Skip to main content
. 2019 Apr 5;5(4):eaav6437. doi: 10.1126/sciadv.aav6437

Fig. 2. Output performance of the sliding mode DC-TENG.

Fig. 2

(A) Photographs of the stator and the slider (inset) of the sliding mode DC-TENG (W is the width of the FE and L is the length of CCE; scale bar, 3 cm). (B) Scanning electron microscopy (SEM) image of nanowires on the surface of PTFE. Scale bar, 1 μm. A larger surface curvature results in an ultrahigh electric field, which is easier to air breakdown. (C) Phenomenon of air discharge in this paper. Scale bar, 1 cm. (D) Short-circuit current, (E) transferred charges, and (F) open-circuit voltage of the sliding mode DC-TENG. (G) Short-circuit current, (H) transferred charges, and (I) open-circuit voltage of the sliding mode DC-TENG at different accelerations. (J) Short-circuit current and (K) open-circuit voltage of the sliding mode DC-TENG at different velocities.