
HDDA: DataSifter: statistical obfuscation of electronic health
records and other sensitive datasets

Simeone Marinoa,*, Nina Zhoua,b,*, Yi Zhaoa, Lu Wangb, Qiucheng Wua, and Ivo D.
Dinova,c,d,e

aStatistics Online Computational Resource, University of Michigan, Ann Arbor, MI, USA;

bDepartment of Biostatistics, University of Michigan, Ann Arbor, MI, USA;

cDepartment of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI,
USA;

dDepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor,
MI, USA;

eMichigan Institute for Data Science, University of Michigan, Ann Arbor, MI, USA

Abstract

There are no practical and effective mechanisms to share high-dimensional data including

sensitive information in various fields like health financial intelligence or socioeconomics without

compromising either the utility of the data or exposing private personal or secure organizational

information. Excessive scrambling or encoding of the information makes it less useful for

modelling or analytical processing. Insufficient preprocessing may compromise sensitive

information and introduce a substantial risk for re-identification of individuals by various

stratification techniques. To address this problem, we developed a novel statistical obfuscation

method (DataSifter) for on-the-fly de-identification of structured and unstructured sensitive high-

dimensional data such as clinical data from electronic health records (EHR). DataSifter provides

complete administrative control over the balance between risk of data re-identification and

preservation of the data information. Simulation results suggest that DataSifter can provide privacy

protection while maintaining data utility for different types of outcomes of interest. The

application of DataSifter on a large autism dataset provides a realistic demonstration of its promise

practical applications.

Keywords

Data sharing; personal privacy; information protection; Big Data; statistical method

CONTACT Ivo D. Dinov dinov@umich.edu Statistics Online Computational Resource, University of Michigan, Ann Arbor, MI
48109, USA; Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute
for Data Science, University of Michigan, Ann Arbor, MI 48109, USA.
*These authors have equally contributed to this work.

Disclosure statement
No potential conflict of interest was reported by the authors.

HHS Public Access
Author manuscript
J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

Published in final edited form as:
J Stat Comput Simul. 2018 ; 89(2): 249–271. doi:10.1080/00949655.2018.1545228.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Introduction

Recently, David Donoho predicted that by 2060 we will enter an Open Science era, where

data and code sharing will become a trend in scientific publications [1]. However, without

privacy protections, sharing sensitive data may result in excessive information disclosure.

Currently, there are no generic, practical, and effective mechanisms to share high-

dimensional data in aggregate without compromising participant confidentiality, exposing

personal information, or undermining individual rights. Examples of such delicate

information include clinical data, electronic health records (EHR), banking and investment,

student learning analytics, and government data including income tax and socioeconomic

data. Cohort stratification approaches for large multi-source data archives may be used by

various actors to re-identify specific cases.

For example, a malicious adversary might be interested in linking de-identified hospital

EHR with voter registration database using shared demographic variables. Without

deliberate obfuscation, re-identification can be easily achieved. As early as 1997, Latanya

Sweeney showed that one might identify 90% of the US population when information for

date of birth, postal code, and gender is known [2–5]. In 2007, Netflix published its de-

identified user data for its famous contest to improve the recommendation system.

Deanonymization can be easily realized when linking the Netflix data with the International

Movie DataBase (IMDB) dataset that contains user information [6]. However, to advance

our understanding of a number of natural phenomena, including benign and pathological

human conditions, and provide massive volumes of information for scientific discoveries, it

is useful to share, release, and aggregate data.

Some existing techniques are able to provide privacy-preserving solutions for specific types

of data sharing. Differential Privacy (DP) is a mathematical definition of this privacy loss,

providing statistical properties about the behaviour of a mechanism for answering privacy-

preserving queries [7–10]. DP ensures that similar datasets can behave approximately when

similar information is requested by differentially private algorithms. To promote data

sharing, Mohammed et al. [11] proposed the DiffGen algorithm to publish differentially

private anonymized data. They partitioned the raw data into subgroups and introduced

Laplacian noise to the group counts. Model-free Probably Approximately Correct (PAC)

learning provides another solution for low-dimensional synthetic data sharing [12]. Several

model-based sampling inference techniques have also been proposed for medium-sized data

sharing, including Zhang et al. [13] and Chan et al. [14] Bayesian frameworks and clustering

techniques may also be employed to derive noisy conditional distributions or marginal tables

and approximate the overall data joint distribution. Such methods provide good asymptotic

properties on the errors introduced to the original data. However, most rely on low-

dimensional evaluation datasets (e.g. less than 24 features), and when the data

dimensionality increases such methods may become computationally intractable.

Additionally, the conditional distributions and marginal tables were derived using specific

models; thus the ultimate utility of the synthetically generated datasets was highly dependent

on the adequateness of the a priori selected models.

Marino et al. Page 2

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Data encryption provides another strategy for data sharing [15–17]. Fully homomorphic

encryption transfers plain text (raw data) into cipher text that is not humanly parseable

unless decrypted with a specific decryption key [18–21]. Homomorphic encryption allows

users to operate, process, or analyse the encrypted data without having access to the

decoding key. However, the operations on encrypted data are limited as they are designed

ahead of time, Thus, general model fitting on encrypted EHR data is difficult to conduct in

practice.

The proposed statistical obfuscation technique (DataSifter) combines introducing artificial

random missingness with partial alterations using data swapping within subjects’

neighbourhoods. These furtive operations have minimal impact on the joint distribution of

the obfuscated (sifted) output data as the controlled rate of missingness is introduced

completely at random and nearest neighbourhoods tend to have consistent distributions. In

terms of the overall distribution of the data features, the DataSifter algorithm attempts to

preserve the total energy, i.e. information content, of the original data. At the same time, the

method sufficiently obfuscates the individual cases to provide privacy protection and

mitigate the risks of re-identification. There are several user-controlled parameters that allow

the data governor the flexibility to control the level of obfuscation, trading privacy protection

and preservation of signal energy.

Methods

The core of the DataSifter is an iterative statistical computing approach that provides the

data-governors controlled manipulation of the trade-off between sensitive information

obfuscation and preservation of the joint distribution. The DataSifter is designed to satisfy

data requests from pilot study investigators focused on specific target populations. These

pilot studies may not necessarily be driven by specific research questions or a priori
hypotheses. Thus, this technique is generally query-free. Iteratively, the DataSifter

stochastically identifies candidate entries, cases as well as features, and subsequently selects,

nullifies, and imputes the chosen elements. This statistical-obfuscation process relies heavily

on non-parametric multivariate imputation to preserve the information content of the

complex data.

The DataSifter is designed to process various types of data elements. The method can handle

multiple numerical or categorical features, as well as one unstructured feature, e.g. rich text.

However, the method cannot be applied to features with a single constant value or

categorical features with probabilities of some categories close to 0.

At each step, the algorithm generates instances of complete datasets that in aggregate closely

resemble the intrinsic characteristics of the original cohort; however, at an individual level,

the rows of data are substantially obfuscated. This procedure drastically reduces the risk for

subject re-identification by stratification, as meta-data for all subjects is randomly and

repeatedly encoded. Probabilistic (re)sampling, distance metrics and imputation methods

play essential roles in the proposed DataSifter obfuscation approach.

Marino et al. Page 3

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In regard to the designed data requests, the main assumptions of the DataSifter technique

include: (A1) Incomplete observations are driven by missing at random (MAR) or missing

completely at random (MCAR) mechanisms [22]; (A2) The utility of each feature is equally

important; (A3) Large random samples of the original data preserves the overall joint

distribution. These assumptions are standard and allow us to manage the data or quantify

data utility. (A1) allows accurate imputations (A2) is essential in calculating subject-pair

distances, and (A3) promotes subject-wise parallelization.

We use the following framework to form the DataSifter algorithm. Three sources of

obfuscation have been applied to the data during the DataSifter technique: (1) initial data

imputation (in the preprocessing step), (2) artificially create and impute missingness (in the

imputation step), and (3) swapping data values in the neighbourhood (in the obfuscation

step). Here we define all the mappings that have been employed for obfuscation.

Notation

Define 𝒳 as the counterfactual complete sensitive dataset for Sifting consisting m features
and n cases. Let us use 1 ≤ j ≤ m to denote features and 1 ≤ i ≤ n to denote cases:

𝒳 = X1, …, X j, …, Xm ∈ Rn × m, X j = X1, j, …, Xn, j
T, 1 ≤ j ≤ m .

In the above expression, Xi,j denotes the i-th subject’s j-th feature value.

We define the utility information embedded in a dataset as the knowledge about the joint

distribution of the holistic data including all variables. By DataSifting preservation of utility,

we mean the relative conservation of the signal energy that suggests small deviation of the

sifted-data joint distribution from the original (raw) data joint distribution. Clearly, this does

not hold true for large obfuscation levels (e.g. as η → 1).

Define Fj as the distribution of the j-th variable (feature) in the dataset:

Xi, j F j, i = 1, …, n .

Missing data are pervasive in almost all real-world datasets. We define the hypothetical

complete j-th feature as

X j = X j, obs, X j, mis ,

where Xj,mis denotes a vector containing the actual values of the missing data portion. What

we observe is denoted as Xj = (Xj,obs, Nj), here Nj represents the missing cells. The length of

Xj,obs is nj and the length of Nj is m − nj.

Initial data imputation

This obfuscation happens in the data preprocessing step, we aim to impute the missing cells

in the origin data using missForest [23]. We define the imputation method as a mapping

Marino et al. Page 4

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from the observed incomplete dataset to a complete dataset with imputed values following

estimated conditional distributions:

MF(⋅): X1, …, Xn G,

G = f j(⋅), i = 1, …, m, j = 1, …, n .

Here f j: Xi, 1, …, Xi, j − 1, Xi, j + 1, …, Xi, n Xi, j, i = 1, …, m, j = 1, …, n are the conditional

distributions of Xi,j given all other features in the dataset. missForest uses an iterative

approach with random forest models to approximate the true fj.

Then, we impute the missing data with G to obtain 𝒳* = X1*, …, Xn* , where

X j* = X j, obs, X j, mis , where X j, mis follows the same distribution as Xi,j.

Artificially create and impute missing

During the imputation step, we introduce artificially missing observations and subsequently

employ data imputation to re-generate complete instances (chains) of the dataset. Similar to

initial imputation we apply MF(·) to approach the true conditional distributions of the

features.

We first randomly introduce missingness to the dataset after preprocessing step:

𝒳(I) = X1
(I), …, Xn

(I) , X j
(I) = X j, obs

(I) , N j
(I) .

The new data would possess an MCAR missing mechanism. The corresponding complete

data chains following the imputation is denoted by

𝒳 * (I) = X1
* (I), …, Xn

* (I) , X j
* (I) = X j, obs

(I) , X j, mis
(I) ,

where X j, mis
(I) are obtained by MF(·). Assuming we have obtained the true conditional models

for all the imputations, the above two sources of obfuscation would not alter the joint

distribution of all features.

Neighbourhood data-element swapping

To further guarantee the obfuscate has been applied to each record, we swap the data values

in the neighbourhood without substantially altering the joint feature distribution. We need to

determine the neighbours for each record in the dataset. First, we calculate the distance

matrix for all cases:

Marino et al. Page 5

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

D =

0 D1, 2 … D1, m
D2, 1 0 … D2, m
⋮ ⋮ … ⋮
Dn, 1 Dn, 2 … 0

.

Here Di,j = Dj,i ∀i, j. Di,j is the distance between the i-th case and the j-th case. Then, define

aij = I(Di,j < min(D′) + sd(D′)) here D′ = {Di,j|i ≤ j}. We use the hard threshold min(D′) +

sd(D′) to restrict the neighbourhood. Hence, the neighbourhood matrix is defined as

A = A1, …, Am
T = ai j m × m

.

Next, we define an index set that contains all the possible neighbours for j-th case, Ωj = {(i,
j)|aij = 1}, j = 1, …, m. The swapping procedure can be represented by a set that contains all

the mapping functions to be performed on 𝒳 * (I):

∀M ∈ ℳ, M ∘ 𝒳 * (I) =

x11 x
k1
11

⋯ x1n x
k1
nn

⋮ ⋱ ⋮
xm1 x

km
1 1

⋯ xmn x
km
n n

∘ 𝒳 * (I),

where the notation x11 x
k1
11

 suggests using the element x
k1
11

 to replace x11, noting that

here k1
1 depends on both the column and the row indices.

Finally, we define one random function that picking a specific neighbourhood from the

neighbour set generated above as Ωj:

g(⋅):Ω ℳ,

g

Ω1
⋮

Ωm

= M =

x11 xi1
1 ⋯ x1n xi1n

⋮ ⋱ ⋮
xm1 xim1 ⋯ xmn ximn

,

where each pair of (ij, j) ∈ Ωj, j = 1, … m.

We define another function that picks k4% of the replacement to execute, it’s also a function

that mapping to the map function set, shown as below:

h(⋅):ℳ ℳ,

Marino et al. Page 6

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

h

x11 xi11 ⋯ x1n xi1n

⋮ ⋱ ⋮
xm1 xim1

⋯ xmn ximn

=

x11 x
i1
11

⋯ x1n x
i1
nn

⋮ ⋱ ⋮
xm1 x

im
1 1 ⋯ xmn x

im
n n

,

where i j
k =

i j, means execute the replacement
j, means keep the value as original

, subject to the following identity:

∑
k

I i j
k ≠ j = k4% × n, ∀ j .

A specific R-implementation of the DataSifter method is available in the DataSifter package,

method dataSifter(). Detailed description and code are available in our GitHub repository

(https://github.com/SOCR/DataSifter).

User-controlled parameters

Sifting different data archives requires customized parameter management. Five specific

parameters mediate the balance between protection of sensitive information and signal

energy preservation:

• k0: A binary parameter indicating whether or not to obfuscate the unstructured

feature, if any.

• k1: The per cent of artificial missing data values that should be synthetically

introduced prior to each imputation iteration. Missingness is stochastically

introduced to all data elements. The range of this parameter can be between 0%

and 40% of the total number of cells. We set an upper bound of 40% missingness

in order to keep the remaining dataset is still informative. However, this range

can be expanded.

• k2: The number of times to repeat the introduction-of-missing-and-imputation

step. Five options are available from 0 to 4.

• k3: The fraction of structured features to be obfuscated in all the cases. Available

options can vary between 0% and 100%.

• k4: The fraction of closest subjects to be considered as neighbours of a given

subject. This implies that the top k4% of the closest-distance subjects of a given

subject can be considered as candidates for its neighbours. Then, the final

neighbouring status of any subject is determined by an additional hard cut off.

As a reference, Table 1 illustrates some example combinations of ki parameters to show the

trade-offs between privacy protection and obfuscation. The level of obfuscation spans the

range from raw data (no obfuscation) to synthetically simulated data (complete obfuscation).

Our highest level of obfuscation, i.e. ‘indep’, refers to the synthetic dataset sample from the

joint empirical distributions of all the features.

Marino et al. Page 7

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/SOCR/DataSifter

Preprocessing

The preprocessing steps of the original data might vary for different datasets. Figure 1

illustrates the procedures included in the default DataSifter preprocessing step. These may

be tailored to the specific characteristics of the study. The overall goal is to delete

uninformative features and impute originally missing values. Uninformative features are

features that either represent constant values or have excessive levels of missingness.

DataSifter produces a complete dataset after the preprocessing step. For ease of notation in

the rest of the manuscript we denote the number of subjects in the dataset as n, the number

of informative features filtered by the preprocessing step as p, and the number of subjects

per batch during the parallel process as M. Alternative preprocessing methods are possible

as long as the aims are met.

Imputation step

Following the data preprocessing, the DataSifter continues with an iterative imputation and

obfuscation. During the imputation step, the DataSifter algorithm first introduces random

artificial missing values to the complete dataset, which synthetically provides privacy

protection. The artificial missingness obeys missing completely at random (MCAR)

requirements as the missingness is introduced stochastically for the case and features indices

[22]. Assume we have n entries of data and denote the full data as Y = (Yobs, Ymis), where

Yobs represents the observed part and Ymis the missing part. Let R denote the missing

indicator with Ri = I(Yi ∈ Ymis) for i = 1, 2,.., n. Because the MCAR assumption is satisfied,

we have the following relationship:

P(R|Y) = P(R) .

This relationship between observed and missing values guarantees that the fully observed

data represents a random sample of the complete data. Accurate imputations of the missing

values based on the observed values can be obtained with non-parametric imputation

methods [23]. Thus, as described above, our specific introduction of missing data has limited

effect in altering the joint distribution of the data during the imputation process. To impute

the missing values, we use the non-parametric imputation method missForest [23], albeit

many alternative strategies are also possible. As an iterative non-parametric imputation

method of mixed data types, missForest fits a random forest model using the observed data

as training data and provide predictions for the missing cells. Hence, the random forest

model for imputing a specific column uses all other variables in the dataset as predictors. In

each iteration, the imputation of the entire dataset starts in the column with the least missing

values and ends in the column with most missing values. When the newly imputed data

matrix tends to diverge with the previous matrix then the algorithm stops. We choose

missForest algorithm, rather than other model-based multiple imputation methods, for the

following reasons [23]: (1) missForest employs random forest imputation that can cope with

complex EHR data, which typically involves mixed-type data, complex interactions, and

non-linear relations; (2) it relies on limited modelling assumptions; and (3) it is relatively

efficient for large-scale and high-dimensional data.

Marino et al. Page 8

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Following the imputation step, the outputted ‘sifted’ dataset, Xwork, has the following

properties: (1) individual cases are manipulated, yet complete, protecting individual privacy,

since hackers cannot distinguish ‘true’ values from imputed values that are in the same

format; (2) subjects with introduced missingness can still play an important role in the

analysis after the imputation.

Obfuscation step

During the obfuscation step, the DataSifter repeatedly selects and swaps structured data

feature values based on the closest neighbours to ensure a balance between data privacy and

preservation of the feature distributions. The algorithm relies on distance metrics to

determine neighbourhoods for all cases [24,25], and swaps feature values between closely

adjacent neighbouring pairs. We compute pair-wise distances between all cases using a

weighted distance measure: (1) Euclidean distances for normalized numerical features, and

(2) Gower’s distance for categorical features [24]. To obtain the distance matrix, we divide

the current dataset outputted by the imputation step into three subsets and re-index the

elements as a numerical subset Xnum = x 1, x 2, …, x l = x1, x2, …, xn
T, categorical dataset

Xcat = y 1, y 2, …, y p − 1 − l = y1, y2, …, yn
 T , and the unstructured feature Xunstr, where

we have l numerical features, p-1-l categorical features and one unstructured feature. For

Xnum, we apply a map algorithm f, which calculates the Euclidean distance for every pair of

cases and maps the input data metric to the target distance metric, and f: Rn×l → Rn×n is

defined as below. For X = (x1, x2, …, xn)T, f(X) = DE = (eij), where ∀i, j:

ei j =

xi − x j 2 − mini, j xi − x j 2
maxi, j xi − x j 2 − mini, j xi − x j 2

, i < j

0, otherwise

And we can utilize f to obtain f (Xnum) = DE (eij)n×n.

For the categorical subset, we define a mapping=algorithm g which calculates the distance

for categorical features via Gower’s rule. For X = (x1, x2, …, xn)T, X ∈ Rn×p, g(X) = DG =

{gij}. For ∀i, j:

gi j = 1
p ∑

s = 1

p
gi js,

where gijs is an indicator function related to the s-th feature, which is defined as

gi js =
0, xis = x js,
1, xis ≠ x js .

Marino et al. Page 9

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Under Gower’s rule, we calculate the distance by the weighted dissimilarities of categorical

features. Similarly, for Xcat = y1, y2, …, yn
T, we attain DG = (gij)n×n g(Xcat). Under

assumption (A2), we define the complete paired-distances metric as a weighted version,

D = di j n × n
, ∀i, j, di j = ei j × l

p + gi j × p − 1 − l
p ,

where l/p and (p − 1 − l)/p represents the weights for the Euclidean and Gower distances,

respectively. Two criteria are used to determine the neighbouring status for subject pairs: (1)

closest k4 × n neighbours regarding the pair distances; and (2) a hard cut off. In the distance

matrix D, for each i, we rank the paired distances dij as di1
, di2

, …, din
. Then, we find the

maximum distance of the top k4% (percent) d
i, f loor k4 × n

, where floor(k4 × n) rounds to the

lower integer the percentage of cases to select within the closest neighbours. We use the

cutoff to identify the potential neighbours of the i-th individual:

neighbor(i) = (i, j):di j < d
i, f loor k4 × n

, ∀i = 1, …, n .

In addition, we set up a criterion to narrow the neighbourhood. Let

c = in f di j + sd di j ,

where inf {dij} refers to the minimum pair-wise distance between cases and sd{dij}refers to

the standard deviation of all the dij’s in D. We only preserve the neighbours that satisfy dij ≤

c. The final set of neighbours, i.e. neighborfinal, is defined as follows:

neighbor f inal(i) = (i, j) (i, j) ∈ neighbor(i), di j ≤ c , ∀i = 1, …, n .

For extreme subjects that have no neighbours selected by the above process, we do not apply

the obfuscation step. One subject could have multiple neighbours. For every subject, a

neighbouring subject is randomly selected as its swapping partner. We randomly swap a

subset of randomly chosen features among each swapping pair. A detailed flow chart

illustrating the imputation and obfuscation steps can be found in Figure 2.

Pseudo code

In this section, we define Xstr as the structured feature subset of current data, which consists

of Xnum and Xcat. Also, Rand(X, r) is a function that randomly picks r elements in X.

Input:

1. The dataset after preprocessing Xwork = x 1, x 2, …, x p ∈ Rn × p with n cases

and p features. There are one unstructured and p − 1 structured features in the

Marino et al. Page 10

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dataset. After the preprocessing step, p is less or equal to the number of features

in the original dataset. Each x i is a column vector,

x i = x1i, x2i, …, xni
T, i = 1, …, p.

2. The categorical level of obfuscation L = {‘none’, ‘small’, ‘medium’, ‘large’,

‘indep’}, or alternatively a specific parameter vector (k0, k1, k2, k3, k4).

Special cases:

If L = ‘none’, the output is Xwork and if L = ‘indep’, the output is denoted by Xnew. Each

feature in Xnew is a synthetic sample from the empirical distribution of the corresponding

feature in Xwork.

Core Algorithm:

For i in 1: k2 do

 Introduce k1 % × n × (p − 1) missing values to Xstr.

 Impute missingness (e.g. via missForest) and update Xwork.

 End for

 If k0 = 1 do

 For i = 1 : n

 (i, j) = Rand(neighbor*(i), 1)

 Swap the unstructured value for the pair (i, j) in Xwork.

 End for

 End If

 For i = 1 : n

 j = Rand(neighbor*(i), 1);

 Zi = Rand 1, …, p − 1 , k3 % × p − 1 = zi, 1, …, zi, k3% × p − 1 ;

 For t ∈ Zi do

 Swap Xstr[i, t] with Xstr[j, t]

 End for

 End for

Simulation experiment design

We present three different simulation studies to demonstrate the performance of the

DataSifter algorithm and assess its capability to (1) obfuscate and guard against stratification

attempts for re-identification and (2) manage the overall data structure and preserve useful

information in the resulting ‘sifted’ data. In all experiments, we use a sample size of n =

1000 subjects.

In the first simulation, a binary outcome (y) and five covariates (xi, i = 1, …, 5) were

simulated; X1 to X4 were independently generated by normal distributions with the

following distribution specifications:

Marino et al. Page 11

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

X1, X2 N(0, 1), X3 N(− 1, 1), and X4 N(0, 2) .

The binary variable X5 was directly dependent on X1 and X2:

logit X5i = 0.5 − 4X1i − xX2i .

The binary outcome variable was generated as follows:

logit P yi = 1 = 10 + 10 × X1i + 10 × X2i − 5 × X3i − 20 × X4i − 15 × X5i + ϵi,

where the residuals were independent and identically distributed (iid) and ϵi ~ N(0, 1) and i
= 1,.., n. Missingness for X1 and X2 was then introduced based on X5 to meet the missing-

at-random (MAR) criteria, which mimicked the real data situation. Denote Xi,1mis = I(Xi1 =

NA) and Xi,2mis = I(Xi2 = NA), where i is the subject indicator. Missingness was introduced

using the following probabilities:

P Xi, 1mis = 1 = P Xi, 2mis = 1 =

0.193, if X5 = y = 0,

0.060, if X5 + y = 1,

0.003, if X5 + y = 2.

As mentioned in the Imputation section, we can impute the original missing values in the

dataset prior to applying the subsequent DataSifter algorithmic steps. However, to handle the

original missingness, we have to consider MAR missingness.

The second simulation demonstrates an example of count outcomes. A Poisson model was

used to generate the data:

P Yi = n =
λi
n

n! × e
−λi,

where

log λi = 0.2 + 0.5 * x1 + 1 * x2 − 0.5 * x3 − 1 * x4 − 1.5 * x5 + ϵi,

with iid residuals (i.e. ϵi ~ N(0, 1)). The covariates xi, i = 1, …, 4 were generated using

uniform distributions. We constructed x5 based on x1 and x2 and used a similar strategy as in

the first binary simulation to introduce missingness.

The third simulation involves continuous outcomes, where the response y is generated by a

similar linear model as in the first experiment; however, it uses an identity link yielding a

continuous outcome:

Marino et al. Page 12

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

y = 10 + 10 × x1 + 10 × x2 − 5 × x3 − 20 × x4 − 15 × x5 + ϵi .

Again, the residuals were iid and, ϵi ~ N(0, 1). All covariates were generated from uniform

distributions and the missing patterns were stochastically determined as in the first binary

experiment.

For all simulation studies, we focused on verifying whether the ‘sifted’ output datasets

preserve a certain level of the energy that was present in the original true signals, relative to

null signals. In addition, we examined the trade-offs between the level of obfuscation and the

residual value (utility) of the resulting ‘sifted’ data as a measure of the algorithm’s

performance. To make all three simulations more realistic, we augmented the original

outcome and the (real) five covariates, with 20 additional null features that acted as decoy or

‘noisy’ control features. All 20 null features were uniformly distributed with various ranges

and were independent of the outcome.

Datasifter validation

For each simulation, we derived 30 ‘sifted’ datasets under a range of privacy levels, from

‘none’ to ‘indep’ levels of obfuscation. To assess the privacy protection ability, we measured

the Percent of Identical Feature Values (PIFV) between the ‘sifted’ outcome and the

original data for all the cases under each obfuscation level, i.e. we compared each subject’s

original and ‘sifted’ records and measured the ratio between the number of identical values

over the total number of features. For determine utility preservation, we used regularized

linear models, with an elastic net regularization term, to identify the salient variables.

Internal 10-fold statistical cross-validation was used to validate the results of the elastic net

feature selection. X denotes the covariate matrix (subjects × features = 1,000 × 25), y is the

outcome, and β as the elastic net parameter estimates obtained by optimizing the following

objective function:

βenet = argminβ(y − X)T(y − X) + λ α β 2 + (1 − α) β 2 ,

where α is the parameter to determining the blend of the LASSO and Ridge contributions to

the penalty, and λ is the regularization penalty parameter [26]. In our experiments, we used

α = 0.8 giving a slight dominance to the LASSO penalty.

A regularization parameter tuning procedure was also performed, using misclassification

error rate for binary simulation, deviance for count simulation, and mean squared error for

continuous simulation. The largest λ value, which is within one standard error of the

minimum cross-validated error, was selected as the optimal parameter [26]. When the

estimated coefficient was different from zero, we considered this evidence that the

corresponding feature represented a ‘true’ predictor. On the other hand, zero coefficient

estimates corresponded to ‘false’ predictors. Recall that in all simulations, there were five

true predictors and 20 null variables. The true positives (number of true features identified)

Marino et al. Page 13

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and the false positives (number of null features identifies as true predictors) were recorded

for all experiments and each privacy level.

Results

Protection of sensitive information (privacy)

The privacy protection power relies heavily on the user-defined privacy level and the

intrinsic information structure. Overall DataSifter performed very well. Our results showed

that for high privacy levels, the Percent of Identical Feature Values (PIFVs) was close to 0%

for all numerical features. For datasets including categorical features, the algorithm provided

PIFVs similar to the lowest PIFV between any pair of different subjects in the original

dataset. The overall privacy protection performance of the DataSifter was excellent.

Based on the overall simulation performance, a default recommended privacy level may be

set at ‘medium’. However, this is also subject to the sensitivity of the data, the specific

characteristics of the data, and the trustworthiness of the requestor. Figure 3 illustrates the

relationship between PIFVs for synthetic datasets and user-defined privacy levels. The

outcome labels ‘binary’, ‘count’, and ‘continuous’ refer to the first experiment, second

experiment, and third experiments, respectively. As expected, the graph shows that the

preservation of sensitive information is better protected when the privacy level is higher. For

all three simulations, the DataSifter had similar performance in terms of PIFV. The outliers

in the ‘none’ level resulted from the imputation of originally missing values. When the

obfuscation was set at ‘medium’ level, the variance of the PIFV was the largest as the levels

of obfuscation might differ among individuals when using random sampling. ‘Small’ level

of obfuscation manipulated less of the data, with a limited range around the neighbourhood

of each case. Hence, it generated smaller PIFV variances among individuals. On the other

hand, ‘large’ obfuscation level had a small variance for PIVF as it changed most of the

features for all cases. Under the ‘large’ obfuscation setting, PIFV was around 25% for all

three experiments, which provided reliable protection for patient privacy. Under the

‘medium’ level, around 75% of the cases had more than 50% of their data elements different

from their original (true) counterparts. The synthetic data under ‘indep’ changed almost all

the feature values for every subject. Remember that these five original obfuscation levels

represent simple examples of specifying the 5D Data-Sifter-control parameter vector k.

Preserving utility information of the original dataset

Next, we assessed the DataSifter algorithm’s integrity, in terms of its ability to maintain

utility information, i.e. preserve the energy or all features’ joint distribution of the original

data. A detailed explanation can be found in the Methods section. Our results suggest that up

to moderate obfuscation levels, the algorithm maintains a fair amount of information (data

energy). However, as expected, this ability fades away for larger obfuscation levels. Also,

different k parameter vectors have varying effects on the overall utility preservation.

The results illustrating the DataSifter ability to conserve the data energy are presented in

Figure 4. We report the true positive (TP) and false positive (FP) number of feature

selections for the three simulation experiments. These results showed that the DataSifter is

Marino et al. Page 14

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

able to preserve the signal energy in the original data. As expected, and in contrast to the

privacy preservation ability, the performance of the technique to maintain data utility is

better under low obfuscation levels. Different outcome types also affect the utility

preservation. The simulations show that information energy preservation in the continuous

outcome case is slightly better, compared to binary and count outcomes.

In the continuous outcome simulation, for obfuscation levels below ‘large’, regularization

and variable selection via elastic net successfully identified all five important predictors in

almost all ‘sifted’ datasets, and the number of false positives was mostly 0. In addition, the

variations of TPs and FPs among different privacy levels was the smallest among the three

simulation experiments. The count outcome simulation performed similarly well; under

‘medium’ obfuscation, elastic net was able to select 3 out of 5 features over 75% of the

times. Count outcome simulation was not always stable. For instance, some datasets

undergoing extreme ‘sifting’ had 0 true features selected; however, the algorithm also kept

low the false negative rate.

The binary outcome simulation demonstrated the least utility preservation as it had the

highest false positive rates and the largest variability among all settings. Based on Figure 4,

there is almost no true signal, or false signal, captured in the synthetic ‘indep’ setting, which

results from the elimination of the correlations among features. The extreme ‘indep’ case

aims to achieve maximum protection for patient privacy. As a consequence, the resulting

‘sifted’ data provides little utility.

Clinical data application: using DataSifter to obfuscate the ABIDE data

We demonstrate the functionality of the DataSifter on the Autism Brain Imaging Data
Exchange (ABIDE) dataset. The ABIDE dataset represents a multi-institutional effort for

aggregating and sharing the imaging, clinical and phenotypic data of 1,112 volunteers (see

[27] and http://fcon_1000.projects.nitrc.org/indi/abide for details). The data includes resting-

state functional magnetic resonance imaging (rs-fMRI) structural MRI, and phenotypic

information of 539 patients (autism spectrum disorder) and 573 age-matched asymptomatic

controls. In our study, we selected a subsample of 1,098 patients including 528 autism

spectrum disorder (ASD) and 570 controls. The dataset has 500 structural MRI biomarkers

and phenotypical information such as age, sex and IQ. It is a very challenging case-study

due to the heterogeneity of the data, format of the data elements, and the complexity of

mental health phenotypes. We use the ABIDE data to showcase the performance of the

DataSifter technique on a convoluted multiplex study.

The ABIDE dataset comprises 1,098 patients and 506 features. We included one

unstructured feature, ‘image data file name’ (‘Data’), in the dataset to demonstrate the

DataSifter ability to obfuscate unstructured text elements. Resembling the simulation

experiments, we built a dataSifter() function that has five different levels of obfuscation to

demonstrate the obfuscation utility trade-off. Obfuscation was assessed using PIFV as the

simulation studies. We applied random forest [28] to predict the target binary outcome

autism spectrum disorder (ASD) status (ASD vs. control) as a proxy of the algorithm’s

utility to maintain the energy of the original dataset into the ‘sifted’ output. Predictions of

the ASD status was conducted with the randomForest package.

Marino et al. Page 15

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org/indi/abide

When specifying the parameters in the dataSifter() function, level of obfuscation can be set

by level. Here we used five different obfuscation levels. The level of obfuscation can be

alternatively specified using a set of k combinations as function arguments, which creates a

flexible way to manage obfuscation levels. In general, low values of the user-controlled

parameters k0–k4 result in ‘small’ obfuscation levels. However, even if the relationship

between the user-controlled parameters and the obfuscation level is generally monotonic(i.e.

an increase in the parameters is associated to higher obfuscation), the relationship is not

necessarily linear. For example, our obfuscation level ‘small’ is obtained by setting the user-

controlled parameters in the dataSifter() function as follows: k0 = 0, k1 = 0.05, k2 = 1, k3 =

0.1, k4 = 0.01.

In this example, the name of the unstructured feature was ‘Data’. In general, when there are

no text variables, the set of unstructured.names can be left to default (i.e. NULL). Explicit

sensitive information like the subject ID, i.e. subjID column, needs to be removed from the

original dataset in advance. The batch size for the algorithm is defined by the parameter

batchsubj. As mentioned in the Methods section, the DataSifter algorithm operated on

batches to provide scalability and alleviate the computational complexity. We recommend

using a relatively small batchsubj and a large number of cores for datasets with a huge

number of cases (e.g. hundreds of thousands). The maximum number of iterations for the

missForest imputation algorithm is set to 1 to minimize the computational cost determined

by imputing a large number of features. An example call to the dataSifter function is

illustrated below:

dataSifter level=‘medium’,data =abide,unstructured.names=‘Data’, subjID=‘subjectIdentifier’, batchsubj=500,
maxiter =1

We obtained five ‘sifted’ output datasets corresponding to different obfuscation levels: no
(‘none’ obfuscation), s (‘small’ obfucation), m (‘medium’ obfuscation), l (‘large’

obfuscation), and i (‘indep’ synthetic data from empirical distributions of each feature). We

then inspected the obfuscations made to the original dataset. As an example, Table 2 shows

the impact of the 5 different obfuscation levels on 10 selected features from a randomly

selected case, the 22-nd subject, in the ABIDE data. Note that subject order was not changed

in the DataSifter process. The last feature ‘curv_ind_ctx_lh_S_interm_prim.Jensen’ is

missing for the 22-nd subject.

Compared to the original dataset, the results of the following obfuscation levels indicate:

none – only imputed the missing value; s – incorporated 2 ‘sifted’ features, m – had 4

features that differed from their original value; l had 7 out of 10 ‘sifted’ features including

the outcome ‘researchGroup’; and i had all features differ from the original except subjct-
Sex. Moreover, for ‘none’ to ‘medium’ obfuscation, the values were relatively close to the

original value in the example. Overall, Table 2 shows a ladder in obfuscation ability for

different levels.

Boxplots for PIFV were then plotted in Figure 5(A) to illustrate the overall obfuscation

effect. As expected, PIFV decreases with the level of obfuscation. Comparing the

application with the simulation experiments, the algorithm works better with a larger

Marino et al. Page 16

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

number of features. Under ‘medium’ obfuscation level, the algorithm achieved 50% and

25% PIVF for the binary simulation data and ABIDE data, respectively.

To assess the utility information, we used the ‘sifted’ datasets as training sets to fit random

forest. These trained models provided predicted values for 632 complete cases in the original

ABIDE data. The random forest built using no dataset predicted all outcomes correctly. s, m,

l and i datasets were able to provide predictions with 98%, 70%, 52% and 54% accuracy,

respectively. The prediction accuracy of all the datasets are illustrated in Figure 5(B). Again,

this result demonstrated the trade-off between utility and the user-controlled privacy levels.

Parallel computing and CPU time

We used R to implement the proposed DataSifter algorithm. Parallel processing was

employed to deal with datasets with a large number of subjects. To optimize the

performance, we randomly divided the complete dataset by cases into batches. By default,

we binned cases into batches of 1000, with the remaining patients added to the last batch.

After splitting the data into manageable bundles, we did parallel computing introducing

missing values and imputing them back iteratively using missForest. For extremely large

datasets and efficient timely calculations, we recommend applying the DataSifter algorithm

on Cloud servers where each code, or node, may be assigned a batch of cases. The current

DataSifter implementation (V.0.1.4), takes about 2 h to complete the entire DataSifter

protocol using 4392×503 EHR data archive. The relative CPU times for each step in the

DataSifter are listed in Table 3.

Discussion and conclusion

Researchers interested in examining specific healthcare, biomedical, or translational

characteristics of multivariate clinical phenomena frequently need to fit models, estimate

parameters, train machine learning algorithms, or generate forecasting models. Large

realistic datasets are required for all these tasks. There is an urgent need to develop effective,

reliable, efficient, and robust mechanisms to support FAIR data sharing and open-scientific

discovery [29]. The amount of data collected far exceeds our ability to interpret it. The main

barriers for data sharing remain to be data-ownership and the need to protect sensitive

information. The DataSifter method aims to balance data obfuscation, scrambling, or

encoding and preserving the information content to facilitate useful downstream modelling,

analytics and interpretation. The DataSifter represents a statistical obfuscation technique that

reduces the risk of data re-identification at the same time it preserves the core data

information. Our experiments with real and simulated data using multiple user-defined

privacy levels, confirm the algorithm’s ability to protect privacy while maintaining data

utility.

According to the simulation experiments results, under a careful set-up for user-defined

privacy levels, DataSifter can successfully provide privacy protection while maintaining data

utility. The clear negative relationship between the level of obfuscation and the proportion of

PIFVs indicates that a high user-specified privacy level does provide increased privacy

protection for sensitive information. Using DataSifter under ‘large’ or ‘indep’ settings,

patient privacy was highly protected. Data re-identification was almost impossible by

Marino et al. Page 17

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

stratification filtering of the targeted patients via known feature values. This is due to the

method’s inability to distinguish between real, imputed, or obfuscated values within each

real feature, and the relatively small proportion of untouched data elements. Of course,

caution needs to be exercised, as multiple queries resulting in repeated ‘sifted’ data instances

may expose the overlapping ‘true’ values especially for low levels of obfuscation. However,

the large proportion of ‘sifted’ elements protects sensitive information and may allow data

users to request a small number of data queries. The application of DataSifter on ABIDE

provided a realistic demonstration of how to employ the proposed algorithm on EHR. Also,

the application confirmed DataSifter’s ability to handle high-dimensional data. The excellent

prediction performances on the ‘medium’ obfuscation level suggested similar data utility

between original and ‘sifted’ data.

In practice, to guarantee a great performance, data users should calibrate the obfuscation

parameter values and choose an egalitarian strategy for counterbalancing risk vs. value. This

decision may be based on specific criteria about access level, research needs, information

sensitivity, etc. To stimulate innovative pilot studies, one may dial up the level of data

protection. For more established investigators, data governors may balance the preservation

of information content and sensitive-information protection by sharing a less obfuscated

dataset.

Although with promising performance, several improvements and extensions could be made

in future studies for the algorithm and R package. The major computational limitation is

scalability, when the dataset is extremely large with many features (e.g. cases ~ 10–100 K

and features ~ 1–10 K). In this scenario, the imputation with missForest can be inefficient.

Parallelizing the missForest algorithm by features or using more efficient computational

language like C++ might alleviate this problem. Another challenge is represented by the

obfuscation of longitudinal data, which must be performed without breaking the correlations

among time-varying features, which the current version of DataSifter is unable to do.

In addition, some of the records might not be changed after the DataSifter algorithm,

however at sufficient levels of obfuscation, all cases, or records, in the sifted output will be

distinct from their raw data counterparts. Any one of the following three steps will almost

certainly alter a data cell element: (1) imputation for originally missing cells; (2) introducing

artificially missing and imputed cells; and (3) obfuscating using swapping with a close

neighbour. Thus, if a record is unchanged during the DataSifter process, none of these three

processes took place. Assume we have a dataset with n records (rows) and m features

(columns); #1 would not occur if the raw record is complete, the probability of #2 not

occurring in a given record is

(n − 1) × m
k1 × n × m

n × m
k1 × n × m

, and the probability of #3 not occurring would be

high only for outliers, as they would have few or no neighbours. Overall, a record without

originally missing cells would have

(n − 1) × m
k1 × n × m)

n × m
k1 × n × m)

 chance of remaining unchanged following

Marino et al. Page 18

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the sifting process. However, if we force the swapping for complete cases and outliers, the

overall joint distribution of the sifted result may be quite different from the original data. We

are still investigating options to identify these rare complete cases and implement special

obfuscation steps before the DataSifter algorithm processes the entire datasets. The goal is to

introduce a special obfuscation strategy for rare cases preserving their uniqueness within the

sifted result.

The DataSifter method is query independent; that is, it was designed to solve general data-

access requests without an apriori specific research question. In general, it can be difficult to

select an appropriate obfuscation level for discovery studies where the outcome of the

dataset is unknown. Also, attaining asymptotic performances for the introduced noise can be

challenging. The DataSifter relies on non-parametric techniques to introduce noise to a large

proportion of data values. It provides model-free robustness, but the noise is hard to quantify

without some modelling-based assumptions. For example, the imputation errors from

missForest, i.e. the prediction errors from random forest imputation, do not have asymptotic

properties. Future directions for DataSifter improvements would include specific handling of

diverse outcomes and data types. When the data user has clear apriori study goals and a

targeted outcome, model-based imputation and obfuscation methods can be applied for the

algorithm.

The DataSifter approach represents an effective strategy for publishing a synthetic version of

high-dimensional data (≥ 30 features) like the information contained in Electronic Health

and Medical Records (EHR/EMR), insurance claims warehouses, government organizations,

etc. This process facilitates data sharing, which in turn promotes innovation and evidence-

based decision-making without compromising the risk of individual re-identification.

Acknowledgements

The authors are deeply indebted to the journal reviews and editors for their insightful comments and constructive
critiques. Many colleagues at the Statistics Online Computational Resource (SOCR), Big Data Discovery Science
(BDDS) and the Michigan Institute for Data Science provided valuable input. The DataSifter technology is patented
(62/540,184 Date: 08/02/2017).

Funding

This research was partially funded by the National Science Foundation (NSF grants 1734853, 1636840, 1416953,
0716055 and 1023115), the National Institutes of Health (NIH grants P20 NR015331, U54 EB020406, P50
NS091856, P30 DK089503, P30AG053760, UL1TR002240), the Elsie Andresen Fiske Research Fund, and the
Michigan Institute for Data Science.

References

[1]. Donoho D 50 years of data science. J Comput Graph Stat. 2017;26(4):745–766.

[2]. Golle P. Revisiting the uniqueness of simple demographics in the US population. Proceedings of
the 5th ACM Workshop on Privacy in Electronic Society. ACM; 2006.

[3]. Sweeney L Weaving technology and policy together to maintain confidentiality. J Law Med Ethics.
1997;25(2–3):98–110. [PubMed: 11066504]

[4]. Sweeney L Simple demographics often identify people uniquely. Health (San Francisco).
2000;671:1–34.

[5]. Aggarwal G, et al. Approximation algorithms for k-anonymity. J Privacy Technol. 2005:1–18.
http://ilpubs.stanford.edu:8090/645/1/2004-24.pdf.

Marino et al. Page 19

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ilpubs.stanford.edu:8090/645/1/2004-24.pdf

[6]. Harper FM, Konstan JA. The movielens datasets: history and context. ACM Trans Interact Intell
Syst. 2016;5(4):19.

[7]. Dwork C, Roth A. The algorithmic foundations of differential privacy. Found Trends Theoret
Comput Sci. 2014;9(3–4):211–407.

[8]. Dwork C. Differential privacy: a survey of results. International Conference on Theory and
Applications of Models of Computation. Springer; 2008.

[9]. Dinur I, Nissim K. Revealing information while preserving privacy. Proceedings of the Twenty-
second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
ACM; 2003.

[10]. Dwork C, et al. Calibrating noise to sensitivity in private data analysis. Theory of Cryptography
Conference. Springer; 2006.

[11]. Mohammed N, et al. Differentially private data release for data mining. Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM;
2011.

[12]. Raskhodnikova S, et al. What can we learn privately. Proceedings of the 54th Annual Symposium
on Foundations of Computer Science 2008.

[13]. Zhang J, et al. Privbayes: private data release via Bayesian networks. ACM Trans Database Syst.
2017;42(4):25.

[14]. Chen R, et al. Differentially private high-dimensional data publication via sampling-based
inference. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM; 2015.

[15]. Bhanot R, Hans R. A review and comparative analysis of various encryption algorithms. Int J
Secur Appl. 2015;9(4):289–306.

[16]. Stallings W, et al. Computer security principles and practice. Upper Saddle River (NJ): Pearson
Education; 2012.

[17]. Suo H, et al. Security in the internet of things: a review. 2012 International Conference on
Computer Science and Electronics Engineering (ICCSEE). IEEE; 2012.

[18]. Gentry C A fully homomorphic encryption scheme. Palo Alto (CA): Stanford University; 2009.

[19]. Gentry C, Halevi S. Implementing gentry’s fully-homomorphic encryption scheme. Annual
International Conference on the Theory and Applications of Cryptographic Techniques. Springer;
2011.

[20]. Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: conceptually-
simpler, asymptotically-faster, attribute-basedAdvances in cryptology – CRYPTO 2013. Santa
Barbara (CA): Springer; 2013 p. 75–92.

[21]. Van Dijk M, et al. Fully homomorphic encryption over the integers. Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer; 2010.

[22]. Little RJ. A test of missing completely at random for multivariate data with missing values. J Am
Stat Assoc. 1988;83(404):1198–1202.

[23]. Stekhoven DJ, Bühlmann P. Missforest—non-parametric missing value imputation for mixed-
type data. Bioinformatics. 2011;28(1):112–118. [PubMed: 22039212]

[24]. Gower JC. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika. 1966;53(3–4):325–338.

[25]. Gower JC. Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl.
1985;67:81–97.

[26]. Haggag MM. Adjusting the penalized term for the regularized regression models. Afr Stat.
2018;13(2):1609–1630.

[27]. Di Martino A, et al. The autism brain imaging data exchange: towards a large-scale evaluation of
the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19(6):659. [PubMed: 23774715]

[28]. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.

[29]. Wilkinson MD, et al. The FAIR guiding principles for scientific data management and stew-
ardship. Sci Data. 2016;3:1–9.

Marino et al. Page 20

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Flow chart for preprocessing step.

Marino et al. Page 21

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Flow chart for imputation and obfuscation steps.

Marino et al. Page 22

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Boxplots of percent of identical feature values (PIFV) under different privacy levels. Binary

outcome refers to the first experiment; count refers to the second experiment; continuous

refers to the third experiment. Each box represents 30 different ‘sifted’ data or 30,000

‘sifted’ cases.

Marino et al. Page 23

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Logistic model with elastic net signal capturing ability. TP is the number of true signals

(total true predictors = 5) captured by the model. FP is the number of null signals that the

model has falsely selected (total null signals = 20).

Marino et al. Page 24

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Boxplots of PIFVs for ABIDE under different levels of DataSifter obfuscations. Each box

represents 1098 subjects among the ABIDE sub-cohort.

Marino et al. Page 25

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marino et al. Page 26

Table 1.

DataSifter k parameter vector mapping determining the level of obfuscation.

Obfuscation level k0 k1 k2 k3 k4

None 0 0 0 0 0

Small 0 0.05 1 0,1 0.01

Medium 1 0.25 2 0.6 0.05

Large 1 0,4 5 0,8 0.2

Indep Output synthetic data with independent features

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marino et al. Page 27

Ta
b

le
 2

.

C
om

pa
re

 o
ri

gi
na

l a
nd

 ‘
si

ft
ed

’
da

ta
 f

or
 th

e
22

-n
d

su
bj

ec
t.

D
at

a
O

ut
pu

t
Se

x
A

ge
A

cq
ui

si
ti

on
 P

la
ne

IQ
th

ic
k_

st
d_

ct
x.

lh
.c

un
eu

s
cu

rv
_i

nd
_c

tx
_l

h_
G

_f
ro

nt
_i

nf
.T

ri
an

gu
l

ga
us

_c
ur

v_
ct

x.
lh

.m
ed

ia
lo

rb
it

of
ro

nt
al

cu
rv

_i
nd

_c
tx

_l
h_

S_
in

te
rm

_p
ri

m
.J

en
se

n

or
ig

in
al

08
87

.n
ii

A
ut

is
m

M
31

.7
2

Sa
gi

tta
l

13
1

0.
47

5
2.

1
0.

31
5

N
A

no
ne

08
87

.n
ii

A
ut

is
m

M
31

.7
2

Sa
gi

tta
l

13
1

0.
47

5
2.

1
0.

31
5

0.
51

sm
al

l
07

17
.n

ii
A

ut
is

m
M

31
.7

2
Sa

gi
tta

l
13

1
0.

47
5

2.
1

0.
31

5
0.

45
89

m
ed

iu
m

08
87

.n
ii

A
ut

is
m

M
31

.7
2

Sa
gi

tta
l

11
1

0.
54

8
2.

85
0.

31
5

0.
46

3

la
rg

e
08

87
.n

ii
C

on
tr

ol
M

18
.2

1
Sa

gi
tta

l
10

4
0.

53
47

3.
19

8
0.

16
25

0.
45

24

in
de

p
10

04
.n

ii
C

on
tr

ol
M

15
.4

C
or

on
al

10
4.

4
0.

48
42

3.
38

3
0.

10
79

1.
00

2

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marino et al. Page 28

Table 3.

CPU time for each step in DataSifter.

Function Function definition

CPU time
average

(s)

CPU time
minimum

(s)

CPU time
maximum

(s)

Number of
evaluations
performed

Dimension
of data (row
× column)

thinning Delete features inthe original
datawhen missing is
significant

9.10 8.90 9.70 50 1098×2143

sep Separate the original data by
row and construct batches.

0.07 0.06 0.21 50 4392 × 503

firstImp IImpute the data batches in
parallel

770.00 748.70 779.40 10 4392 × 503

Subjdist Calculate the subject pair
distances.

27.50 27.20 27.90 50 4392 × 503

dataSifter (swap unstructured) Swap unstructured variables
with neighbours

718.90 718.60 719.20 10 4395 × 503

DataSifter (imputation step) IIntroduce artifical missing
and impute

4621.10 4598.70 4640.80 10 4394 × 503

dataSifter (swap structured) Swap structured variables
with neighbours

752.50 752.20 753.30 10 4393 × 503

Total DataSifter procedure 1.91 h

J Stat Comput Simul. Author manuscript; available in PMC 2019 November 11.

	Abstract
	Introduction
	Methods
	Notation
	Initial data imputation
	Artificially create and impute missing
	Neighbourhood data-element swapping
	User-controlled parameters
	Preprocessing
	Imputation step
	Obfuscation step
	Pseudo code

	Table T1
	Simulation experiment design
	Datasifter validation

	Results
	Protection of sensitive information (privacy)
	Preserving utility information of the original dataset
	Clinical data application: using DataSifter to obfuscate the ABIDE data
	Parallel computing and CPU time

	Discussion and conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	Table 3.

