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Abstract

A robust, near-infrared (NIR) active photothermal agent, CNTs-PAMAM/G4-CdS, is designed by 

covalent grafting of fourth generation poly(amidoamine) (PAMAM) to carbon nanotubes (CNTs) 

and successive deposition of cadmium sulfide (CdS) nanocrystallites. The systematic advancement 

in photothermal effect of CNTs was achieved by grafting of first, second, third, and fourth 

generation PAMAM through the repeated process of Michael’s addition. The subsequent 

deposition of CdS nanocrystallites over fourth generation PAMAM grafted CNTs has further 

improved the photothermal effect (PTE) of CNTs. The photothermal effect of CNTs-PAMAM/G4-

CdS was accessed by illuminating with 980 nm NIR laser. During measurement of PTE, maximum 

temperature attained by CNTs-PAMAM/G4-CdS was 64.1 °C which far exceeds the survival 

temperature of cancer cells. The photothermal conversion efficiency estimated for CNTs-

PAMAM/G4-CdS was 32%, which is higher than the value reported for popular gold and copper 

based photothermal agents. Apart from its outstanding photothermal effect, CNTs-PAMAM/G4-

CdS possessed excellence in both antiphoto-bleaching and antiphoto-corrosiveness.
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1. INTRODUCTION

Generally, early stage detected cancer is treated by surgery, and if it is detected during its 

middle or later stages, it is treated with radio or chemotherapeutic techniques.1 However, 

both of these radio or chemotherapeutic methods have major drawbacks of severe intrinsic 

side effects on normal tissue, inferior selectivity, and drug resistance.1 So, due to adverse 

effects associated with these therapies, photomediated therapy, viz., photothermal therapy 

(PTT), has recently attained a great deal of attention owing to its exceptional benefits.2 PTT 

offers distinctive advantages like precise delivery of energy to targeted cancer cells 

selectively without damage to healthy tissues.3 The principle of PTT is employment of heat 

generated by an adopted platform under exposure to near-infrared (NIR) radiation in the 

destruction of cancer cells. In the electromagnetic spectrum, the NIR region is known as a 

biological window as the absorption ability by body tissue of NIR radiation is relatively low. 

In addition, NIR radiation is able to penetrate about 10–30 mm inside the skin, which is 

higher than the penetration rate of far-infrared radiation.4 On account of this, PTT has 

attained a key importance and its success merely depends on the photothermal agent applied 

in therapy. It means the employed photothermal agent should possess high absorption ability 

to NIR radiation and elevated efficiency in converting it to heat or thermal energy. Compared 

to the popularly known photothermal agents, carbon nanotubes (CNTs) composites are 

particularly interesting because of their unique structural and physical properties. The CNTs 

are known for their high absorption capability to NIR radiation and efficient conversion to 

localized heat that can cause the death of cancer cells.5–8 Therefore, CNTs mediated PTT 

has been applied in treating a variety of cancers.9 The photothermal conversion efficiency of 

CNTs is more than that of the popularly known photothermal agents such as gold 

nanoparticles.10 Moreover, the absorbance coefficient of CNTs to NIR radiation is about 

300%, and their photon-to-heat conversion efficiency is three times higher than gold.4,11 

Usually, the diameter of CNTs is lower than the diameter of most of the gold nanoparticles, 

so by using CNTs, it is possible to destroy cancer cells with high precision. However, their 

low biocompatibility, insolubility in water, and elevated toxicity hampered the full pledged 

application of CNTs in PTT. Nonetheless, these properties of CNTs could be manipulated by 

proper surface functionalization to customize for their safe use in PTT.12–14 To functionalize 

CNTs, several polymers have been reported; among those, poly(amidoamine) (PAMAM) is 

especially attractive in consideration of its uncompromised properties and outstanding 

biocompatibility.15–18 To date, PAMAM has been extensively explored as a carrier for drug 

and gene delivery owing to its exceptional nanoscale architecture and multifunctionality.19,20 

However, PAMAM has been the least applied in PTT even with its excellent 

biocompatibility. Thus, exploration of potential employment of PAMAM in PTT is a current 

major need.

Cadmium sulfide (CdS) is an important II–VI group chalcogenide semiconductor with direct 

and narrow band gap of 2.4 eV, and it persists with superior photoconductivity, electronic 

band gap tuning capability, and high electron affinity.21–23 Moreover, CdS has large exciton 

binding energy of ~28 meV; therefore, high efficient excitonic processes are expected in 

CdS, and these processes could directly influence and improve the optical properties of CdS.
24 On account of its high photoabsorption coefficient, CdS holds great potential in 
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optoelectronics, photocatalysis, solar energy conversion, and X-ray detectors.25–27 Besides, 

CdS has found application in the biomedical field ranging from antibacterial to molecular 

histopathology, advanced disease diagnostics, and biological imaging.28,29 Nevertheless, its 

low absorption to NIR radiation compared to UV and visible radiation has restricted the use 

of CdS in therapies. Hence, a suitable functionalization is critical to make CdS NIR active, 

and it can be attained through conjugation of CdS with outstanding materials, viz., CNTs 

and PAMAM. Accordingly, we developed a robust photothermal agent, CNTs-PAMAM/G4-

CdS, through deposition of CdS nanocrystallites over fourth generation (G4) PAMAM 

grafted CNTs. Thus, prepared CNTs-PAMAM/G4-CdS is verified as a photothermal agent 

by measuring its phothermal effect under exposure to a 980 nm NIR laser.

2. EXPERIMENTAL SECTION

2.1. Materials.

All the reagents were purchased from Sigma-Aldrich and used without further purification 

unless otherwise noted, and the aqueous solutions were prepared using ultrapure water 

obtained from a Milli-Q Plus system (Millipore).

2.2. Preparation of CNTs-PAMAM/G4-CdS.

Prior to grafting of PAMAM, pristine CNTs were modified to carboxylated and acylated 

CNTs.27 Then, acylated CNTs were employed in covalent grafting of fourth generation (G4) 

PAMAM using the repeated process of Michael addition by methyl methacrylate to the 

surface amino groups and amidation of terminal ester groups with ethylenediamine.27 

Successively, CdS nanocrystals were deposited over PAMAM/G4 grafted CNTs (CNTs-

PAMAM/G4) by dispersing in 25 mL of methanol and addition of cadmium acetate (0.01 

mol L−1). Then, 20 mL of Na2S in methanol (0.01 mol L−1) was added, and the resulting 

mixture was stirred under ambient condition for 6 h to yield CNTs-PAMAM/G4-CdS.

2.3. Photothermal Effect.

The photothermal effect (PTE) of the samples was evaluated using a 980 nm NIR diode laser 

system (Armlaser Inc. USA) with an output power of 2 W/cm2. In each experiment, 1 mL of 

aqueous dispersion of the sample was transferred into a 1 × 1 × 4 cm3 quartz cuvette and 

illuminated with the NIR laser. The resulting elevation in temperature mediated by the 

exposure to NIR radiation was measured using a Hanna precision digital thermometer 

(Model: HI93510) with a thermocouple immersed in the aqueous dispersion of sample 

during the experiment.

2.4. Characterization.

The UV–vis–NIR absorption spectra of the samples were obtained using a Jasco V-770 

spectrophotometer, and Fourier transform infrared (FT-IR) spectra were recorded using a 

Thermo-Nicolet IR 2000 spectrometer with KBr pellet. XRD patterns were acquired by a 

Scintag X-ray diffractometer (PAD X), equipped with Cu Kα photon source (45 kV, 40 mA) 

at a scanning rate of 3° min−1. X-ray photoelectron spectra (XPS) were recorded by a 

PerkinElmer PHI 5600 ci X-ray photoelectron spectrometer.
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3. RESULTS AND DISCUSSION

The FT-IR spectrum of CNTs-PAMAM/G4 (Figure 1a) displayed the important 

characteristic bands persist for PAMAM and CNTs. Among these, a broad band due to N-H 

stretching vibrations appeared at 3440 cm−1, and the bands of amide (-CO-NH-) I and II 

were found at 1649 and 1516 cm−1, respectively. In addition, the characteristic bands of 

CNTs, viz., aromatic C-C, C=C, -CH, and C-H paraaromatic out of plane vibration, 

appeared at 1520, 1380, 1110, and 837 cm−1, respectively.27,28,30 The spectrum of CNTs-

PAMAM/G4-CdS (Figure 1b) demonstrated the significant characteristic bands displayed in 

CNTs-PAMAM/G4; obvious modifications are associated with shifting of the bands’ 

position and their diminished intensity. This proposes that the structure of CNTs-

PAMAM/G4 was not directly affected and ruined in CNTs-PAMAM/G4-CdS by deposition 

of CdS nanocrystallites. In addition, it indicates the strong interaction persists between 

CNTs-PAMAM/G4 and CdS nanocrystallites. The XRD pattern of CNTs-PAMAM/G4 

(Figure 2a) exhibited the typical characteristic diffraction peaks at 26.1° and 42.6° generated 

by (0 0 2) and (1 0 0) planes of hexagonal graphitic shells of CNTs,31 while CNTs-

PAMAM/G4-CdS (Figure 2b) displayed two broad bands at 26.5° and 47.0°, in which the 

former band at 26.5° was due to the fusing of the (1 1 1) plane of cubic CdS and the (0 0 2) 

plane of CNTs. The following band at 47.0° was expected to be two distinct bands at 43.8° 

and 51.7° owing to (2 2 0) and (3 1 1) planes of CdS, respectively (JCPDS 75–0581); 

instead, these bands were merged and became a single wide band due to the nanometer size 

of CdS crystallites. The possibility of this kind of behavior is depicted in literature.27,28,32 

Furthermore, the crystallite size of CdS in CNTs-PAMAM/G4-CdS was calculated using 

Debye–Scherrer equation and found to be 1.4 nm.33

The UV–vis–NIR spectrum of CNTs-PAMAM/G4 (Figure 3a) showed an absorption band at 

237 nm, consistent with C=C bonds of CNTs.27 In addition, absorption due to PAMAM in 

CNTs-PAMAM/G4 was observed at 257 nm.34 In the spectrum of CNTs-PAMAM/G4-CdS 

(Figure 3b), absorption bands of CNTs and PAMAM have combined and are revealed as a 

single band at 241 nm. Apart, a shoulder band appeared for CNTs-PAMAM/G4-CdS at 460 

nm due to presence of CdS nanocrystallites.35 Overall, both CNTs-PAMAM/G4 and CNTs-

PAMAM/G4-CdS have possessed significant absorption in the NIR region around 970 nm, 

and it indicates the potential application of CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS 

as strong NIR active PTE agents. However, to verify the chemical composition and 

electronic state of CNTs-PAMAM/G4-CdS, its XPS was measured and spectra are 

illustrated in Figure 4. The survey spectra of CNTs-PAMAM/G4-CdS (Figure 4a) show the 

presence of C, O, N, Cd, and S elements. In order to determine the chemical state of these 

elements, high resolution spectra were recorded. The peak with binding energy of 284.5 eV 

in the spectrum of C 1s (Figure 4b) is ascribed to graphitic carbon (C=C bonds) and C-C 

bonds of CNTs.36 The peak found at 532.0 eV in the spectrum of O 1s (Figure 4c) was 

attributed to -COO bonds.37 The spectrum of Cd 3d (Figure 4d) displayed the doublet 

featured Gaussian peaks due to spin–orbit splitting at 405.8 and 412.5 eV corresponding to 

Cd 3d5/2 and Cd 3d3/2, respectively, with a spin–orbit separation of 6.7 eV.37 These peaks 

reveal the existence of divalent Cd (Cd2+) ions in CdS nanocrystallites. Generally, Cd 3d 

levels of nanocrystallites provide a single peak feature in each of the spin–orbit components 
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without any evidence for a second Cd species, which is in close proximity with the XPS 

spectrum of nanosized bulk CdS.38,39 This suggests entire Cd sites are basically equivalent 

in an identical chemical environment, and they bonded to S without any extraneous 

impurities. The spectrum of S 2p (Figure 4e) demonstrated a peak at 161.9 eV, which is 

indexed to S 2p3/2 of sulfide exists in CdS nanocrystallites.37 Moreover, the peak observed 

in the spectrum of N 1s (Figure 4f) shows the presence of nitrogen in CNTs-PAMAM/G4-

CdS, which is originated by PAMAM.

Inspired by significant absorption of CNTs-PAMAM/G4-CdS in the NIR region, its PTE 

with aqueous dispersion was measured at its concentration level of 1 mg/mL and quantified 

by comparing it with the PTE of CNTs-PAMAM/G4, CNTs, and water. Figure 5 details the 

NIR induced temperature rise obtained by exposure to the 980 nm laser. The maximum 

temperature attained by water at its continuous illumination for 7 min was 28.5 °C, and it 

persists with a total rise in temperature (ΔT) of 8.1 °C (Table 1). A significant amplification 

(ΔT) of 29.2 °C was observed for CNTs with a maximum temperature of 50.0 °C. The PTE 

of water is very low, so that, PTE measured for aqueous dispersion of CNTs was mainly 

contributed by the CNTs without any major contribution from water. The PTE of CNTs was 

further systematically improved in a stepwise manner by covalent grafting of first, second, 

third, and fourth generation PAMAM. It was shown that PTE of CNTs was elevated from 

29.5 to 32.9 °C (ΔT) by grafting of first generation PAMAM (CNTs-PAMAM/G1). It was 

further improved to 34.8 °C for second generation (CNTs-PAMAM/G2) and subsequently 

raised to 38.2 °C in third generation (CNTs-PAMAM/G3). Successively, PTE has risen to 

41.8 °C for fourth generation PAMAM (CNTs-PAMAM/G4) with a maximum temperature 

of 62.1 °C. Further, the deposition of CdS nanocrystallites rapidly enhanced the PTE of 

CNTs-PAMAM/G4 in CNTs-PAMAM/G4-CdS. The temperature of CNTs-PAMAM/G4-

CdS was increased from 20.7 to 64.1 °C, by 7 min of irradiation, and there was a difference 

in temperature (ΔT) of 43.4 °C. Thus, the NIR photoinduced heat generation ability of CNTs 

was methodically improved by grafting of PAMAM and subsequent deposition of CdS 

nanocrystallites. The excellence in PTE of CNTs-PAMAM/G4-CdS was further verified by 

calculating its photothermal conversion efficiency (η) using Roper’s method, eq 1,40–45

η =
hS Tmax − Tsurr − Qdis

I 1 − 10
−A980

(1)

where η is the photothermal efficiency, h is heat transfer coefficient, and S is the surface area 

of the sample container. Tmax is the maximum temperature attained by the sample, and Tsurr 

is the surrounding temperature (Table 2). I is the power of the laser source (2000 mW), and 

A980 is the absorbance of aqueous dispersion of samples at an excitation wavelength of 980 

nm. Qdis is the rate of heat dissipated due to absorption of light by the solvent and the 

container.

To calculate the value of hS, a dimensionless driving force of temperature, θ is introduced 

and scaled using the maximum system temperature, Tmax, and the surrounding temperature, 

Tsurr.
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θ =
T − Tsurr

Tmax − Tsurr
(2)

The sample system time constant, τs, was evaluated using eq 3

t = − τsln(θ) (3)

The value of τs was calculated using Figures 6 and 7 and found to be 421 and 302 s for 

CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS, respectively. Using the value of τs, 

unknown parameter hS was evaluated with eq 4.

hS =
mDCD

τs (4)

where mD is the mass of DI water (1.01 g) and CD is its heat capacity. The value of Qdis was 

measured separately using a quartz cuvette containing only DI water without any sample, 

and it was found to be 25.9 mW.

Then, the photothermal conversion efficiency (η) calculated for CNTs-PAMAM/G4 and 

CNTs-PAMAM/G4-CdS was found to be 23% and 32%, respectively. The photothermal 

conversion efficiency estimated for both CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS is 

higher than the value reported for popular photothermal agents, viz., Au nanoshells (18%),46 

Au nanorods (22%),47 Cu2-xSe nanoparticles (22%),48 Au nanoshells (25%),43 and Cu9S5 

nanoparticles (25.7%).49 Therefore, CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS could 

be promising PTE agents in the future as both of these possessed higher photothermal 

conversion efficiency than traditional PTE agents. However, the maximum temperature 

attained during the measurement of PTE by CNTs-PAMAM/G4 and CNTs-PAMAM/G4-

CdS was 62.1 and 64.1 °C, respectively. This temperature far exceeds the temperature 

tolerance level of cancer cells of 50 °C.49,50 Therefore, the elevation in temperature 

exhibited by CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS is adequate to induce the 

death of tumoral or cancer cells.

Apart from 1 mg/mL, the PTE of CNTs-PAMAM/G4-CdS was determined at its 

concentrations of 0.5 and 0.25 mg/mL. The PTE of CNTs-PAMAM/G4-CdS was 

proportional to its concentration and attained a linear improvement with respect to an 

increase in concentration (Figure S1). The ΔT of 40.4, 42.0, and 43.4 °C was recorded for 

0.25, 0.5, and 1 mg/mL of CNTs-PAMAM/G4-CdS, respectively. Instead of its excellent 

PTE, CNTs-PAMAM/G4-CdS exhibited outstanding antiphoto-bleaching and antiphoto-

corrosive properties, which was verified by measuring the PTE for a successive five cycles. 

It was found that, for all the measured five cycles, PTE of CNTs-PAMAM/G4-CdS was 

virtually constant (Figure 8). Moreover, CNTs-PAMAM/G4-CdS showed an exceptional 

structural stability, and it was accessed by recording the XRD pattern of CNTs-
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PAMAM/G4-CdS before and after its application in five cycles (Figure S2). It was revealed 

that the structure of CNTs-PAMAM/G4-CdS was not ruined after its employment for five 

times.

4. CONCLUSIONS

In conclusion, a systematic increment in PTE of CNTs was attained by covalent grafting of 

first, second, third, and fourth generation PAMAM and successive deposition of CdS 

nanocrystallites. Both CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS have possessed 

outstanding photothermal conversion efficiencies of 23% and 32%, respectively, which are 

higher than the value reported for popular photothermal agents, viz., gold and copper 

nanomaterials. The temperature attained by CNTs-PAMAM/G4-CdS by irradiating with a 

980 nm laser for 7 min was 64.1 °C, which far exceeds the temperature survival rate of 

cancer cells. Thus, CNTs-PAMAM/G4-CdS could be an efficient photothermal agent to 

employ in future PTT. Not limited to its exceptional PTE, CNTs-PAMAM/G4-CdS 

possessed excellent antiphoto-bleaching and antiphoto-corrosive properties as well, and its 

structure was not ruined after its application in five consecutive cycles. The PTE of CNTs-

PAMAM/G4-CdS was found to be proportional to its concentration. In consideration of its 

significant performance and vital properties, CNTs-PAMAM/G4-CdS could be an ideal 

replacement for current photothermal agents to enhance the performance of PTT in the 

future.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
FT-IR spectra of (a) CNTs-PAMAM/G4 and (b) CNTs-PAMAM/G4-CdS.
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Figure 2. 
XRD of (a) CNTs-PAMAM/G4 and (b) CNTs-PAMAM/G4-CdS.
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Figure 3. 
UV–vis–NIR spectra of (a) CNTs-PAMAM/G4 and (b) CNTs-PAMAM/G4-CdS.
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Figure 4. 
(a) XPS survey spectrum of CNTs-PAMAM/G4-CdS and high resolution spectra of (b) C 1s, 

(c) O 1s, (d) Cd 3d5, (e) S 2p, and (f) N 1s.
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Figure 5. 
Rise in temperature for aqueous dispersions of samples as a function of illumination under 

exposure to a 980 nm laser.
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Figure 6. 
Temperature variation found for aqueous dispersion of CNTs-PAMAM/G4 and CNTs-

PAMAM/G4-CdS under exposure to a 980 nm laser followed by its shut off.
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Figure 7. 
Plot of time from cooling period versus negative natural logarithm of driving force 

temperature obtained for CNTs-PAMAM/G4 and CNTs-PAMAM/G4-CdS using the data 

shown in Figure 5.
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Figure 8. 
Temperature variation measured for the aqueous dispersion of the CNTs-PAMAM/G4-CdS 

(1 mg/mL) for five cycles under illumination by a 980 nm laser.
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Table 2.

Properties Used in Calculation of Photothermal Conversion Efficiency

sample Tmax (°C) Tsurr (°C) Tmax – Tsurr (°C) A980 η (%)

CNTs-PAMAM/G4 62.1 20.3 41.8 1.021 23

CNTs-PAMAM/G4-CdS 64.1 20.7 43.4 1.129 32
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