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Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel struc-
ture. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with 
genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of 
disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is 
a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic 
(non-familial) forms, which are usually more common.

Keywords  Cerebrovascular disease · Hemorrhagic cerebrovascular disease · Small vessel disease · Genetics · Model 
organisms

Introduction

Homeostatic signaling between neuronal, glial, and vascular 
compartments (the “neurovascular unit”) within the adult 
brain is of fundamental significance for normal physiologi-
cal functions of the central nervous system (CNS) [1]. The 
importance of interactions between different cell types is 
indeed already evident during development, exemplified by 
the orchestrated interplay between neural and vascular pro-
genitors [2, 3]. Disruptions in neurovascular development 
lead to diverse disorders underlain by abnormalities in blood 
vessel structure and perturbations in cerebral blood flow, 
which is critical for proper neuronal function [4–7].

In this review, we provide a brief history and summarize 
our current understanding of cerebrovascular diseases that 
have been clearly associated with underlying genetic lesions 
(Table 1). Rapidly evolving molecular genetic methodolo-
gies led to the identification of causative genes for a wide 
spectrum of cerebrovascular diseases involving both large- 
and small-sized vessels, offering the opportunity to investi-
gate the underlying mechanisms using model organisms and 
in vitro assays [8–11]. We connect current genomic findings 

with analyses aiming to elucidate the cellular and molecular 
mechanisms of disease pathogenesis in an attempt to under-
stand how specific genetic lesions cause diverse prototypes 
of cerebrovascular disorders. We argue that a mechanistic 
understanding of genetic (familial) cerebrovascular disease 
is a prerequisite for the development of rational therapeu-
tic approaches, and has wider implications for treatment of 
sporadic (non-familial) forms, which are usually more com-
mon. When applicable, we discuss possible methodological 
improvements that could advance our understanding of these 
abnormalities, as well as therapeutic strategies informed by 
current findings.

Hereditary hemorrhagic cerebrovascular 
disease

The first known case of a cerebrovascular lesion, a berry-
like growth within the frontal lobe, was described in 1854 
by von Luschka [12]. More than 70 years later, Cushing 
[13] and Dandy [14, 15] independently reported extensive 
series of cerebrovascular malformations, which were sub-
sequently classified into distinct histopathological subtypes 
(telangiectasias, cerebral cavernous malformations, venous 
malformations, and arteriovenous malformations) [16, 17]. 
These occur with a high prevalence (initially estimated to be 
4–6% [18–20], but approximately 3% in more recent popula-
tion-based brain magnetic resonance imaging [MRI] studies 
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[21]) around the globe in all ethnicities, and although they 
are most often sporadic, familial forms are not infrequent.

Cerebral cavernous malformations (CCMs)

CCMs are common cerebrovascular lesions, also termed 
cavernomas, in the CNS and, rarely, the retina, with an 
estimated prevalence of 0.3–0.9% on the basis of large 
prospective autopsy studies, clinically-based and pop-
ulation-based brain MR images [18, 21–29]. Caverno-
mas are collections of enlarged, densely packed vascular 
sinusoids with an abnormal structure lined with a single 
layer of endothelial cells, lack vessel wall elements, and 
are embedded in a collagen matrix without interven-
ing brain parenchyma [16, 17]. They can be found in all 
brain regions and are usually 1–5 cm in size. Due to their 
primitive vessel architecture and low-pressure blood flow, 
CCMs tend to leak, causing microhemorrhages and sub-
sequent hemosiderin deposition, leading to a typical MRI 
signature [30–32] (Fig. 1a). Although mostly clinically 
silent, depending on location and size, the lesions can 
cause a broad range of symptoms, including headache, 
seizures, and focal neurological deficits. A fraction of 
patients with CCM experience catastrophic, potentially 
fatal, cerebral hemorrhages [23, 25, 26, 33–35]. Treat-
ment options include observation of asymptomatic lesions, 
antiepileptic medication, surgical excision of accessible 
lesions in patients with symptomatic hemorrhage or intrac-
table seizures, and radiosurgery; however, pharmacologi-
cal therapies that improve outcome are not available.

Both sporadic (more common) and hereditary forms 
of CCM exist; sporadic lesions are typically solitary [36], 
whereas familial CCM is characterized by multiple lesions 
in the setting of a strong family history (Fig. 1b). The heredi-
tary nature of CCM was recognized as early as 1928, when 
Kufs described a father and daughter presenting with cer-
ebral, retinal, and cutaneous cavernous malformations [37]. 
Genetic linkage analyses performed in the 1990s mapped 
three CCM loci, and subsequent efforts identified the causa-
tive genes: CCM1/KRIT1 (on chromosome 7q), CCM2 (7p), 
and CCM3/PDCD10 (3q) [38–49]. Loss of function muta-
tions in these three genes account for 98% of familial CCM 
disease [8, 17, 50], and although they are generally thought 
to lead to clinically and radiographically similar disease, 
familial CCM associated with CCM3 mutations is char-
acterized by exceptionally aggressive clinical phenotypes, 
greater lesion burden, and more frequent hemorrhages ear-
lier in life [51, 52]. At least some cases of sporadic CCM 
also involve somatic mutations in these same genes [53]. A 
single case involving a large genomic rearrangement was 
recently reported in familial CCM2 [54].

Familial CCM is characterized by autosomal-dominant 
mode of inheritance and high but incomplete penetrance, 

estimated to be 53% for CCM1, 19% for CCM2, and 16% 
for CCM3 [55, 56]. Knudson’s two-hit hypothesis, accord-
ing to which one mutational event is inherited in the form 
of a germline mutation, whereas a second is acquired in a 
subset of somatic cells [57], has been employed to explain 
CCM inheritance [58–61]. The non-homologous, cytoplas-
mic CCM proteins (CCM1/KRIT1, CCM2, and CCM3) are 
expressed in the arterial endothelium in many tissues and 
organs and are critical for vascular development [62–65]. In 
addition to endothelial cells, the CCM proteins are expressed 
in neurons and glia [66–68], an observation potentially also 
related to the finding that CCM lesions form almost exclu-
sively within the central nervous system [69]. In the set-
ting of treatment, it is necessary to screen for the patient’s 
family history, as numerous families with CCM have been 
reported around the globe [43, 70, 71] and in various ethnic 
populations [71, 72]. The first study describing clinical and 
radiographic features for 13 Hispanic American families 
with CCM [72] was indeed published in 1998, accompa-
nied in the same year by the first large series of Caucasian 
non-Hispanic patients with familial CCM [71]. These and 
other studies demonstrated that, in contrast to only 10–20% 
of other ethnic groups, as many as 50% of Hispanic Ameri-
cans, a population with a strong founder mutation [73, 74], 
have a first-degree relative with CCM.

The CCM proteins have essential roles in angiogen-
esis and cardiovascular development and are required for 
endothelial cell integrity [63–65, 75–80]. In mice, con-
ditional knockout of individual Ccm genes in endothelial 
cells at early postnatal stages results in acute CCM disease, 
characterized by vascular malformations in the retina and 
the cerebellum, two organs undergoing intense postnatal 
angiogenesis [64, 77, 81–83]. The CCM proteins are also 
expressed in neurons and astrocytes [66–68], where their 
role remains largely unknown. CCM3 appears to have criti-
cal functions not only in endothelial cells, where it has been 
implicated in stabilization of VEGFR2 signaling and reg-
ulation of angiopoietin 2 exocytosis [65, 84], but also in 
neural cells. CCM3 is required for neuronal migration and, 
indirectly, for cerebrovascular development, with its loss 
from the neural lineage leading to simplified vascularity, 
diffuse vessel dilation, and cerebrovascular malformations 
that resemble cavernomas [85, 86]. The emerging role of 
CCM3 in non-vascular cells implies it functions in multiple 
components of the neurovascular unit and may help explain 
why cavernomas, in humans and model organisms alike, 
only develop within neural context (CNS and retina), despite 
widespread expression of the CCM proteins in endothelial 
cells of most organs, where they play critical roles, as dem-
onstrated by the impact of Ccm gene inactivation in model 
organisms.

The cellular and molecular mechanisms by which CCM 
protein loss leads to lesion formation remains an active area 
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of investigation. Recent, occasionally conflicting, findings 
have contributed to our understanding of the pathogenesis of 
CCM, and accumulating knowledge of CCM protein inter-
actors might help to elucidate CCM disease pathophysiol-
ogy. The CCM proteins can be found in a dynamic trim-
eric complex, with CCM2, a scaffolding protein, acting as 
the hub and interacting directly with CCM1 and CCM3; 

however, each also interacts with a variety of other signal-
ing, cytoskeletal, and adaptor proteins [60, 87, 88] (Fig. 1c). 
Several direct interactors for each of the CCM proteins have 
been identified, including, for CCM1, the small GTPase 
RAP1, the membrane anchor protein heart of glass 1 (HEG1) 
[89], and the integrin cytoplasmic domain-associated pro-
tein-1 (ICAP1) [90, 91]; for CCM2, MAPK/ERK kinase 

STK24/25

A B

C Endothelial cell

RhoA ROCK

- Stress fibers

- Permeability

- ECM structure

Moesin

CCM3

Angiogenesis
VEGFR2CCM1

β-catenin

Rap1

Barrier formation

MEKK3

β1-integrin

CCM1

CCM2
CCM3

ICAP1

p38Actin polymerization

KLF2/4

Fig. 1   Cerebral cavernous malformations (CCMs). a Sagittal mag-
netic resonance (MR) imaging shows a large cavernoma (arrowhead) 
with a resultant gross hemorrhage. b Axial MR image of a patient 
with the genetic form of CCM demonstrates multiple small lesions 
with a characteristic hemosiderin ring surrounding them (arrows). 
Scale bars (a, b): 2 cm. Images courtesy of Dr. Murat Gunel (Depart-
ment of Neurosurgery, Yale School of Medicine and Yale New Haven 
Hospital). c Summary of select interactors, intracellular pathways, 
and cellular processes that have been associated with the CCM pro-
teins. The three CCM proteins maintain endothelial function and con-
trol angiogenesis. CCM1, CCM2, and CCM3 form a trimeric com-
plex with the scaffolding protein CCM2 acting as a hub. All CCM 
proteins have an antagonistic effect on the RhoA/ROCK signaling 
pathway mediated by distinct interactors (arrow-headed lines: acti-
vation; bar-headed lines: inhibition). RhoA/ROCK pathway activa-
tion in the absence of CCM proteins results in stress fiber formation, 

increased vascular permeability (possibly explaining why lesions in 
patients tend to leak causing microhemorrhages) of CCM, and alters 
the composition of the extracellular matrix (ECM). CCM1 interac-
tion with ICAP1 inhibits β1-Integrin activation and supports Rap1-
mediated stabilization of endothelial junctions, thereby contribu-
tion to barrier formation. CCM2 interaction with MEKK3 results 
in decreased p38 activity to modulate actin polymerization. CCM3 
stabilizes VEGFR2 signaling to regulate angiogenesis and negatively 
regulates Rho via its direct interactors STK24/25, which activate 
moesin. CCM: cerebral cavernous malformation. ECM: extracellular 
matrix. ICAP1, integrin cytoplasmic domain-associated protein 1; 
KLF2/4, Krüppel-like factor 2/4; MEKK3, mitogen-activated protein 
kinase kinase kinase 3; Rap1, Ras-associated protein 1; RhoA, Ras 
homolog gene family, member A; ROCK, Rho-associated coiled-coil 
kinase; VEGFR2, vascular endothelial growth factor receptor 2
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kinase-3 (MEKK3) (leading to p38 activation) [92, 93]; and 
for CCM3, the three Germinal Center Kinase III (GCKIII) 
serine/threonine (STE20) kinases STK24 and STK25 (via 
which CCM3 interacts with moesin), and MST4, as well 
as the scaffolding proteins paxillin and striatin (Fig. 1c) 
[94–100]. Of all these bona fide interactors, MEKK3 [92, 
93, 101–104] has emerged as a key player in the formation 
and progression of CCM lesions. Gain of MEKK3 signal-
ing and upregulation of its targets, the transcription factors 
KLF2 and KLF4, have been causally linked to CCM patho-
genesis and onset and progression of lesions [105–107], pre-
ceding endothelial-to-mesenchymal transition underlain by 
changes in TGF-β/BMP signaling sensitivity [82, 108, 109]. 
Additional work will be needed to fully elucidate lesion for-
mation at the cellular and molecular level.

What remains well-established, yet mechanistically not 
fully understood, is that CCM protein disruption leads to a 
common biochemical defect: activation of the small GTPase 
RhoA, consistent with early proteomic studies suggesting 
CCM involvement in cytoskeletal regulation (Fig. 1c) [101]. 
RhoA activation is a common outcome of CCM protein 
modulation in cell culture and model organisms [75, 78, 
85, 86, 110–115], as well as in surgically resected famil-
ial and sporadic CCM lesions [53, 112, 116]. Although the 
mechanistic relationships leading to RhoA-ROCK activation 
are still being investigated, they have inspired attempts to 
explore pharmacological inhibition of RhoA-ROCK sign-
aling as a potential therapeutic strategy for symptomatic 
CCM patients [111, 117]. A handful of candidate drugs 
with variable effects have been identified in studies involv-
ing cell culture and preclinical models: (a) fasudil, a ROCK 
inhibitor (approved in Japan and China but not in the US 
or Europe), which reduces vascular leakiness in Ccm1 and 
Ccm2 heterozygous mice and lesion burden in a chronic, 
sensitized model of CCM1, but not CCM2, disease [112, 
114, 118]; (b) simvastatin, which stabilizes the endothelium 
of Ccm2 heterozygous mice [75], yet does not reduce lesion 
burden in acute (inducible) or chronic models of CCM1 or 
CCM2 [118, 119]; (c) cholecalciferol (vitamin D3) and tem-
pol (scavenger of superoxide), two repurposed drugs, which 
decrease lesion burden in an acute model of CCM2 [119]; 
and (d) the anti-inflammatory drugs sulindac sulfide and 
sulindac sulfone, which decrease lesion burden in an acute 
model of CCM3 [120]. More recent findings suggested that 
sustained inhibition of the mevalonate pathway by inhibi-
tion of HMG-CoA reductase and prenylation (respectively, 
by fluvastatin and the N-bisphosphonate zoledronic acid) 
is effective in chronic and acute models of CCM3 [83]. It 
should be noted, however, that these candidate drugs have 
yet to be tested across all three CCM models, and thus, 
whether they are broadly effective, even in model organ-
isms, remains an open question.

Intracranial aneurysms (IAs)

IAs are localized vascular bulges that typically form along 
cerebral arteries due to weakening of the vessel wall, 
which can become unstable at branch points and eventu-
ally dissect (Fig. 2a–c). Rupture of saccular IAs accounts 
for about 80% of cases of subarachnoid hemorrhage, and 
is associated with high mortality: many individuals do 
not survive the first few days after the event, and around 
50% die within a month [121, 122]. IA is a multifactorial 
disorder of poorly understood etiology. Both IA-specific 
(size, location) and patient-related (smoking, high blood 
pressure, excessive alcohol consumption, female gender) 
risk factors are associated with aneurysm rupture [9, 123, 
124]. In addition, there is a clear genetic predisposition for 
IA formation and rupture, first noted in the 1950s with the 
description of confirmed aneurysms in two members of the 
same family [125] and receiving increasing attention in the 
1960s [126–128]. A number of systemic heritable disorders 
are frequently associated with IA, namely autosomal-dom-
inant polycystic kidney disease (ADPKD), Ehlers–Danlos 
syndrome (EDS), Marfan syndrome (MFS), Alagille syn-
drome, and neurofibromatosis type 1 [129–132]. In par-
ticular, the connective-tissue disorder EDS is frequently 
associated with IA rupture underlain by systemic vessel 
wall instability. Efforts to elucidate the complex genetics 
of saccular IA date to 2001 [133, 134]. Although early 
candidate gene and small case–control studies were not 
particularly successful, family-based genome-wide linkage 
analyses identified a large number of significant, very rare 
variants [135–138], but still not a susceptibility gene, most 
likely due to complex inheritance patterns of the variants, 
as well as genetic heterogeneity. On the other hand, popula-
tion-based, large genome-wide association studies detected 
numerous single-nucleotide polymorphisms (SNP) as risk 
factors for IA formation or rupture. These variants occur in 
a large number within patient cohorts, whereas each poly-
morphism carries just a small risk for disease development. 
Nonetheless, the sum of these variants may increase the 
disease risk dramatically. Intriguingly, the SNPs often map 
within genomic regions encoding proteins important for 
connective tissue stability or metabolic vessel function. 
These genomic loci, including namely SOX17, CDKN2A-
CDKN2B, CNNM2, EDNRA, KL/STARD13, and RBBP8 
[139–142], have been linked to other vascular disorders 
(e.g., EDNRA to migraine headaches [143]). In line with 
these findings, deletion of Sox17 or Cdkn2b in the mouse 
results in aneurysm-like arterial dilatations in the cerebral 
vasculature [144, 145].

Although these findings strongly suggest a genetic basis 
in IA formation and rupture, no diagnostic test for study-
ing specific genetic risk factors neither for IA development 
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nor for IA rupture risk has been established. A larger num-
ber of IA cases will have to be studied in multi-center 
efforts to distinguish between background mutation in the 
individual [146] and aneurysm-causing aberrations, to 
improve our understanding of IA formation and rupture.

Moyamoya disease (MMD)

MMD is clinically characterized by repetitive ischemic 
strokes caused by spontaneous occlusions of the circle 
of Willis, a circulatory anastomosis localized at the cer-
ebral base that supplies large parts of the brain with blood 
(Fig. 2d–f). MMD was first described in 1969 [147] in 
Japan and indicates an isolated cerebral angiopathy; syn-
dromic Moyamoya is associated with additional conditions. 
Underlying MMD is a progressive stenosis within the distal 
internal carotid artery in the anterior circle of Willis, leading 
to development of numerous compensating collaterals, the 

so-called ‘moyamoya’ vessels (‘moyamoya’ is a Japanese 
mimetic word describing the ‘puff of smoke’ appearance of 
collateral vessels on conventional X-ray angiography). Clini-
cal features differ considerably in pediatric and adult patients 
and include cerebral ischemia in children, and cerebral hem-
orrhage in adults (although ischemia has been reported in 
non-Asian adults) [148, 149].

MMD is more common in Far East countries, especially 
Japan and Korea, with about 16.1 in 100,000 individuals 
affected in endemic areas [150], where it represents the most 
common pediatric cerebrovascular disease, with a preva-
lence of 3 per 100,000 children [151]. Recently, however, the 
number of diagnosed patients in Europe and North America 
has been increasing [152]. Environmental factors were once 
thought to cause MMD [153], yet the personal MMD risk 
of individuals emigrating from high to low incidence areas 
[154, 155], considered together with global distribution 
patterns and the identification of familial forms, strongly 

A B C

D E F

Fig. 2   Intracranial aneurysms (IA) and Moyamoya disease (MMD). 
a–c Intracranial aneurysms. Computed tomography (CT) angiography 
studies demonstrate cerebral aneurysms (arrows) of the supraclinoid 
portion of the internal carotid artery (a); the anterior communicating 
artery (b); and the basilar artery (c). Scale bars: a 0.7 cm; b 0.5 cm; 
c 0.2 cm. d–f Moyamoya disease. MR imaging (d) shows right-sided 
encephalomalacia (loss of brain tissue after repeated strokes; arrow-

heads) above the middle cerebral artery, arising from stenosis/occlu-
sion of the right internal carotid artery. Anterior–posterior (e) and lat-
eral (f) CT angiography reveals occlusion of the right internal carotid 
artery (arrowhead) with a ‘puff-of-smoke’ network of collateral ves-
sels (inlay in E). Scale bars: d 2  cm; e, f 1.3  cm. Images courtesy 
of Drs. Charles Matouk and Branden Cord (Department of Neurosur-
gery, Yale School of Medicine and Yale New Haven Hospital)
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suggest a genetic contribution. This notion is supported by 
findings that MMD is a systemic, rather than brain-limited, 
disease [156]. Familial forms of MMD appear to have vari-
able, i.e., autosomal-dominant, autosomal-recessive, or 
X-linked, inheritance.

Autosomal-dominant MMD with incomplete penetrance 
has been linked to a locus on chromosome 17q25.3 in Japa-
nese families, and subsequently confirmed in additional 
populations [157, 158]. Linkage analysis and genome-wide 
association studies demonstrated significant association 
between MMD and a variant (R4810K) of RNF213, a ring 
finger protein with ubiquitin ligase and ATPase activities 
[159–162]; this variant has not been reported in Caucasian 
populations yet, suggesting variability in the genetic land-
scape [163]. RNF213 plays a role in angiogenic and inflam-
matory responses of endothelial cells [160, 164]. Of interest, 
homozygosity for the R4810K variant leads to MMD with 
extracranial systemic vasculopathy [165]. Given that around 
80% of Japanese MMD patients harbor susceptibility vari-
ants of RNF213, 17q25.3 is considered a major disease locus 
[159, 161], however, the lack of a cerebrovascular phenotype 
in Rnf213 knockout mice and high prevalence of RNF213 
variants in healthy control populations suggest multifacto-
rial etiology [166]. On the other hand, autosomal-recessive 
MMD with achalasia has been associated with mutations in 
GUCY1A3 (4q32.1) [167], encoding a subunit of the main 
receptor for nitric oxide (NO) [168]. In addition, syndromic 
MMD displaying X-linked recessive inheritance [169] has 
been associated with loss of BRCC3 (Xq28), a gene essen-
tial for angiogenesis [170]. Finally, MMD with no strictly 
defined pattern of inheritance has been associated with 
numerous other loci [171–176]. The most recently identi-
fied candidate gene, CCER2 on chromosome 19, has been 
proposed as a potential biomarker of MMD due to brain-
specific expression [177]. Additional insight into MMD will 
be obtained by establishing and investigating patient-derived 
cell lines and by analysis of coding as well as non-coding 
RNA, which could also provide potential therapeutic targets 
[178–180].

Hereditary cerebral small vessel disease 
(SVD)

Cerebral SVD represent a heterogeneous group of disor-
ders, common in the elderly, that predispose to ischemic 
or hemorrhagic events, often with white matter, or almost 
exclusively leptomeningeal, involvement. Clinically, these 
vascular diseases result in progressive cognitive decline 
[181]. A minor part of cerebral SVD, including cerebral 
autosomal-dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy (CADASIL) [182]; cerebral 
autosomal-recessive arteriopathy with subcortical infarcts 

and leukoencephalopathy (CARASIL) [183]; autosomal-
dominant retinal vasculopathy with cerebral leukodystrophy 
[184]; brain SVD with hemorrhage (Collagen 4–related dis-
order) [185]; familial cerebral amyloid angiopathy (CAA) 
[186, 187]; and cerebroretinal vasculopathy (CRV) [188], 
are hereditary and have been associated with specific genetic 
lesions. Below we review a subset of hereditary cerebral 
SVD, with emphasis on those most prevalent, extensively 
studied in patients, and modeled in the laboratory.

CADASIL (cerebral autosomal dominant 
arteriopathy with subcortical infarcts 
and leukoencephalopathy)

In 1977, Sourander and Walinder reported a hereditary 
multi-infarct dementia with autosomal-dominant mode 
of inheritance in multiple members of a three-generation 
family [189, 190]. About 20 years earlier, van Bogaert had 
described a progressive subcortical encephalopathy in two 
sisters [191], which was verified much later by genetic 
analysis of old tissue specimens as the first family reported 
with this condition. Often manifesting in early adulthood, 
but also increasingly recognized as a disease of late onset 
and milder course [192–194], CADASIL is characterized 
by small subcortical infarcts, and underlain by arterial and 
arteriolar changes leading to vascular cognitive impairment 
and migraine with aura (Fig. 3a). The disease locus was 
mapped to chromosome 19q12 [195] and a few years later 
dominant mutations in NOTCH3 were identified in patients 
with CADASIL [182]. This discovery linked for the first 
time the Notch signaling pathway with hereditary disease. 
CADASIL is now recognized as the most common mono-
genic form of hereditary ischemic stroke. To date, more than 
500 families with the disease have been identified worldwide 
(the majority in Europe), with more than 230 unique muta-
tions reported (Human Genetic Mutation Database website, 
www.hgmd.cf.ac.uk), but a clear genotype–phenotype cor-
relation has still to emerge [196, 197]. Mutations mapping 
to EGF repeats 1–6 have been associated with higher lesion 
load on MRI, possibly predisposing to a more severe form 
of the disease [198].

The overall prevalence of CADASIL is unknown (it is 
estimated to be 1–2/50,000 but likely remains underdiag-
nosed) [199, 200] and, in addition to the hereditary forms, 
rare sporadic cases have been reported [201, 202], as have 
homozygous patients with phenotypes not different from 
heterozygotes [203–207]. The clinical presentation varies, 
and includes subcortical ischemic events, cognitive impair-
ment and dementia, migraine with aura (an initial clinical 
sign in 20–30% of patients), mood disturbances and apathy 
[192, 208]. Currently, there is no treatment of proven effi-
cacy. The arteriopathy affects mainly the small penetrating 
cerebral and leptomeningeal arteries and is characterized by 

http://www.hgmd.cf.ac.uk
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thickening of the arterial wall and prominent morphological 
alterations, and ultimately, loss of vascular smooth muscle 
cells and pericytes [192, 209–211]. A specific, and indeed 
pathognomonic, ultrastructural feature of CADASIL is the 
presence of granular osmiophilic material (a.k.a. GOM) 
(Fig. 3b) close to the cell surface of smooth muscle cells and 
pericytes in brain and skin arteries [210, 212–215]; these 
deposits are mostly extracellular and of variable morphol-
ogy, size, shape, and osmiophilic density. Their detection 
by electron microscopy in skin biopsies represents a highly 
reliable diagnostic method [194, 214]. Extensive accumula-
tion of the Notch3 extracellular domain has been reported in 
arterial walls, capillaries, and, possibly, GOMs [216–218]. 
Direct proteomic analysis of blood vessels from postmor-
tem brains of CADASIL patients identified additional 

components of the GOM, including the proteins clusterin 
and collagen 18α1/endostatin, as well as various proteins 
of the extracellular matrix [219]. Further proteomic and 
immunohistochemical analyses identified two functionally 
important ECM proteins, tissue inhibitor of metalloprotein-
ases 3 (TIMP3) and vitronectin, which are sequestered in 
aggregates containing the extracellular domain of Notch3 
[218]. The latent TGF-β binding protein 1 (LTBP-1) is also 
thought to be recruited to these aggregates [220]. Finally, 
enrichment in brain collagen subtypes has also been reported 
in the arterial vessel wall of CADASIL patients [142]. The 
functional, structural, and cell biological consequences of 
extracellular Notch3 receptor CADASIL-linked mutations 
remain incompletely understood (for a discussion, see [194, 
221]).

NOTCH3

NH2 COOH

34 EGF-like repeats LNR
RAM

ANK
TAD

PEST

C

A B

88 14 20 22 7 1 23 3 5

1 2-5 6-7 8-10 11-12 13-15 16-19 20-23 24-27 28-31 32-34

19 16

TM

Fig. 3   CADASIL (cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy). a Coronal MR imag-
ing of a patient with the C455R mutation in NOTCH3 shows char-
acteristic white matter lesions (arrowheads). Image courtesy of Dr. 
Francisco Lopera (University of Antioquia, Colombia). b Electron 
micrographs of subcortical white matter of postmortem brains from 
an individual carrying the C455R mutation shows abundant electron-
dense granular osmiophilic (GOM) deposits (arrows). Scale bars: 
a 1.4  cm; b 2  µm. c Structure of the Notch3 receptor. A schematic 

of the receptor indicating key structural features. The 34 epidermal 
growth factor-like (EGF-like) repeats and the 3 Lin12-Notch repeats 
(LNR) are indicated in the extracellular domain. The transmembrane 
(TM), and the intracellular RAM, ankyrin repeat region (ANK), 
TAD, and PEST domains are also shown (top). Distribution of known 
CADASIL mutations along the EGF-like repeats (bottom). The rela-
tive size of circles below the schematic indicates the number of muta-
tions reported for each cluster of EGF repeats
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An extraordinary feature of CADASIL is the commonal-
ity of the disease-causing mutations in the Notch3 receptor 
(Fig. 3c). They are highly stereotypical, affecting exclusively 
the extracellular domain and occur in exons 2–24, encod-
ing the EGF-like repeats, with a strong clustering in exons 
3 and 4 [222]. More than 95% of the mutations are mis-
sense, whereas the remaining are small in-frame deletions 
or splice site mutations. Importantly, the vast majority of 
mutations lead to an odd number of cysteine residues within 
the affected EGF-like repeat; rare cysteine-sparing mutations 
have been reported in patients with clinical picture consid-
ered to be compatible with CADASIL (e.g., [223, 224]). 
However, the causal relationship between disease and these 
variants remains a matter of debate [194]. Perhaps surpris-
ingly, given that the mutations were identified more than 
20 years ago, the jury is still out, despite considerable effort 
from many groups using in vitro assays, as well as analyses 
in model organisms [219, 225–230]. Attaining a molecular 
understanding of CADASIL pathophysiology is essential if 
we are to contemplate a rational therapeutic approach to this 
devastating disease. In particular, determining the nature of 
the CADASIL-linked mutations is essential as gain or loss of 
function abnormalities would be treated radically differently. 
The extraordinary pleiotropy of Notch, including a profound 
involvement in the biology of adult stem cells, presents also 
a great challenge, as modulating its activity for therapeutic 
purposes will be highly dependent on the cellular context 
and quantitative aspects of signal modulation, carrying thus 
implicitly the danger of unacceptable toxicities.

CARASIL (cerebral autosomal recessive arteriopathy 
with subcortical infarcts and leukoencephalopathy)

CARASIL is an ischemic, non-hypertensive, very rare cer-
ebral SVD, with the majority of the approximately 50 known 
cases reported in Japan [194, 231]. Clinical signs include 
a stepwise deterioration in brain functions and progressive 
dementia; the disease is characterized by diffuse white mat-
ter changes and multiple lacunar infarctions in the basal 
ganglia and thalamus. Histological findings include intense 
atherosclerosis affecting mainly small penetrating arteries; 
GOM or amyloid deposits are however absent. Biallelic 
mutations in HTRA1, encoding a serine protease implicated 
in negative regulation of TGFβ signaling, have been associ-
ated with CARASIL [183, 232]; interestingly, heterozygous 
HTRA1 mutations have also been reported in a family with 
autosomal-dominant SVD with clinical features distinct 
from CARASIL and CADASIL [233].

Cerebral amyloid angiopathy (CAA)

CAA, a common clinical entity in elderly patients, is char-
acterized by accumulation of amyloid fibrils, cleavage 

products of the Amyloid Precursor Protein (APP), within 
the wall of small- to medium-sized vessels of the brain and 
leptomeninges [186, 187]. CAA is a major cause of primary 
intracerebral hemorrhage leading in most cases to cogni-
tive decline, dementia, or death [234–236]. Notably, these 
symptoms also characterize Alzheimer’s disease (AD), often 
confounding diagnosis. AD and CAA can be thought as 
related diseases with overlapping pathogenesis. It is indeed 
true that most patients with AD have some degree of CAA 
[237, 238]; however, the clinical features of CAA and AD 
differ. CAA, being a vascular disorder, is mainly character-
ized by small intracranial hemorrhages leading to stepwise 
cognitive decline. AD presents with progressive cognitive 
decline leading to terminal dementia [239, 240]. Amyloid 
beta (Aβ) aggregates accumulate in the parenchyma in the 
form of neuritic plaques in AD pathology, whereas in CAA 
they form in the walls of small arteries and arterioles.

CAA and its clinical complications are typically preva-
lent in the elderly: while postmortem series revealed at least 
moderate CAA in 2.3% of autopsies performed at age 65–74, 
about 12% of individuals older than 85 years harbored CAA 
[241], suggesting a significant age-dependent increase in dis-
ease prevalence. Overall, most of Aβ-CAA cases are spo-
radic, although genetic risk factors exist. Of interest, genetic 
variants implicated in AD, e.g., apolipoprotein E, presenilin 
1, α-1 antichymotrypsin, and neprilysin, are also associated 
with increased risk for CAA [242]. As in AD [243], a high 
frequency of the ApoE ε4 allele correlates with the sever-
ity of CAA [244]. Consequently, CAA and AD do not only 
share a similar fingerprint regarding their characteristic 
clinical symptoms, but also similar genetic underpinnings.

In addition to sporadic cases, numerous hereditary forms 
of CAA have been reported. The pedigrees of the affected 
families reveal frequently an autosomal-dominant pattern of 
inheritance, involving APP on chromosome 21 [245]. Muta-
tions mapping close to the cleavage sites of APP result in 
early-onset AD, whereas those affecting residues 21-23 and 
34 of the Aβ peptide are associated with a broad spectrum 
of CNS diseases, including CAA [246]. Hereditary CAAs 
are sub-categorized according to their geographical area of 
prevalence, e.g., the Italian (E693K), Flemish (A692G), 
and Arctic (E693G) variants [236]. Neuropathological out-
comes extend from increased Aβ production to abundant 
neurofibrillar appearance, with all eventually resulting in Aβ 
deposits [247, 248]. Although more rarely, CAA can also be 
characterized (and neuropathologically verified) by deposi-
tions of cystatin C (HCHWA-I), diverse transthyretins, or 
gesolin fragments, which are all associated with mutations 
in the genes encoding the respective proteins [249–251]. 
Non-Aβ phenotypes are also most often inherited in an auto-
somal-dominant pattern. Protein accumulations within the 
vessel wall represent only the first step in CAA pathogenesis, 
and are often accompanied by loss of smooth muscle cells, 
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obliterative intimal changes, as well as microaneurysmal 
dilatations [236]. Animal models for CAA [252, 253] have 
yet to provide significant insight into the exact mechanisms 
leading to these structural changes.

Cerebroretinal vasculopathies (CRVs)

CRVs are a collection of severe autosomal-dominant disor-
ders with middle-age onset and 100% penetrance present-
ing with vasculopathy that predominantly involves the white 
matter and the retina [188], caused by C-terminal truncating 
mutations in TREX1, which encodes the 3’ to 5′ exonuclease 
DNAse III [184]. The truncating mutations do not interfere 
with enzymatic activity, but disrupt subcellular localization; 
however, the mechanism(s) by which these mutations lead 
to microvascular endotheliopathy remain unknown [254].

Conclusion

Many cerebrovascular disorders are associated with genetic 
lesions; for some, such as CADASIL, a clear monogenic 
link has been established, while for others, an interplay of 
genetic susceptibility with environmental and other risk 
factors contributes to pathogenetic mechanisms leading 
to disruptions of the cerebral vasculature. Gene discovery 
in cerebrovascular disease, made possible by advances in 
genetics and genomics, not only refines our understanding 
of the basic biological mechanisms governing the develop-
ment and homeostasis of the neurovascular unit, but has the 
potential to inform strategies for the development of rational 
therapeutic approaches. Expanding our understanding of 
pathophysiology in the context of familial forms, should also 
help elucidate the mechanisms underlying sporadic forms 
of disease.
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