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Abstract

Exploring spatial-temporal patterns of disease incidence identifies areas of significantly elevated 

risk and can lead to discoveries of disease risk factors. One popular way to investigate patterns in 

risk over space and time is spatial-temporal cluster detection analysis. The identification of 

significant clusters may lead to etiological hypotheses to explain the pattern of elevated risk and to 

additional epidemiologic studies to explore these hypotheses. Several methodological issues and 

data challenges that arise in space-time cluster analysis of chronic diseases, such as cancer, include 

poor spatial precision of residence locations, long disease latencies, and adjustment for known risk 

factors. This paper reviews the key challenges faced when performing cluster analyses of chronic 

diseases and presents a spatial-temporal analysis of non-Hodgkin lymphoma (NHL) risk 

addressing these challenges. Residential histories, collected as part of a population-based case-

control study of NHL (the National Cancer Institute [NCI]-Surveillance, Epidemiology, and End 

Results [SEER] NHL study) in four SEER centers (Detroit metropolitan area, Los Angeles, 

California, Seattle metropolitan area, and Iowa) were geocoded. In this analysis, we explored 

previously detected spatial-temporal clusters and adjusted for exposure to polychlorinated 

biphenyls (PCBs) and genetic polymorphisms in four genes, previously found to be associated 

with NHL, using a generalized additive model framework. We found that the genetic factors and 

PCB exposure did not fully explain previously detected areas of elevated risk.
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Introduction

Exploring spatial-temporal patterns of disease incidence has proven to be beneficial for 

identifying areas of significantly elevated risk and discovering significant factors associated 

with risk. Particularly for cancer, there is a long history of research analyzing geographic 

patterns in disease incidence and mortality with the objective of discovering environmental 

determinants of disease (Fraumeni and Blot 1977). Examples of risk factors revealed by 

analytic epidemiologic studies that followed upon observations of geographic patterns of 

cancer include exposure to asbestos from shipyard as a risk factor for lung cancer among 

men along the southeastern United States seaboard (Blot et al. 1979) and chronic use of 

snuff as a risk factor for oral and pharyngeal cancer among women in the southern United 

States (Winn et al. 1981).

While there have been success stories in pursuing leads from analyzing geographic patterns 

of disease, most early studies of spatial patterns of cancer were ecological studies, using data 

on disease and the population at risk aggregated to areal units, such as counties. Ecological 

studies have a number of inherent analytic challenges (Beale et al. 2010) that limit their role 

in etiologic research. These challenges include spatial inaccuracy of data, exposure 

misclassification, and ecological bias (Elliott and Savitz 2008; Wakefield and Elliott 1999). 

In addition, analyses in ecological studies are usually based on administrative geographic 

boundaries that are not inherently meaningful for studying disease. These studies lack 

information on residential history and risk factors for individuals. Furthermore, 

environmental exposure data of interest typically will have been collected on different 

spatial scales.

For establishing causal factors in chronic diseases, studies should collect individual-level 

data (Elliott and Savitz 2008). In public health research, individual-level data are the 

foundation of case-control and cohort studies. Often, these epidemiologic studies contain 

spatial information at the individual level through residential addresses, which may include 

the address at time of diagnosis for a case or time of study enrollment for controls or cohort 

subjects. Increasingly, residential histories over long periods of a participant’s lifetime are 

available (collected directly from participants), hence, it is possible to consider residential 

mobility and disease latency when analyzing disease patterns. In addition, with the 

increasing accessibility of geographic information systems and geocoding technology, it is 

possible to analyze epidemiologic data at a finer spatial scale than in the past.

One approach to analyzing geographic patterns in disease that makes use of individual-level 

data is the detection of spatial clusters, i.e., areas of significantly elevated risk. The 

identification of clusters in space and time can lead to the development of hypotheses to 

explain the pattern of elevated risk and reveal important clues about disease etiology. We 

note the distinction in goals between detecting an individual cluster (or clusters) and 
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approaches to describe general clustering of disease, the general tendency for cases to occur 

nearer other cases than one might expect under equal risk (Besag and Newell 1991; Waller 

and Gotway 2004). The incorporation of temporal data further refines the analysis by linking 

cases that are coincident in both time and space.

Our discussion focuses on cluster detection for individual-level epidemiologic studies with 

residential histories. In the remainder of this paper, we discuss the challenges that 

epidemiologic studies with residential histories present for existing approaches in cluster 

detection, and then present a spatial-temporal analysis of non-Hodgkin lymphoma (NHL) 

risk addressing these challenges through a statistical analysis approach that evaluates 

residential histories and adjusts for known risk factors. Our motivating interest centers on 

evaluation of whether or not previously detected areas of significantly elevated NHL risk in 

a case-control study could be explained by adjusting for additional environmental and 

genetic risk factors.

Cluster analysis approaches for epidemiologic studies with residential histories

There are several existing methods for spatial cluster detection within individual-level data. 

Among the most commonly used methods are local scan statistics (Kulldorff 1997; Kulldorff 

2006), kernel density ratio estimation (Bithell 1990; Kelsall and Diggle 1995), Q-statistics 

(Jacquez et al. 2005), and generalized additive models (Kelsall and Diggle 1998; Vieira et al. 

2005; Webster et al. 2006), and we limit our discussion to these methods. Few cluster 

detection methods are designed to fully evaluate the multidimensional, spatial and temporal 

data that are increasingly available within epidemiologic studies. To improve the power to 

detect unexplained clusters when exploring spatio-temporal patterns of disease in individual-

level data, analysis approaches should explicitly consider residential patterns that change 

over time due to migration and adjust for known risk factors.

In many cluster studies, the residential locations of study subjects at time of diagnosis are 

typically the only address information available and are assumed to be a reasonable 

surrogate for unmeasured environmental exposures, defined broadly to include lifestyle 

factors as well as pollutants. Due to residential mobility, the residence at time of diagnosis of 

disease may not accurately reflect the most relevant environmental exposures for diseases 

with long latencies, such as cancer. We define latency as the number of years between 

exposure to a relevant risk factor and the diagnosis of disease. For diseases with long 

latencies, migration must be considered. Researchers in public health and geography 

(Jacquez et al. 2005; Vieira et al. 2005; Sabel et al. 2009) have recognized the importance of 

migration when studying patterns and etiology of disease. Ignoring migration when studying 

health outcomes with long latencies can lead to exposure misclassification, diminished study 

power, and biased risk estimates (Tong 2000). Migration bias can occur when there is 

differential migration related to a factor of interest among study population groups (Tong 

2000). The factor of interest is typically space in a cluster detection study.

Among existing methods, only Q-statistics were designed to adjust for migration. Q-

statistics can consider the entire residential history of study subjects, but requires an a priori 
knowledge of the number of nearest neighbor subjects to use in defining the relevant cluster 

size when searching over space for clusters. Unfortunately, one often does not know which 
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number of nearest neighbors is relevant for a particular study. The local scan statistics and 

the kernel density ratios were designed to model only one relevant location for each study 

subject. Analyses with these methods typically use the residential address at the time of 

diagnosis, which makes the implicit assumption that individuals do not migrate (at least 

between the time of the relevant exposure and the diagnosis of disease) or that the latency 

between causal exposures and diagnosis of disease is negligible (Jacquez 2004). Generalized 

additive models (GAMs) have the potential to model several residential locations in a 

residential history, but studies to date using GAMs have either assumed one latency period 

with little empirical justification or have included all historical residential locations for each 

subject in one statistical model, violating the model assumption of independent observations 

with potentially biased model parameters (Vieira et al. 2005; Webster et al. 2006). Vieira et 

al. (2008) explored latency while estimating disease risk spatially using GAMs in 

overlapping time periods, but included multiple addresses per subject in each time period. 

An adjustment is needed to include several records for a subject in a GAM, or the data must 

be structured in a way to include only one record per subject in order to have an unbiased 

model.

As the goal of cluster detection is hypothesis generation through identification of geographic 

areas of unusually high risk, any known risk factor that could explain a detected cluster 

should be adjusted for in the analysis. Any cluster observed after adjustment for known risk 

factors could be potentially explained by a yet unknown spatially- or temporally-patterned 

risk factor. Local scan statistics and kernel density methods do not allow for simple 

adjustment for risk factors with individual-level data. With Q-statistics, adjustment for risk 

factors is done separately from cluster detection. In contrast, generalized additive models 

(GAMs) can adjust for risk factors and test for clusters within a unified statistical 

framework. We next present an investigation of areas of significantly elevated NHL risk 

illustrating a GAM-based approach that simultaneously adjusts for risk factors, considers 

latency periods, and tests for significant clusters in one unified statistical framework.

Spatial-temporal analysis of non-Hodgkin lymphoma risk

Study population—Since 1975 in the United States, the annual age-adjusted incidence 

rate of NHL increased more than 75 percent from 11.1 to 19.8 per 100,000 person-years 

(Ries et al. 2003). The cause for this increase is largely undetermined and little is known 

about the etiology of NHL, except for established risk factors that include certain viral 

infections, immune suppression, and a family history of hematolymphoproliferative cancers 

(Chatterjee et al. 2004). Incidence of NHL increases with age, is higher in men, and is 40–

70% higher in whites compared to blacks (Jemal et al. 2004). NHL incidence has also been 

associated with specific genetic polymorphisms (Morton et al. 2008) and environmental risk 

factors including pesticides (Zahm et al. 1990), insecticides such as chlordane (Colt et al. 

2006), and polychlorinated biphenyls (PCBs) (Colt et al. 2005). Taken together, the 

established risk factors account only for a small proportion of the total annual NHL cases.

A previous analysis of NHL risk in the National Cancer Institute (NCI) Surveillance, 

Epidemiology, and End Results (SEER) NHL study, a population-based case-control study 

of NHL at four SEER centers (Detroit, Los Angeles, Seattle, and Iowa), revealed 
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unexplained areas of significant risk in Detroit, Los Angeles, and Iowa after adjusting for the 

risk factors age, race, gender, education, and home treatment for termites before 1988, a 

surrogate for exposure to chlordane (Wheeler et al. 2011). The analysis also explored the 

latency period that may be relevant for environmental exposures for NHL and found that a 

lag time of 20 years before diagnosis was most associated with risk of NHL. Here, we 

perform an analysis of NHL risk in the NCI-SEER study to adjust for additional risk factors 

of exposure to PCBs and presence of specific genetic polymorphisms available for a subset 

of subjects to ascertain whether or not they explain the previously detected areas of elevated 

risk.

Details of the NCI-SEER study have been reported previously (Chatterjee et al. 2004; 

Morton et al. 2008; Wheeler et al. 2011). NHL cases aged 20 to 74 years were identified 

between July 1, 1998 and June 30, 2000. Participants provided lifetime residential histories 

that were then matched to geographic address databases. In addition to demographic data 

and select risk factors available for all subjects, carpet dust samples from used vacuum 

cleaner bags were collected in homes to measure residential exposure to PCBs for 58% of 

cases and 56% of controls, and genotyping was conducted from DNA samples for 89% of 

cases and 93% of controls. Details on the collection and analysis of the dust samples are 

available in Colt et al. (2005). Based on the previous findings of a significant association 

between NHL incidence and residential levels of PCB congener 180 (Colt et al. 2005; 

Morton et al. 2005), we used concentrations of this PCB in our analysis. We used a binary 

measure of PCB 180 exposure, defined as 1 if PCB 180 was >=44.4ng/g in dust, where this 

level was the lower bound for the highest category of exposure in Morton et al. (2008). 

Based on findings of increased risk of NHL with genetic polymorphisms for the genes 

FCGR2A, RAG1, TNF, and XRCC1 (Morton et al. 2008), we included these in our analysis.

To be consistent with the analysis of Wheeler et al. (2011) while exploring the elevated areas 

of NHL risk, this analysis included only study participants with a complete 20-year 

residential history within one of the three study centers that contained areas of significantly 

elevated risk. A total of 671 cases (67 percent) and 516 controls (68 percent) met this 

criterion. Among these subjects, there were 521 cases and 404 controls with complete 

genetic data and 305 cases and 212 controls with complete genetic and PCB data.

GAM analysis with lag times—We used GAMs (Hastie and Tibshirani 1990) to model 

spatially the probability that an individual was diagnosed with NHL. The methods are 

further detailed in Wheeler et al. (2011). Given the coordinates(s1, s2) for residential 

locations(s) at a particular time t, the odds of being a case are modeled as

logit[p(s1, s2)] = α + β′x + Zt(s1, s2), (1)

where the left-hand side of the equation is the log of the disease odds at location s, α is an 

intercept, β is a vector of regression coefficients, x is a vector of covariates observed at 

location s, and Zt (s1, s2) is a function of the residential locations at a particular time point. 

This function provides spatial smoothing of the locations and models spatial variation not 

explained by the covariates. The spatially smoothed term may be considered a surrogate for 
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unmeasured environmental factors at a specified time. The technique of smoothing over 

residential locations is used to measure the density of cases relative to controls over space. 

This approach models cases and controls as a marked heterogeneous Poisson point process 

with intensity λ(s) = λ1(s) + λ0(s), where λ1(s) denotes the intensity of cases and λ0(s) the 

intensity of controls.

Within this framework, we can evaluate several lag times in years before diagnosis, for 

example 20 years and 10 years, through Zt and select the one that best explains the risk of 

disease. Analysis of deviance (ANODEV) may be used to evaluate the significance of the 

lag times by testing differences in deviances between nested models, with and without Zt. 

The difference in deviances for two nested models approximately follows a chi-square 

distribution with an associated p-value. A significantly lower deviance from a model with a 

lag time of k years indicates that using the smoothed pattern of residential locations from k 
years before diagnosis significantly explained overall disease risk. This model specification 

does not consider the duration spent at each residence but rather the pattern of residences at 

any time t.

For the form of the spatial smoothing function, we used loess, or locally weighted scatterplot 

smoothing (Cleveland 1979), and smoothed over both spatial dimensions. The smoothing 

function has a span parameter that controls the amount of smoothing. The span parameter 

must be estimated, and we selected the span that minimized the Akaike Information 

Criterion (Akaike 1973) over a large range of span values. We estimated the GAM model 

parameters in the statistical analysis software R (R Development Core Team 2010) using the 

gam package, version 1.03.

To assess the variation in risk of disease over space, we plotted the local odds ratios (ORs) 

using the model specified in equation (1). To produce a map of local ORs, we first estimated 

all parameters for the model expressed in equation (1) using the study data. We then 

predicted the log odds over a rectangular grid placed over the study area using the estimated 

model parameters. To provide an interpretable odds ratio map, we used the entire study 

population as the reference and divided the odds from the spatial model at each grid point by 

the odds from the null model.

For inference on clusters, we identified areas of significantly elevated risk using Monte 

Carlo randomization. This procedure compares the observed local odds ratios to 

distributions of local odds ratios under the null hypothesis that case status does not depend 

on location (Waller and Gotway 2004). We used 999 Monte Carlo samples to build the 

permutation distribution of odds ratios at each grid location, using the optimal span from the 

observed data for the permutations. We identified areas of significantly elevated risk as those 

areas that had an observed odds ratio in the upper 2.5% of the ranked permutation 

distribution of odds ratios. Similarly, we identified areas of significantly lowered risk of 

disease as those having an observed odds ratio in the lower 2.5% of the ranked permutation 

distribution. Clusters of either elevated or lowered risk are significant at the 0.05 level 

(assuming a two-tailed distribution). We mapped the local ORs and highlighted the 

significant areas of risk for disease simultaneously.

Wheeler et al. Page 6

Ann Assoc Am Geogr. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We applied the approach described above in the three study centers (Detroit, Iowa, Los 

Angeles) in the NCI-SEER NHL study where clusters were previously detected (Wheeler et 

al. 2011). In the previous adjusted models, the most significant lag time was 20 years in 

Detroit (p = 0.07), Iowa (p = 0.14), and Los Angeles (p = 0.03) and clusters of elevated risk 

were detected at a time lag of 20 years in all three study areas; therefore, we focused on this 

time lag in our analysis. We fitted separate models for each center. We fitted crude models; 

models adjusted for the core covariates age at enrollment, gender, race, education, and home 

treatment for termites before 1988; and models additionally adjusted for PCB 180 and 

genetic polymorphisms for the four previously mentioned genes. The covariates did not vary 

over time in the models. We fitted the models for three sets of data for each center. We used 

a set of all subjects with complete residential histories and for whom missing values for PCB 

180 and genetic risk factors were coded with a missing indicator, a set of subjects with 

complete genetic data, and a set with complete genetic and PCB data.

Results

The analyses from all three subsets of study subjects showed that adjusting for PCB 180 and 

the four genetic factors made little difference in Detroit, Iowa, and Los Angeles at a lag time 

of 20 years before diagnosis in terms of the significance of the spatial term in the models 

and the presence of significantly elevated or lowered areas of NHL risk (Table 1). The only 

change in significant clusters due to adjusting for the genetic factors and PCB 180 occurred 

in Detroit with the model that included those with complete genetic and PCB data, where an 

area of significantly lowered risk was explained by these factors. Adjusting for the core 

covariates was adequate to detect an area of significantly elevated risk that was not found by 

the crude model in Los Angeles in the genetic and PCB subset of data.

The locations of the areas of significantly elevated and lowered NHL risk remained the same 

across adjusted models, although the shape of the detected areas changed slightly for some 

models. In Detroit, the delineation of the area of significant elevated risk (in southeast 

Oakland County) was consistent when adjusting for the core covariates and additionally for 

the genetic factors, and PCB exposure (Figure 1). In Los Angeles, an area of elevated risk 

(West Hollywood) decreased slightly in size after adjusting for PCB exposure and the 

genetic factors (Figure 2). The other region of elevated risk contains sparsely populated 

areas. The area of significantly elevated risk in Iowa, including parts of Wayne County and 

Appanoose County, also decreased in size after adjusting for PCB exposure and the genetic 

polymorphisms (Figure 3). The risk overall decreased in Iowa after adjusting for the 

additional genetic and PCB risk factors, and the approximate p-values for the spatial term 

increased with the adjustment in each of the three sets of data.

Our study demonstrates the importance of adjusting for suspected risk factors, including 

genetic and environmental risk factors, and considering residential histories when 

performing a spatial analysis of disease. Even if such adjustments do not fully explain 

observed patterns, they refine the hypotheses generated by the analyses. Our study also 

highlights the potential heterogeneity in risk factors for NHL incidence across different 

geographic areas. Additional efforts are required to identify risk factors that may explain 

areas of significant risk in Detroit, Iowa, and Los Angeles.
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Conclusions

In this paper, we first reviewed the challenges encountered when performing spatial cluster 

analysis of chronic diseases and then presented an analysis that addressed these challenges. 

We investigated previously detected areas of significantly elevated risk of non-Hodgkin 

lymphoma in a case-control study to see if PCB exposure and genetic risk factors could 

explain the clusters. We found that adjusting for genetic factors and PCB 180 levels in 

homes did not explain significantly elevated risk areas in Detroit, Iowa, and Los Angeles, 

but did explain an area of significantly lowered risk in Detroit in one model. Our analysis 

demonstrates an approach to spatial-temporal analysis of disease for epidemiologic studies 

with individual-level suspected risk factors and residential histories. Our approach is based 

on the well-established generalized additive model, which provides a unified statistical 

framework for adjusting for risk factors, estimating disease risk spatially, and assessing 

significance of elevated risk for individual-level epidemiologic studies. A strength of our 

approach is that it is straightforward to evaluate several latency periods within an unbiased 

model. This approach can be extended in the future to include several latency periods as 

covariates in one model to represent multiple locations of exposure at different time points. 

It should also be possible to include duration at each residence in a model. A limitation of 

this approach is that a latency period not considered in the model may be the most relevant 

for a particular disease. The selection of latency period candidates to evaluate in an 

exploratory analysis may be somewhat arbitrary. In addition, not all available residential 

locations would typically be evaluated in the current approach. Extending existing 

approaches to include all address information is an area for methodological development in 

the future. Another limitation, common to all cluster detection approaches, is that detection 

of a cluster only identifies a location of potential exposure, but does not identify the nature 

of any exposure. In summary, our application of this approach serves as an illustrative 

example for those interested in performing space-time cluster analysis of chronic diseases 

with suspected latencies and limited risk factor information to assist in the generation of new 

hypotheses about potential risk factors. The approach is especially applicable to other 

chronic diseases with suspected environmental causes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Local odds ratios (OR, scale at right) for NHL adjusted for the core covariates (age, gender, 

race, education, home termite treatment) and additionally for four genetic polymorphisms 

and PCB 180 exposure at a residential lag time of 20 years in the Detroit study area using 

the model with missing variable coding. Areas of statistically significant elevated odds ratios 

are identified with a solid white line and statistically significant lowered odds ratios are 

identified with a dashed black line.
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Figure 2. 
Local odds ratios (OR, scale at right) for NHL adjusted for the core confounders and 

additionally for four genetic polymorphisms and PCB 180 at a residential lag time of 20 

years in the Los Angeles study area using the model with missing variable coding. Areas of 

statistically significant elevated odds ratios are identified with a solid white line and 

statistically significant lowered odds ratios are identified with a dashed black line.
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Figure 3. 
Local odds ratios (OR, scale at right) for NHL adjusted for the core confounders and 

additionally for four genetic polymorphisms and PCB 180 at a residential lag time of 20 

years in Iowa using the model with missing variable coding. Areas of statistically significant 

elevated odds ratios are identified with a solid white line.
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Table 1.

Sample size, estimated span parameter, approximate p-value for the spatial term, and presence of significantly 

elevated or lowered risk areas of NHL for crude and adjusted models for several sets of data for three centers. 

For each center, the first set is all subjects with complete 20-year residential histories and uses missing 

indicator coding for the genetic factors and PCB exposure, the second set is only subjects with complete 

genetic data, and the third set is only subjects with complete genetic and PCB data. The core covariate 

adjusted model includes age, gender, race, education, and home treatment for chlordane before 1988. The 

other adjusted models also include genetic polymorphisms in four genes, as well as exposure to PCB 180 in 

some models.

Model Cases Controls Total Span
p-

value

High-
Risk

Cluster

Low-
Risk

Cluster

Detroit - Missing indicator 214 144 358

 Crude 0.600 0.071 Yes Yes

 Core covariates 0.600 0.072 Yes Yes

 Core + genes and PCB 180 0.600 0.093 Yes Yes

Detroit - Genes subset 128 91 219

 Crude 0.625 0.051 Yes Yes

 Core covariates 0.625 0.093 Yes Yes

 Core + genes 0.625 0.086 Yes Yes

Detroit - Genes + PCB subset 65 41 106

 Crude 0.700 0.022 Yes Yes

 Core covariates 0.700 0.021 Yes Yes

 Core + genes and PCB 180 0.700 0.019 Yes No

Iowa - Missing indicator 267 211 478

 Crude 0.625 0.211 Yes No

 Core covariates 0.625 0.144 Yes No

 Core + genes and PCB 180 0.625 0.204 Yes No

Iowa - Genes subset 233 186 419

 Crude 0.625 0.337 Yes No

 Core covariates 0.625 0.225 Yes No

 Core + genes 0.625 0.318 Yes No

Iowa - Genes + PCB subset 133 109 242

 Crude 0.600 0.378 No No

 Core covariates 0.600 0.346 No No

 Core + genes and PCB 180 0.600 0.422 No No

Los Angeles - Missing indicator 190 161 351

 Crude 0.275 0.003 Yes Yes

 Adjusted 0.275 0.029 Yes Yes

 Adjusted + Genes, PCB 180 0.275 0.024 Yes Yes

Los Angeles - Genes subset 160 127 287

 Crude 0.375 0.001 Yes Yes

 Core covariates 0.375 0.009 Yes Yes
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Model Cases Controls Total Span
p-

value

High-
Risk

Cluster

Low-
Risk

Cluster

 Core + genes 0.375 0.009 Yes Yes

Los Angeles - Genes + PCB subset 107 62 169

 Crude 0.500 0.132 No Yes

 Core covariates 0.500 0.057 Yes Yes

 Core + genes and PCB 180 0.425 0.038 Yes Yes
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