroscopic imaging. However, they 

exhibit poor performance on independent testing data41 due to overfitting from the large 

number of available parameters in a hyperspectral image. The use of local connectivity 

patterns between neurons of adjacents layers and weight sharing schemes make CNNs far 

more robust. CNNs have been extensively used in remote sensing42 and, more recently, one-

dimensional CNNs have been used to identify important spectral features in vibrational 

spectroscopic data.43 To the best of our knowledge, CNNs have not been used for 

classification of IR spectroscopic imaging.

In this paper, we assess the ability of CNNs to solve IR spectroscopic image classification 

problems on both standard-definition (SD) at 6.25 μm per pixel and high-definition (HD) at 

1.1 μm per pixel. We seek to assess whether deep learning achieves significantly better 

performance than traditional classifiers due to the use of spatial features. This is of particular 

interest in HD images, where high-frequency spatial features are more accessible.

2 Materials and methods

Tissue samples were imaged using FTIR spectroscopy and annotated based on adjacent 

histological evaluation. The FTIR images were pre-processed using standard protocols and a 

variety of traditional classifiers were extensively tested using per-pixel spectral data, such as 

k-nearest neighbor (KNN), support vector machines (SVM) with linear and radial basis 

function (RBF) kernels, decision tree classifier (DT), random forest (RF), neural networks 

(NN), adaptive boosting classifier (AdaBoost), naive Bayes (NB), and a quadratic 

discriminant analysis (QDA) classifier. The classification results identified a SVM using a 

RBF kernel as the optimal spectral-based classifier for this data set as it achieved the best 

overall classification accuracy. We then designed a new classifier incorporating spatial 

information using a CNN.

2.1 Tissue microarrays

Four serial sections of formalin fixed paraffin embedded breast tissue microarray (TMA) 

cores were obtained from Biomax US, Rockville, MD (TMA IDs: BR1003, BR2085b, 

BR961, and BR1001). Adjacent tissue sections were cut at 4 μm and placed on glass slides 

for chemical staining and barium fluoride (BaF2) slides for FTIR imaging. The TMAs used 

in this study consisted of 504 breast tissue cores (with 1 mm diameter) from different 

patients. The cores contained breast tissue that had been diagnosed as normal, hyperplasia, 

dysplasia and cancer. The sectioned tissues underwent hematoxylin and eosin (H&E), 

Masson’s trichrome, cytokeratin, and vimentin staining. Histological sections were 

examined by experienced pathologists to identify cell types within the tissues. Cell types 

were identified for training and classification from all disease states.
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2.2 Data collection

FTIR chemical images for the SD dataset were acquired in trans-mission mode using a 

PerkinElmer Spotlight FTIR spectrometer and microscope with a 16-element linear array 

detector at a nominal pixel size of 6.25 μm × 6.25 μm. Before imaging, a background image 

was acquired as a single tile from an area of the slide that had been identified as being tissue 

free. Each core in the TMA was imaged using 4 co-additions with a spectral resolution of 4 

cm−1. Chemical images were truncated to the spectral range 750 to 4000 cm−1. A 

background scan was performed with 128 co-additions and ratioed to the single beam data to 

remove spectral contributions from the substrate, atmosphere, and globar source. Light 

microscope images of the chemically stained sections were acquired of the whole slide using 

an Aperio Scanscope system.

The HD dataset consisted of TMA BR961, which was imaged using the Agilent Stingray 

imaging system comprised of a 680-IR spectrometer coupled to a 620-IR imaging 

microscope with 0.62 numerical aperture averaged with 32 co-additions. The spectral 

resolution was 4 cm−1 with a pixel size of 1.1 μm and a truncated spectral range of 1000 to 

3801 cm−1. The dataset contained 96 cores from separate patients with cases of normal, 

hyperplasia, dysplasia and malignant tumors.

2.3 Data pre-processing

The community has established a set of common pre-processing protocols that have been 

shown to be effective for biological samples.44 In this work we apply the following pre-

processing steps using in house implemented software:45

1. Baseline correction –—Scattering through the specimen is mitigated by applying 

piece-wise linear (rubber band) baseline correction.44

2. Normalization –—Normalization is performed by dividin the baseline corrected 

spectra by Amide I absorbance at ≈1650 cm−1.

3. Dimensionality reduction –—We apply principal component analysis (PCA), 

keeping 16 principal components, which captures 90.03% and 96.86% of the spectral 

variance for SD and HD data, respectively.

2.4 Convolutional neural network (CNN) architecture

A typical CNN is composed of alternatively stacked convolutional and pooling layers 

followed by fully connected ANN. The cascading layers allow for hierarchical feature 

learning, where feature abstraction increases with layer depth. In general, increasing the 

depth of the network allows for learning more discriminative and semantic information.
35,46,47 The increase in the number of convolution and pooling layer duets offers the benefits 

of learning higher level abstract features from the data and provides translation invariance. 

The use of small convolution and pooling reduces the number of internal para-meters, 

allowing for increased depth.
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The input and output of each CNN layer is referred to as a feature map. Since our input is a 

hyperspectral datacube, each feature map is a 2D array containing an image representing a 

single principal component. Typically, CNNs are composed of multiple stages, where each 

stage consists of 3 layers: (1) the convolution layer, (2) a non-linearity or activation layer, 

and (3) a pooling layer. Multiple stacks of these 3 layers are then followed by a fully 

connected classification module.

Each convolutional layer calculates the convolution of the input with a set of filters that are 

trained to detect particular features. The convolution layer is followed by an element-wise 

nonlinear activation operation. The convolution and activation layer weights and biases are 

calculated during training. The activity of the jth feature map in the lth layer is computed as:
48

F j
l = g ∑

i

N f
Wi, j

l ∗ F j
l − 1 + b j

l ,

where Nf denotes the number of feature maps in the (l − 1)th layer, F j
l − 1 ∈ ℝm × n is the ith 

feature map in the (l − 1)th layer that connects to feature map Fj
l in the lth layer, Wi, j

l ∈ ℝk × k

is the convolutional kernel (of size k) for Fi
l‐1, bj

l is the bias, g(·) is a non-linear activation 

function such as tanh or a rectified linear unit (ReLu), and * denotes the discrete convolution 

operator.

The convolutional layer is often followed by a pooling layer, with max pooling used as the 

most common pooling algorithm. Max pooling computes the maximum in a local window of 

the input feature map. By using a stride larger than 1, this results in subsampling of the input 

feature map, which in turn reduces the number of parameters and therefore the 

computational complexity.49 A 2 × 2 pooling filter is the most common, which reduces the 

spatial dimensions of the output by half. The pooling layer is used to increase the robustness 

to small variations in the location of features detected by the convolutional layer.

The last module of a CNN typically consists of several fully connected layers, similar to a 

traditional ANN. The extracted high-level features are flattened to a fixed-dimensional 

vector. The feature vector learned by the l-th fully connected layer can be expressed as:

Fl = g(Wl f l − 1 + bl),

where Wl is the weight matrix connecting the (l − 1)th layer and the lth fully connected layer, 

fl−1 is the feature vector in the (l − 1)th layer, and bl is the bias vector of the lth layer.

The output layer consists of a softmax activation function used to compute the predictive 

probabilities for each class:
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softmaxc(F) = p(y = c | F) = e
(Wc

TF + bc)

∑ j = 1
Nc e

W j
TF + b j

,

where y is the desired output label, f is the input vector, w is the weight matrix, b are the bias 

vectors, and Nc is the number of classes.

Supervised training of CNNs is performed using a form of stochastic gradient descent that 

minimizes the difference between the ground truth labels and the network prediction.50 If 

the output layer consists of a softmax activation then the loss function is given by the cross-

entropy loss:

Li = − log(p(yi Fi))

where Li is the loss for sample i. The full loss for the dataset is the mean of Li over all 

training examples as L = 1
N ∑i = 1

N Li, where N is the number of samples. During the training 

phase all the coefficients of all the filters in all layers are updated simultaneously during 

each iteration. Backpropagation32,51 is used to compute the gradients.

2.5 CNNs for FTIR histological classification

The goal of tissue classification in histological samples is to generate a chemical map that 

can be used by a pathologist to identify the spatial distribution of tissue types within the 

sample. Previous work relies primarily on the vibrational spectrum to perform this labeling. 

Let X represent the hyperspectral image, such as a TMA data cube. Then X ∈ ℝm × n × b, 

where m is the number of rows, n is the number of columns, and b is the number of bands or 

spectral components. In general, a CNN takes an image as input and outputs the desired 

chemical map. In order to comply with the specific nature of CNNs, we decompose the 

acquired data X into patches containing spectral and spatial information for each pixel (Fig. 

2).

Let pi be a pixel of X. We crop a volume of size s × s × b centered at pi. Each pixel patch is a 

3D volume – or tensor – containing all spatial and spectral information in the local 

neighborhood of pi. We construct the training set using the label li of pi and the patch Pi 

containing the local neighborhood of pi. Given t training samples, the training set is given by 

T = {(Pili)}, for i = [1,…,t]. The set T is provided as input to the CNN training algorithm, 

which hierarchically builds high-level features that encode spectral and spatial 

characteristics of each pixel. An overview of the CNN architecture used for classification of 

HD data is shown in Fig. 3. The same architecture without batch normalization (BN) and 

input size of 17 × 17 × 16 is used for SD data.

A convolution and max pooling based set of layers are introduced, followed by fully 

connected layers. In particular, one convolution layer consisting of 32 feature maps is 

followed by a max pooling layer with a kernel size of 2 × 2. This reduces the spatial 
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dimension of the images by a factor of 2. The max pooling layer is followed by two 

additional convolution layers consisting of 64 feature maps each. An additional max pooling 

layer, with a kernel size of 2 × 2, is introduced followed by a fully connected layer of 128 

units. The strides size is fixed as 1. For all convolution layers, we use kernels of size 3 × 3. 

The network ends with a softmax layer of size equal to the number of classes so that the 

final output is a vector of class probabilities for each pixel.

2.5.1 Software.—All data pre-processing was performed using our open-source SIproc 

software,45 implemented in C++ and CUDA. Training and testing was performed in Python 

using open-source software packages. The Scikit-learn package52 was used for traditional 

classifiers (SVM, Random Forests, etc.) and TensorFlow, leveraging the TFlearn interface,53 

was used to design and implement CNNs.

2.5.2 Implementation hyperparameters.—The choice of hyperparameters is crucial 

when designing a deep learning architecture, significantly influencing overall accuracy and 

convergence speed. Through extensive experimentation on our training set, we chose the 

following hyperparameters:

1. Optimization method –: We used an Adadelta54 adaptive learning rate method with a 

learning rate of r = 0.1. Adadelta adapts the learning rate over time, removing the need to 

manually tune for our application.

2. Regularization of the weights –: We used ℓ2 optimization combined with dropout55 to 

minimize overfitting. Dropout keeps the activation of a fraction of hidden nodes and it 

randomly turns off the activation of the rest of the nodes in the layer based on a keep 

probability threshold. The keep probability is set to 0.5 and 1 in training and testing modes, 

respectively.

3. Batch normalization –: During training, the distribution of each CNN layer changes as 

the parameters of the previous layers change. This shift of the hidden unit values (otherwise 

known as internal covariate shift) complicates and slows down the training of deep neural 

networks. We address this problem by normalizing layer inputs using batch normalization.56 

Batch normalization allows the use of higher learning rates, reduces the need for careful 

initialization of training para-meters, it acts as a regularizer (sometimes eliminating the need 

for dropout), and provides faster convergence and higher accuracy rates.

4. Local response normalization –: This sort of response nor-malization implements the 

concept of lateral inhibition (capacity of an excited neuron to subdue its neighbors) from 

neurobiology. The output of the nonlinear activation function can result in unbounded 

activations. Local response normali-zation (LRN) is used to normalize these activations.35 

LRN helps to detect high frequency features with a large response and thus it promotes some 

sort of inhibition. By normalizing around the local neighborhood of a unit/neuron, LRN 

increases the sensitivity of the neuron compared to its neigh-bors and thus boosts the 

neurons with relatively larger activations.

5. Non-linearity –: We use the softplus nonlinear activation function:57
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softplus(x) = ln(1 + ex),

where x is the output of each unit at a particular layer. Softplus is smooth and differentiable 

(near 0) and provided better convergence than the popular rectified linear unit (ReLU), likely 

because the ReLU hard saturation at 0 can hurt optimization by blocking gradient 

backpropagation.58

6. Weight initialization –: We initialize the weights with random values from a normal 

distribution with a 0 mean and standard deviation of 0.02.

7. Batch size –: We chose a batch size of 128 and applied a mini-batch training strategy in 

order to reduce loss fluctuation. This batch size facilitated training with our system memory 

(250 GB), and higher-memory systems could benefit from larger batches.

8. Training epochs –: We train our network for 8 epochs, terminating training when 

validation accuracy began to decline.

9. Data shuffling –: We introduced data shuffling, applying random orderings for each 

epoch, in order to break any predefined data structure in the training set.

3 Results

Given our goal of establishing spatial features as a particularly useful metric in FTIR image 

classification, we use multiple metrics for assessing various goals for end users. Receiver 

operating characteristic (ROC) curves characterize the relationship between specificity and 

sensitivity, allowing clinicians to set acceptable false-positive versus true-positive rates. 

Alternatively, overall accuracy (OA) may be more useful for multi-class characterization, 

provided that the validation data is either balanced or weighted based on importance. The 

confusion matrix provides a quantitative measure of classifier performance robustness to 

multi-class labels and unbalanced datasets.

Several machine learning algorithms were evaluated to find the highest performing per-pixel 

classifier. In particular, we tested spectral-based classification algorithms such as KNN, 

SVM with linear and RBF kernels, DT, RF, NN, AdaBoost, NB, and a QDA classifier. The 

overall accuracies obtained after applying the above mentioned classification algorithms to 

SD and HD data are shown in Table 1. Notice that the RBF SVM outperforms all other 

spectral-based classifiers in terms of the overall accuracy.

Classifier performance is based on the results obtained from 10 different experiments with 

randomly selected training pixels. Experiments were executed on an Nvidia P100 GPU. The 

CNN framework was implemented in python using TFLearn,53 which is a higher-level API 

for TensorFlow.59 Comparisons for per-pixel classifiers were implemented using the Scikit-

learn machine learning Python library.52
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3.1 Standard definition (SD) datasets

IR chemical images of breast tissue cores were compared to H&E, Masson’s trichrome, 

cytokeratin, and vimentin stained sections, and regions of adipocytes, blood, collagen, 

epithelium, myofibroblasts, and necrosis were identified. After applying PCA, the 

dimensions of the training set were 2800 × 6800 × 16, whereas the testing set consisted of a 

datacube of size 3400 × 6800 × 16. Separating the cores into training and testing samples 

from different slides ensures complete independence between training and testing sets and 

assesses the ability of the classifiers to generalize to data acquired under conditions that may 

vary in a standard laboratory setting. Table 2 shows the number of annotated pixels per class 

for the training and testing sets, indicating a high inbalance in the number of available 

annotations for different tissue types. The unbalanced number of training samples is 

common in histological data and a known challenge in training CNNs as the network can 

become biased towards classes with larger training samples. In order to minimize bias, we 

stack copies of underrepresented classes to balance training data. For example, we use 100 

000 pixels for each class to train the CNN.

The Python implementation of the SVM in Scikit-learn52 is based on the libsvm library. The 

time complexity for the training (fitting) is more than quadratic with the number of samples. 

SVMs are discriminative classifiers formally defined by a separating hyperplane. Given 

labeled training samples, the SVM algorithm finds the “optimal” multidimensional 

hyperplane that best separates the classes. We use the one-vs.-the-rest multiclass strategy for 

the SVM classifier, which consists in fitting one classifier per class, i.e. for each classifier 

the class is fitted against all other classes. This strategy is more computationally efficient, 

given the size of our data, and proves to be more stable, accurate, and reproducible.

An SVM classifier was constructed using the pixels from the training set summarized in 

Table 2. In particular, SVM was trained using 10 000 samples for each class in order to 

balance the number of samples per class. A greater or lower number of samples per class did 

not show any significant improvements in the overall accuracy. A Gaussian RBF kernel was 

used and after extensive experimentation a penalty parameter of C = 1.0 and a kernel 

coefficient of γ = 1
nfeatures

 was used, where in our application nfeatures = 16. The number of 

support vectors is automatically determined by the Scikit-learn implementation.

Table 3 summarizes the per class accuracy values and the overall accuracy obtained after 

classifying the SD datasets, while Table 4 provides the sensitivity and specificity for each 

class at the optimal threshold selected for the final multi-class classifier. CNN achieves 

higher classification accuracy for all other classes except epithelium. It is well known that 

collagen and epithelium can be easily correctly classified using the spectral information 

only. CNN overcomes SVM in AUC values for all classes (Fig. 5). In terms of the overall 

accuracy CNN achieves a significant ≈23% improvement. This is mostly due to the ability 

of CNN to classify with higher accuracy adipocytes, myofibroblasts, and necrosis. The high 

overall accuracy achieved by CNN implies that a per pixel classification map can be 

produced with an image quality that is comparable to existing diagnostic tools.
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Fig. 4 shows 3D plots of the confusion matrices for the six-class system using SVM and 

CNN classifiers. Correctness of classification rates per class are shown by the diagonal bars. 

Notice that the confusion matrix for CNN shows significantly higher bars for adipocytes, 

myofibroblasts, and necrosis classes. Furthermore, the CNN confusion matrix is more 

sparse, which indicates less mixing between different classes.

The output of SVMs does not consist of probability estimates but rather of per-class scores 

for each sample. Probability estimates for binary and multi-class classification are obtained 

in the Scikit-learn implementation52 using Platt scaling and cross-validation on the training 

data.60,61 The output of CNN is a vector of probabilities for each pixel, which represents an 

estimation of the probability that a pixel belongs to a particular class. The adjustment of the 

class probability threshold allows for the visualization of the trade off between true positives 

and false positives using ROC curves. The performance of the classifiers in terms of 

sensitivity and speci-ficity of the model for classification of the independent test set is shown 

in Fig. 5. The CNN ROC curves appear better than SVM for most classes. This is 

particularly noticeable in the case of adipocytes, myofibroblasts and necrosis, likely because 

of the additional consideration of spatial features from the CNN.

3.2 High definition (HD) datasets

Given the exceedingly long acquisition and analysis times, we employed one half of a TMA 

for training and the other half for validation. While the actual results are likely to be slightly 

worse for an independent dataset, we emphasize the comparison with SVM here and the 

general trend should still hold. Table 5 shows the number of annotated pixels per class for 

the training and testing sets. The high class imbalance between different tissue types is also 

present here. In order to balance the number of pixels per class in the training set we repeat 

the pixels of underrepresented classes as in the case of SD data. We use 100 000 pixels for 

each class for the training of the CNN.

Table 6 shows the per class accuracies and the overall accuracy obtained after classifying the 

HD dataset, while Table 7 shows the sensitivity and specificity for each class in the final 

classifier. CNN achieves higher classification accuracy for all classes. The higher class 

accuracy obtained via CNN is noticeable especially for adipocytes, myofibroblasts, and 

necrosis. CNN also overcomes SVM in AUC values for most classes except blood and 

collagen for which they achieve same value. In terms of the overall accuracy CNN achieves 

about 16% improvement.

A confusion matrix was constructed for the independent testing set (Fig. 6). The sparsity of 

the CNN confusion matrix reveals that CNN is better at discriminating between different 

classes. The diagonal bars are higher for CNN especially in the case of adipocytes, necrosis, 

and myofibroblasts.

The performance of the classifiers in terms of sensitivity and specificity is shown in Fig. 7, 

where a significant improvement in ROC curves and AUC metrics can be noticed. Visual 

inspection of the validation TMA shows a strong spatial correlation between the CNN 

classified false-color results and the corresponding adjacent H&E histology (Fig. 8).
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We have also applied a CNN architecture without using spatial information. In this 

implementation, only the pixel spectral information is used. The overall accuracy results are 

summarized in Table 8. We can observe that CNN with spatial information outperforms the 

spectral-based classifiers, such as SVM and spectral CNN, for both SD and HD data. This 

confirms that the use of spatial information in combination with the spectral information is 

indeed crucial for improving the classification accuracy.

Care must be taken in constructing the ground truth, since tissue is labeled using adjacent 

sections that may not perfectly align with FTIR images. In addition, the effects of scattering 

and noise may confound analysis. Spectra-only based classification methods assume that 

individual spectra are independent. In the case of FTIR images, this is almost certainly not 

the case. Machine-learning models, such as CNNs can take advantage of the spatial 

dependence of individual spectra in order to improve classifier performance.

4 Discussion

The accurate differentiation of cell types in breast tissue is of critical importance for accurate 

diagnosis and staging of breast cancer. FTIR chemical imaging has the potential to provide 

additional information to augment diagnosis techniques, leading to improved patient 

treatment and care. While there have been significant advances in both FTIR instrumentation 

and spectral computation, appropriate assessment of classification quality has been lacking. 

An assessment is critical to ensure that classifiers are operating correctly and that spectral 

and spatial information is being assigned to the appropriate cell type. This is especially 

important going forward due to the increasing evidence that the different compartments 

within tissues may hold novel spectral biomarkers of diagnostic or prognostic value, such as 

the stroma region in breast cancer. FTIR imaging is a rapidly emerging tool that has 

potentially significant applications in histopathology due to its ability to add novel 

biochemical information in an objective, automated, and non-destructive fashion. This 

biochemical information derived from different cell types may provide a new route to 

identify biomarkers that can enable a better prediction of those breast cancers that will be 

lethal and will undergo metastases to other organs.

Due to the ability to learn complex features directly from the data, CNNs can also be used as 

feature extractors only. The extracted features can then be passed as input to other machine 

learning classification models. In many studies, it has been shown that the features extracted 

using CNNs can significantly improve the capabilities of SVMs and KNNs as opposed to 

running these algorithms on the raw data.37–40 These studies demonstrate that CNNs are 

powerful feature extraction tools and thus can be combined with other machine learning 

models that are better at classification but cannot learn invariant and complicated features.

We investigated the potential of FTIR chemical imaging and CNNs for classification of 

tissue types of importance in breast histopathology. We demonstrated that CNNs can be 

trained with FTIR chemical images in order to accurately discriminate between six 

histological classes. Compared to the commonly used SVM approach, we were able to 

demonstrate that CNNs offer at least as accurate an approach when considering spectral data 

alone, and an improved approach when including spatial information. As a consequence, cell 
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type differentiation can be improved by using chemical and spatial information in a 

quantitative and objective manner and does not require manual intervention to generate and 

interpret images. The results show that exploiting the spatial information in combination 

with a small number of PCA components can provide better classification performance, thus 

utilizing the full information content of the IR imaging data set. The selection of the number 

of principal components used depends on the data and the selecting criterion used, such as 

the percentage of the total variance retained. The percentage of the total variance captured 

and hence the number of principal components kept vary in different studies.62–65 However, 

for FTIR data usually 90–99% of the variance is kept.22

Training and testing on separate TMAs introduces several challenges to tissue classification 

in FTIR imaging. The measured spectra of different tissue types from different TMAs is 

affected by the noise level, the substrate used, differences in tissue thickness, and variations 

in focus across the imaged TMA. However, training and testing must be performed on 

separate TMAs in order to demonstrate the potential of a classification method for 

application in real settings for disease diagnosis and to test its ability to generalize to new 

datasets. Here, we have shown that the proposed CNN classifier can significantly outperform 

SVM in terms of overall accuracy for different training and testing TMAs of SD data. This 

has to be further tested on HD data for which the variations on different TMAs can be 

significantly increased due to higher data acquisition times.

5 Conclusion

We describe a deep learning method for classification of IR imaging data for tissue 

histology. As far as we are aware, this is the first application of deep convolutional neural 

networks applied to FTIR imagery, as well as the first application of deep CNNs to HDIR 

images, where spatial features could be of high benefit to classification. As opposed to 

previous spec-tral-based approaches, the integrated inclusion of spatial data offers an avenue 

for even higher performing classifiers. Thus, FTIR imaging coupled with CNNs can provide 

an accurate and potentially rewarding avenue for automated and objective analysis in digital 

pathology. Future studies of FTIR image classification using the techniques described here 

with a large number of patients are required to assess the full potential of deep learning for 

routine classification of cell types in tissue.
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Fig. 1. 
Chemically stained (a–d) and mid-infrared (e) images of two breast biopsy cores. Individual 

cores from two separate patients are shown with tissue stained with Massson’s trichrome (a) 

and H & E (b), as well as immunohistochemical labels for cytokeratin (c) and vimentin (d). 

Colormapped mid-infrared images of the corresponding two cores are shown (e), where 

color indicates the magnitude of the absorbance spectrum in arbitrary units at 1650 cm−1.
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Fig. 2. 
Spatial visual differences between different cell types. Cropped regions around pixels from 

HD cores (top row – band 1650 cm−1, bottom row – band 3800 cm−1) consisting of (a) 

adipocytes, (b) blood, (c) epithelium, (d) collagen, and (e) necrosis.
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Fig. 3. 
Schematic presentation of the CNN architecture used for classification of HD data. A spatial 

region of size 33 × 33 is cropped around each pixel. Data cubes of size 33 × 33 × 16 are fed 

into one convolution layer. Each input is convolved with filters of size 3 × 3 outputing 32 

feature maps. The following layer is a max pooling layer, which reduces the spatial 

dimensions by half. Feature extraction continues with two more convolution layers 

consisting of 64 feature maps each. After another max pooling layer, the extracted features 

are vectorized and fed to a fully connected layer with 128 units. The last layer, softmax, 

consisting of 6 units (number of classes) outputs a vector of class probabilities. At the end, 

maximum probability is used to map each input pixel to its corresponding class labels. 

Legend: BN – batch normalization, LRN – local response normalization, MP – maximum 

pooling layer, FC – fully connected layer.
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Fig. 4. 
Three-dimensional plots of the confusion matrices for SVM (a) and the proposed CNN (b) 

on SD data. We see particularly large improvements in adipocyte classification as well as 

increased differentiation between collagen and myofibroblasts. Both of these results are 

likely due to the inclusion of spatial features.
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Fig. 5. 
ROC curves and AUC values for each individual class obtained using both SVM and CNN 

to classify SD data. For the CNN, ROC curves are computed by training the classifiers for 

each class, where elements of that class have the target value 1 and elements outside of that 

class have the target value 0. The ROC value for the SVM is obtained by calculating the 

posterior probability based on the percentage of individual votes. While the CNN provides a 

significant improvement for most classes, the increased differentiation between adipocytes, 

myofibroblasts, and collagen stands out due to the prevalence of both in breast biopsies.
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Fig. 6. 
3D plot of confusion matrices obtained for all independent test pixels in the HD (1.1 μm) 

microarray image data using SVM (a) and CNN (b) classifiers.
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Fig. 7. 
ROC curves and AUC values for each individual class for SVM and CNN classifiers applied 

to HD data.
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Fig. 8. 
HD classification using a convolutional neural network with both spectral and spatial 

features. (a) FTIR validation microarray (11 557 × 17 000 pixels) showing the Amide I 

(1650 cm−1) absorption band. (b) Classified cores labeled using a false-color overlay on the 

Amide I absorbance band. Individual classified cores are shown in false-color (c and e) with 

corresponding images H&E stained adjacent sections (d and f ). H&E images are labeled 

with cell types of interest, annotated using additional immunohistochemical stains of 

adjacent sections.
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Table 2

Description of the available annotations for the training and testing SD datasets. BR1003 and BR2005b are 

used for training while BR961 and BR1001 are used for testing. Note that the per-pixel labels are highly 

unbalanced, which is common in histological images

Classes

# of annotated pixels per class

Train Test

Adipocytes 10 261 9864

Blood 1072 1158

Collagen 102 350 80 318

Epithelium 38 646 73 264

Myofibroblasts 17 655 154 389

Necrosis 13 653 51 555

Total 183 637 370 548
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Table 3

Per class and overall accuracy (OA) for a support vector machine (SVM) classifier and the proposed CNN 

applied to SD data (6.25 μm per pixel)

Class/method SVM CNN

Adipocytes 75.35 ± 0.58 89.38 ± 3.35

Blood 61.14 ± 0.3 68.83 ± 1.57

Collagen 94.26 ± 0.26 95.79 ± 0.28

Epithelium 90.65 ± 0.09 82.98 ± 0.75

Myofibroblasts 10.8 ± 0.58 64.57 ± 3.08

Necrosis 81.61 ± 0.35 91.89 ± 1.13

OA (%) SVM: 56.41 ± 0.27 CNN: 79.45 ± 1.25
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Table 4

Sensitivity/specificity values for each histological class for a SVM classifier and the proposed CNN applied to 

SD data

Class/method SVM CNN

Adipocytes 75.47/91.08 93.20/88.97

Blood 60.97/98.98 70.64/99.12

Collagen 94.11/86.49 95.89/96.89

Epithelium 90.72/77.53 82.88/94.62

Myofibroblasts 11.41/99.57 61.95/96.07

Necrosis 82.02/94.49 90.63/98.79
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Table 5

Description of the pixels used for training and testing on HD data. Left and right halves of TMA BR961 are 

used for training and testing, respectively

Classes

# of annotated pixels per class

Train Test

Adipocytes 133 171 33 724

Blood 8574 5608

Collagen 443 587 650 589

Epithelium 582 621 463 579

Myofibroblasts 1 044 708 1 069 940

Necrosis 532 820 268 103

Total 3 745 481 2 491 543
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Table 6

Per class and overall accuracy (OA) for a support vector machine (SVM) classifier and the proposed CNN 

applied to HD data (6.25 μm per pixel)

Class/method SVM CNN

Adipocytes 37.44 ± 1.86 88.35 ± 4.85

Blood 83.62 ± 0.43 89.15 ± 3.13

Collagen 97.51 ± 0.07 98.92 ± 0.6

Epithelium 90.80 ± 0.31 91.20 ± 1.56

Myofibroblasts 60.51 ± 0.43 90.25 ± 4.28

Necrosis 67.32 ± 0.74 92.03 ± 1.02

OA (%) SVM: 76.28 ± 0.12 CNN: 92.85 ± 2.12
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Table 7

Sensitivity/specificity values for each histological class for a SVM classifier and the proposed CNN applied to 

HD data

Class/method SVM CNN

Adipocytes 38.69/98.92 91.86/99.58

Blood 84.04/99.48 87.50/99.98

Collagen 97.49/94.10 98.22/98.54

Epithelium 90.91/80.66 90.90/96.41

Myofibroblasts 60.30/97.14 93.39/97.29

Necrosis 66.68/99.40 91.89/99.97
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Table 8

Overall accuracy comparison (in percentage) between an SVM classifier, CNN without spatial information 

(spectral only), and CNN with spatial information applied to the SD and HD data

SVM CNN (spectral) CNN

SD 56.41 62.52 79.45

HD 76.28 79.54 92.85
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