
Gaussian Accelerated Molecular Dynamics for Elucidation of 
Drug Pathways

Apurba Bhattarai and Yinglong Miao
Center for Computational Biology and Department of Molecular Biosciences, University of 
Kansas, Lawrence, KS 66047, USA, miao@ku.edu

Abstract

Introduction: Understanding pathways and mechanisms of drug binding to receptors is 

important for rational drug design. Remarkable advances in supercomputing and methodological 

developments have opened a new era for application of computer simulations in predicting drug-

receptor interactions at an atomistic level.

Areas covered: Gaussian accelerated molecular dynamics (GaMD) is a computational enhanced 

sampling technique that works by adding a harmonic boost potential to reduce energy barriers. 

GaMD enables free energy calculations without the requirement of predefined collective variables. 

GaMD has proven useful in biomolecular simulations, in particular the prediction of drug-receptor 

interactions. Here, we review recent GaMD simulation studies that elucidated pathways of drug 

binding to proteins, including the G-protein-coupled receptors and HIV protease.

Expert Opinion: GaMD is advantageous for enhanced simulations of, amongst many biological 

processes, drug binding to target receptors. Compared with conventional molecular dynamics, 

GaMD speeds up biomolecular simulations by orders of magnitude. GaMD enables routine drug 

binding simulations using personal computers with GPUs or common computing clusters. GaMD 

and, more broadly, enhanced sampling simulations are expected to dramatically increase our 

capabilities to determine the mechanisms of drug binding to a wide range of receptors in the near 

future. This will greatly facilitate computer-aided drug design.
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1. Introduction

Successful design of a drug nowadays often takes more than a decade and has become 

increasingly expensive1. To reduce the drug design cost, it is important to understand the 

pathways and mechanisms of drug binding to target receptors. The pharmaceutical industry 

would benefit immensely from studies of the protein’s druggable binding sites and drug 

pathways. While experimental techniques such as X-ray crystallography, nuclear magnetic 

resonance (NMR) and site-directed mutagenesis can be used to probe drug binding sites in 

target receptors2–5, the experiments are expensive and do not provide a detailed picture of 

drug pathways. This is often limited by the temporal and spatial resolution of the 

experimental techniques. Computer simulations, on the other hand, can be applied to 

Health Research Alliance
Member Organization Author Manuscript
Expert Opin Drug Discov. Author manuscript; available in PMC 2019 April 05.

Published in final edited form as:
Expert Opin Drug Discov. 2018 November ; 13(11): 1055–1065. doi:10.1080/17460441.2018.1538207.H

ealth R
esearch A

lliance A
uthor M

anuscript
H

ealth R
esearch A

lliance A
uthor M

anuscript



overcome such limitations and identify drug pathways at an atomistic level6–9. This has been 

enabled by remarkable advances in both supercomputing and methodological developments.

Molecular dynamics (MD) is a computer simulation technique that models the time 

evolution of biomolecules based on atomic force fields10. MD simulations determine the 

trajectory of biomolecules by solving the Newton’s equations of motion for all atoms in the 

system. MD simulations can be used to calculate thermodynamic free energies that 

characterize the behavior of biomolecules at or near equilibrium8, as well as kinetic 

pathways and reaction rates of biomolecules11. MD simulations are able to explore 

biomolecular structural transition pathways, such as protein folding and drug binding, and 

identify stable configurations of biomolecules.

Using a specialized supercomputer Anton, the DE Shaw Research Group has successfully 

captured drug/ligand binding to the Src protein kinase9, the β1- and β2-adrenergic receptors 

(β1AR and β1AR)7 and the M2 and M3 muscarinic receptors12 through microsecond-

timescale conventional MD (cMD) simulations. The De Fabritiis group has been able to 

capture binding of benzamidine to the trypsin enzyme by running hundreds-of-nanosecond 

cMD simulations combined with Markov State Models13. However, due to limited 

simulation time scales, cMD may suffer from insufficient sampling and is not able to 

simulate complete binding pathways of slow ligand binders12. In this regard, enhanced MD 

methods are useful to help address the challenge.

During the last several decades, many enhanced MD methods have been developed as 

reviewed in previous articles14–17. Enhanced MD simulations have been applied to 

investigate the drug binding pathways, especially for G-protein-coupled receptors (GPCRs). 

Random acceleration MD (RAMD) has been applied to explore ligand unbinding pathways 

from rhodopsin18 and the β2AR19. Steered MD simulations have been performed to 

characterize ligand dissociation from the β1AR and β2AR20. Metadynamics has been 

successfully applied to calculate free energy profiles of drug-receptor interactions21–24 and 

characterize drug binding kinetics such as the binding and unbinding rates and drug 

residence time25, 26. Accelerated MD (aMD) simulations have been able to capture various 

ligand binding to the M3 muscarinic receptor6. A potential scaled-MD-based method has 

been implemented to predict the residence times of activator molecules in glucokinase. 

These approaches can be important for drug design and treating type two diabetes 

mellitus27. These enhanced MD techniques have greatly extended the capabilities of MD for 

studying both drug binding and unbinding processes. However, enhanced sampling methods 

including steered MD and metadynamics require predefined collective variables16, 28, which 

could lead to constrained sampling of the drug pathways. On the other hand, unconstrained 

enhanced sampling methods including RAMD and aMD do not need collective variables, 

but they often suffer from large energetic noise that precludes proper energetic reweighting 

and free energy calculations17, 28. Therefore, further method developments are needed to 

characterize drug binding pathways more accurately.
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2. Gaussian Accelerated Molecular Dynamics

Gaussian accelerated molecular dynamics (GaMD) is built upon the development of aMD, 

which was introduced by Voter to accelerate infrequent transitions in solids by boosting the 

potential energy in regions other than the barriers29 and later innovated by Hamelberg et al. 

for simulating biomolecular dynamics30. The boost potential in aMD is able to smooth 

potential energy surfaces and thus accelerate transitions between low-energy states. Because 

aMD does not require predefined collective variables, it can sample molecular 

conformations without a priori knowledge or constraints. aMD has been successfully 

demonstrated on solid materials31, lipids32 and both globular and membrane proteins33–35. 

However, aMD is known to suffer from large energetic noise during reweighting36. While 

the aMD boost potential can be sufficiently low for proper reweighting of simulations on 

small systems such as alanine dipeptide and fast-folding proteins37, it is typically tens-to-

hundreds of kilocalories per mole in simulations of normal proteins, which does not allow 

accurate reweighting for free energy calculations.

GaMD has been developed to achieve both unconstrained enhanced sampling and proper 

energetic reweighting for free energy calculations of large biomolecules such as proteins38. 

GaMD accelerates protein conformational transitions and ligand binding by orders of 

magnitude39, 40. Furthermore, because the boost potential follows a Gaussian distribution, 

we can properly recover the original free energy profiles of biomolecules through “Gaussian 

approximation”. GaMD allows us to more accurately characterize conformational changes 

of the fast-folding proteins38, 41, GPCRs42–45, CRISPR-Cas946, 47, T cell receptor signaling 

protein48, virus enzymes49, 50, bacterial biosynthesis enzymes51, antifungal proteins52, plant 

ion channel53, human dystonia related protein54 and other biomolecules39. Without the need 

to set predefined collective variables as in aMD, GaMD is particularly advantageous for 

studying complex protein-protein interactions45, 48, 54 and ligand binding 

processes38, 41, 42, 50, 53, 55. Here, we review the applications of GaMD for elucidation of 

drug pathways. GaMD simulations have so far been applied to determine pathways of drug 

binding to the GPCRs and HIV protease. GaMD has proven to be a promising tool for 

prediction of drug–receptor interactions. Future applications of GaMD to a wider range of 

target receptors will help us to understand functional mechanisms of various drug molecules. 

GaMD will thus facilitate computer-aided drug design.

In GaMD, a harmonic boost potential is applied to smooth the potential energy surface and 

reduce system energy barriers38 (Figure 1). Since details of the method has been described 

extensively in previous studies38, 39, 41, a brief summary is provided here. Consider a system 

with N atoms at positions r = r 1, ⋯, r N . When the system potential V r  is lower than a 

reference energy E, the modified potential V* r  of the system is calculated as:

Bhattarai and Miao Page 3

Expert Opin Drug Discov. Author manuscript; available in PMC 2019 April 05.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



V*( r ) = V( r ) + ΔV( r ),

ΔV r =
1
2k E − V r 2, V r < E

0, V r ≥ E

(1)

where k is a harmonic force constant. The two parameters E and k can be determined based 

on three enhanced sampling principles as described earlier38. E needs to be set in a range:

Vmax ≤ E ≤ Vmin + 1
k , (2)

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure 

that Eqn. (2) is valid, let us define k ≡ k0
1

Vmax − Vmin
, then 0 < k0 ≤ 1. The standard deviation 

of ΔV needs to be small enough to ensure accurate energetic reweighting37: 

σΔV = k E − Vavg σV ≤ σ0, where Vavg and σV are the average and standard deviation of the 

system potential energies, σΔV is the standard deviation of ΔV with σ0 as a user-specified 

upper limit for accurate reweighting. When E is set to the lower bound E=Vmax, according to 

Eqn. (2), k0 can be calculated as:

k0 = min 1.0, k0′ = min(1.0,
σ0
σV

Vmax − Vmin
Vmax − Vavg

) . (3)

Alternatively, when the threshold energy E is set to its upper bound E = Vmin + 1
k , k0 is set to:

k0 = k0" ≡ (1 −
σ0
σV

)
Vmax − Vmin
Vmax − Vavg

, (4)

if k0" is found to be between 0 and 1. Otherwise, k0 is calculated using Eqn. (3).

GaMD has been implemented in the AMBER and NAMD software packages38, 41. GaMD 

currently provides three options to apply the boost potential: (1) only the total potential 

boost ΔVP, (2) only dihedral potential boost ΔVD, and (3) the dual potential boost (both ΔVP

and ΔVD). The dual-boost simulation generally provides higher acceleration than the other 

two types of simulations for enhanced sampling40. The GaMD acceleration parameters 

comprise of the threshold energy values and the effective harmonic force constants, k0P and 

k0D for the total and dihedral potential boost, respectively.
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In practice, initial energy minimization and equilibration on systems of interest follow 

standard MD simulation39. GaMD simulation then proceeds in three stages: (1) short cMD, 

(2) GaMD equilibration, and (3) GaMD production. During the first stage of short cMD, 

system potential statistics (including the minimum, maximum, average and standard 

deviation) are collected to calculate the GaMD acceleration parameters. In the second stage 

of GaMD equilibration, the system potential statistics are updated to recalculate the GaMD 

acceleration parameters on the fly, which are expected to level off (e.g., the effective 

harmonic force constants, k0P and k0D approach 1) near the end of GaMD equilibration. 

Note that the potential statistics are not collected or updated during a small set of steps 

called preparation steps at the onset of cMD and equilibration stage, where system are 

allowed to adapt to the simulation environment39. In the third stage of GaMD production, 

boost potential is applied to the system with GaMD acceleration parameters fixed. 

Simulation frames and the corresponding boost potential values are saved for analysis.

Since GaMD does not require system-dependent collective variables, it is easy to set 

simulation parameters that are generally transferrable to different systems. Statistics of 

system potential energies are collected from short cMD and updated with GaMD 

equilibration. Then it is straightforward to calculate the boost potential and apply it to the 

system in the GaMD production simulation. The GaMD input parameters mainly involve the 

number of simulation steps needed for cMD, GaMD equilibration and GaMD production, 

while the other parameters can be set to the default values as demonstrated through previous 

successful simulations39. Notably, the reference energy E can be set to the lower bound, i.e., 

E=Vmax. The upper limits of the standard deviation of the total and dihedral boost potentials 

(σ0P and σ0D) are set to 6.0 kcal/mol, which are used to automatically calculate force 

constants of the boost potentials. Table 1 summarizes parameters of GaMD simulations 

performed on drug binding to protein targets including the HIV protease, the M2 and M3 

muscarinic GPCRs and adenosine A1 receptor (A1AR).

With GaMD simulations, Python toolkit “PyReweighting” is available for energetic 

reweighting to analyze boost potential distribution and calculate free energy profiles37. 

Importantly, because the boost potential follows a Gaussian distribution, the original free 

energy profiles of biomolecules can be recovered through “Gaussian approximation” or 

cumulant expansion to the second order38. GaMD solves the energetic noise problem 

encountered in the previous aMD method36. GaMD has been compared with the previous 

aMD on the performance of smoothing the potential energy surface and energetic 

reweighting38. Taking the T4-lysozyme as a protein model, higher average boost potential 

was applied in the GaMD simulation (36.36 kcal/mol) than in the aMD simulation (29.85 

kcal/mol). However, the GaMD boost potential exhibited narrower distribution with smaller 

standard deviation in the GaMD simulation (4.72 kcal/mol) than in the aMD simulation 

(6.78 kcal/mol). Anharmonicity of the boost potential distribution was significantly reduced 

from 6.21 × 10−3 in the aMD simulation to 1.39 × 10−3 in the GaMD simulation. Moreover, 

standard deviations of the modified potential energies were significantly smaller in the 

GaMD simulation than in aMD simulation. The protein potential energy surface was thus 

smoother in GaMD than in aMD. Provided the smoother potential energy surface as well as 

the narrower distribution and lower anharmonicity of the boost potential, GaMD allows for 
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more efficient enhanced sampling and improved free energy calculations for proteins and 

other large biomolecules.

3. Ligand Binding to the HIV Protease

The HIV protease is an important target for drug design to treat HIV infection50, 56. It is a 

retroviral aspartyl protease with two glycine rich flaps. The two flaps play a key role in 

gating access of ligands to the protein active site. In X-ray crystal structures, the two flaps 

adopt a semi-open conformation in the ligand-free (apo) form of the protein, but a closed 

conformation in the ligand-bound (holo) protein57, 58 (Figure 2A). In addition, the protein 

flaps are able to sample an open conformational state59. Recently, Huang et al. investigated 

ligand binding to the HIV protease through long timescale MD simulations, which revealed 

important insights into the ligand binding mechanism56. However, in a 14 μs Anton cMD 

simulation, the sampling ligand XK263 (a cyclic urea inhibitor) could not reach the protein 

active site with a minimum root-mean-square deviation (RMSD) of 5.73 Å compared with 

the X-ray conformation.

To overcome sampling limitation of the cMD simulation, GaMD enhanced simulations were 

applied to capture complete ligand binding to the HIV protease50. Specifically, ten 

independent GaMD simulations lasting 500−2500 ns were performed starting from the apo 

HIV protease in the semi-open conformation, with XK263 placed ~20 Å away from the 

protein (Figure 2B). During two of the GaMD simulations lasting 2500 ns, XK263 was 

observed to successfully bind the protein active site with a minimum RMSD of only 2.26 Å 

relative to the X-ray structure. In the first successful simulation Sim 1 (Figures 2C and 2D), 

XK263 initially attached to one of the protein flaps and then entered the active site, which 

induced protein flaps to open. The flaps significantly rearranged their conformation to 

accommodate the ligand. Finally, the protein flaps switched back to closed conformation and 

the ligand was locked in the protein active site. In the second successful GaMD simulation 

Sim 2 (Figures 2E and 2F), the ligand reached a minimum RMSD of 2.74 Å. The two 

protein flaps opened for relatively shorter time and smaller magnitude before changing back 

to closed ligand-bound conformation. Both of these simulations captured complete ligand 

binding to the HIV proteases within 2500 ns simulation time. The GaMD simulations thus 

provided significantly improved sampling compared with the previous 14 μs Anton cMD 

simulation.

Furthermore, correlations were found between ligand binding and conformational changes 

of the HIV protease. Two intermediate conformational states were identified from free 

energy profiles obtained from the GaMD simulations. In the intermediate-1 state, the two 

protein flaps adopted an open conformation. XK263 moved close to one of the protein flaps, 

forming nonpolar interactions with residues Val32’, Ile47’, Ile50’, Pro81’ and Val82’. 

Oxygen atoms of the ligand formed further hydrogen bonds with protein residues Asp25’ 

and Ile50’. In the intermediate-2 state, while one protein flap remained open, the other 

closed towards the active site55. Therefore, the protein underwent significant conformational 

changes via distinct intermediate states during ligand binding. The GaMD simulations 

revealed the mechanism of highly dynamic ligand binding in the HIV protease50.
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4. Drug pathways of G-protein-coupled receptors (GPCRs)

GPCRs represent the largest family of human membrane proteins. Due to the critical roles in 

various physiological functions, they are the primary targets of about one third of currently 

marketed drugs8. GPCRs transduce cellular signals often by binding of extracellular ligands, 

such as hormones, neurotransmitters and chemokines8. In this regard, we have performed 

GaMD simulations to study mechanisms of drug binding in several prototypical GPCRs.

4.1 M2 Muscarinic GPCR

The M2 muscarinic acetylcholine receptor is one of the five subtypes of muscarinic GPCRs. 

It is widely distributed in mammalian tissues and involved in crucial cardiac and neural 

functions. Activation of the M2 receptor results in a decrease in the human heart rate and 

reduction in the heart contractile forces. The M2 receptor has thus been targeted for treating 

abnormal heart rate, heart failure and neurological diseases. X-ray crystal structures have 

been determined for the M2 receptor bound by the 3-quinuclidinyl-benzilate (QNB) inverse 

agonist60 and in complex with the iperoxo (IXO) full agonist and a G-protein mimetic 

nanobody Nb9–861. The first X-ray structure of allosteric ligand-bound GPCR has also been 

obtained for the M2 receptor with the LY211926 compound bound in the receptor 

extracellular vestibule61.

In a recent study, GaMD was applied to simulate the M2 receptor that was bound by 

different ligands, including QNB, IXO and a partial agonist arecoline (ARC)42. In the 

absence of the G protein-mimetic nanobody Nb9–8, the QNB inverse agonist with ~0.06 nM 

high binding affinity was tightly bound to the receptor orthosteric site. In contrast, the full 

and partial agonists with lower affinities (~5 μM for ARC and ~0.01 μM for IXO) exhibited 

significantly higher fluctuations. IXO could move out of the orthosteric pocket and to the 

receptor extracellular vestibule42. During a 2030 ns GaMD simulation, not only did ARC 

escape out of the orthosteric pocket, but it also dissociated completely from the receptor and 

rebound to the receptor repeatedly (Figure 3A). The partial agonist exited and entered the 

receptor orthosteric pocket through opening between the extracellular loops 2 and 3 (ECL2 

and ECL3) as depicted by Figures 3B–3H. The drug pathway will be defined more 

quantitatively through structural clustering of the diffusing ligand and free energy 

calculations in the following. To our knowledge, it was for the first time that both drug 

dissociation and binding was captured in one single all-atom GPCR simulation, which 

demonstrates the exceptional enhanced sampling power of GaMD.

With the GaMD simulation, snapshots of the diffusing ligand were clustered and the 

PyReweighting toolkit37 was applied to compute free energies of the ligand clusters. Ten 

clusters with the lowest free energies were identified for the partial agonist ARC in the M2 

receptor (Figure 3I). Cluster “C1” with the zero energy minimum was located at the 

orthosteric site, whereas cluster “C2” with the second lowest energy was at the center of the 

extracellular vestibule between ECL2 and transmembrane (TM) helix 7. Moreover, “C1” at 

the orthosteric site and “C2” in the extracellular vestibule were connected by two clusters of 

higher energies in the receptor, “C3” and “C4”. Another two clusters “C5” and “C8” were 

found in the cavity formed by extracellular domains of TM3/TM2/TM7. Two clusters “C7” 

and “C9” filled the cavity formed by the TM4/TM5/TM6 extracellular domains. Importantly, 
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the extracellular opening between ECL2/ECL3 had two energetically favored clusters, i.e., 

“C6” and “C10”. Therefore, clusters “C1” ↔ “C3” ↔ “C4” ↔ “C2” ↔ “C10” ↔ “C6” 

represent an energetically preferred pathway for dissociation and binding of ARC. IXO 

followed the same pathway for dissociation42. This route was found to be a favored pathway 

for drug binding of β2AR as well7. Moreover, GaMD identified the orthosteric pocket and 

extracellular vestibule as the two low-energy binding sites of ARC, which was consistent 

with previous binding assay experiments. These experiments suggested that partial agonists 

have two or more binding sites at the M2 receptor62. In summary, GaMD unprecedentedly 

captured both drug dissociation and binding in a single all-atom GPCR simulation and 

elucidated the drug pathways. Such information will be extremely valuable for drug design 

of GPCRs.

4.2 M3 Muscarinic GPCR

The M3 muscarinic GPCR is highly expressed in human epithelial and endothelial cells, 

especially in the exocrine glands and smooth muscle tissues63. It is implicated in human 

diabetes and cancers in the brain, breast, colon, ovary, lung and skin. The X-ray crystal 

structure of the M3 receptor has been determined in an inactive state bound to the tiotropium 

(TTP) antagonist12. While the X-ray structure provided important insights into the receptor-

antagonist interactions, the mechanism and pathways of agonist binding remain unknown.

To shed light onto the agonist binding pathways, GaMD was applied to simulate the M3 

receptor, with the endogenous agonist acetylcholine initially placed far away from the 

receptor (Figure 4A)41. Three independent GaMD simulations lasting 300 – 400 ns were 

performed. While the agonist visited only the receptor extracellular vestibule in two 300 ns 

GaMD simulations, it entered the receptor and bound to the receptor orthosteric site in a 400 

ns GaMD simulation (Figures 4B and 4C). The agonist reached a minimum RMSD of 2.0 Å 

at the orthosteric site compared to a reference binding pose obtained from Glide docking.

Furthermore, the DBSCAN algorithm64 was applied to cluster the diffusing ligand, followed 

by energetic reweighting37, 38 to identify low-energy poses and binding pathway of the 

agonist in the M3 receptor. Ten different clusters with the lowest free energies were shown in 

Figure 4D. The lowest energy cluster “C1” was at the orthosteric site. The second lowest 

energy cluster “C2” was located in extracellular vestibule between ECL2/ECL3, where the 

positively charged N atom of the agonist formed cation–π interactions with residue 

Trp5257.35. Similarly, cluster “C3” was identified in the orthosteric pocket but with 

relatively higher energy. Clusters “C4”, “C6”, “C8” and “C10” were located in the 

extracellular vestibule. Similar to the M2 receptor, the M3 receptor adopted the same 

energetically preferred pathway for agonist binding from the ECL2/ECL3 opening to the 

orthosteric site.

4.3 Adenosine A1 Receptor

Four subtypes of class A GPCRs (the A1, A2A, A2B and A3) mediate the effects of adenosine 

and play key roles in physiological functions65. In particular, the adenosine A1 receptor 

(A1AR) has served as an important drug target for treating cardiovascular diseases, 

ischemia-reperfusion injury and neuropathic pain65. Because adenosine receptors are widely 
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distributed throughout the human body, off-target side-effects have greatly hindered the 

development of agonists as effective drugs66. Therefore, it is appealing to design selective 

allosteric modulators that regulate responsiveness of the A1AR to endogenous adenosine in 

local regions of its production67, 68. However, structural information has been very scarce for 

guiding design of allosteric modulators of the A1AR. The mechanisms of allosteric 

modulator binding to the receptor remain unknown, which undermines the success of 

structure-activity relationship studies and greatly increases the cost of drug design68.

GaMD implemented in the NAMD and AMBER software packages was applied to simulate 

spontaneous binding of two prototypical positive allosteric molecules (PAMs), PD8172369 

and VCP1770, to the A1AR55. The first X-ray crystal structure of A1AR71 was used. The 

antagonist was replaced by the 5’-N-ethylcarboxamidoadenosine (NECA) agonist. During 

the GaMD simulations, both PD81723 and VCP17 PAMs were observed to bind an 

allosteric site formed by ECL2 of the A1AR, which was in excellent agreement with the 

mutagenesis experimental data5, 72. Receptor residues that were identified within 5 Å of the 

bound PAMs in the GaMD simulations were shown to be important for PAM binding in the 

mutagenesis experiments. Mutations of these residues into alanine significantly changed the 

PAM binding affinity, binding cooperativity between the PAM and NECA agonist, the 

receptor efficacy and/or the functional cooperativity between the PAM and NECA 

agonist5, 72. Therefore, the GaMD simulations and mutation experiments combined provide 

a structural basis for binding of PAMs at the ECL2 allosteric site in the A1AR.

Additionally, the GaMD simulations showed that the PAMs enhanced agonist binding at the 

receptor orthosteric site. The NECA agonist moved slightly with PAMs bound at the ECL2 

allosteric site. In the absence of PAM binding at the ECL2, the agonist explored a 

significantly larger conformational space and could even dissociate from the A1AR. The 

NECA agonist exited through the receptor opening between ECL2 and ECL3. This 

energetically preferred pathway connecting the orthosteric site and ECL2/ECL3 opening is 

consistent with findings on the M2
42 and M3 muscarinic receptors41 as described above. An 

antagonist ZM241385 dissociated from the A2AAR through the same pathway as observed 

in the Anton simulations using temperature accelerated MD73. Mutations of residues near 

the ECL2/ECL3 opening changed dissociation rates of an antagonist ligand from the 

A2AAR73 and PAM binding to the A1AR (putatively at the ECL2) changed kinetic rates of 

antagonist and agonist ligands at the A1AR74, 75. Therefore, the GaMD simulations are 

consistent with previous experimental73–75 and computational6, 7, 12 studies, suggesting that 

orthosteric ligands of class A GPCRs bind to target receptors from the ECL2/ECL3 opening 

at the extracellular opening to the orthosteric site as an energetically preferred pathway.

4.4 Mu Opioid Receptor

The mu opioid receptor (MOR) is a key GPCR that is expressed in neural structure and 

spinal cords. The MOR has served as an important drug target, especially for treating pain 

and neurological diseases. X-ray structures of the MOR have been determined in both active 

(bound by agonist BU72) and inactive (bound by antagonist β-funaltrexamine). But 

extensive research efforts are still needed for understanding the receptor functional 

mechanisms and designing effective drug molecules.
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Wang and Chan76 applied GaMD to study the binding mechanisms of agonist BU72 and 

antagonist β-funaltrexamine in the MOR. PMF profiles calculated from five individual 1000 

ns GaMD simulations identified one major and one minor energy barrier for both the agonist 

and antagonist ligands. According to root-mean–squared fluctuations (RMSFs) calculated 

from the GaMD simulations, Lys209–Phe221 and Ile301–Cys321 of the MOR were 

identified as 34 key residues for binding of the two ligands in receptor active site. When the 

ligand was bound, the MOR adopted an open conformation with greater binding pocket 

surface area (BPSA). In contrast, the MOR changed to a closed conformation with decreased 

BPSA in the absence of ligand binding76. In addition, Liao and Wang44 applied GaMD 

simulations to investigate the inactivation and activation mechanisms of the MOR. The 

simulations revealed four conformational states (including the active, inactive and two 

intermediate states) of the MOR.

5. Conclusions

Pharmacologically important proteins such as the HIV protease and GPCRs are implicated 

in viral infection and numerous human diseases including the diabetes, heart failure, asthma, 

arthritis, renal diseases and neurological disorders. Despite remarkable advances, significant 

research efforts are still needed for us to understand the structural dynamics and functional 

mechanisms of these proteins, which will ultimately facilitate rational drug design of the 

protein targets. In particular, understanding the mechanisms and pathways of drug binding to 

a receptor for effective drug design and biomedical research is crucial. Due to limited 

temporal and spatial resolution, it has been difficult to determine drug pathways using 

experimental techniques. In contrast, computer simulations are able to overcome these 

limitations and reveal drug pathways at an atomistic level.

Based on unconstrained enhanced sampling, GaMD has proven useful in capturing 

spontaneous drug binding to different target receptors, in addition to studies of large-scale 

conformational changes in proteins and other important biomolecules39. In particular, 

GaMD has been successfully applied to elucidate the drug pathways in the HIV protease and 

a number of different GPCRs as summarized in this study. With all-atom description for 

systems of interest and classical force fields, GaMD is generally applicable to any drug-

receptor binding systems. More applications of GaMD in elucidation of drug pathways are 

thus expected in the future.

6. Expert Opinion

GaMD is a robust computational method for simultaneous unconstrained enhanced sampling 

and free energy calculations of biomolecular dynamics, in particular drug binding to target 

receptors. GaMD is able to speed up biomolecular simulations by orders of magnitude and 

greatly reduce our computational cost. GaMD does not require predefined collective 

variables, which is especially advantageous for simulating “free” drug binding processes. 

Furthermore, by adding a boost potential that follows a Gaussian distribution, cumulant 

expansion to the second order (Gaussian approximation) can be applied to reweight GaMD 

simulations for free energy calculations. The free energy profiles allow us to identify low-

energy states and binding pathways of the drug molecules.
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Since GPCRs are primary targets of about one third of currently marketed drugs, they serve 

as excellent model systems for computational studies of drug binding. Computer simulations 

using cMD successfully captured drug binding to GPCRs, but they needed to be performed 

on the microsecond timescales and required an expensive and specialized supercomputer 

Anton7. In comparison, GaMD enhanced simulations were able to capture drug binding to 

GPCRs within hundreds of nanoseconds41, 55, which can be routinely done using personal 

computers with GPUs or common computing clusters. Microsecond GaMD simulations 

were able to capture both drug dissociation and binding in a muscarinic GPCR42. Thus, 

GaMD greatly reduces our computational cost for studying drug binding to target receptors.

In addition, GaMD is particularly advantageous for elucidation of drug pathways based on 

simultaneous unconstrained enhanced sampling and free energy calculations. Notably, a 

number or different enhanced MD methods have been applied to study ligand binding and 

dissociation processes of GPCRs. Ligand dissociation from β2AR was successfully 

simulated in a previous RAMD study, but it was difficult to capture rebinding of the ligand 

as limited by the method. Similar probability was found for the ligand to exit through the 

ECL2/ECL3 and ECL2/TM2/TM7 openings19. In another study, steered MD obtained free 

energy profiles of ligand dissociation from the β1AR and β2AR. The simulations suggested 

that the two routes “may serve indistinguishably for ligand entry and exit”. This was 

contradictory to more recent finding obtained from long-timescale Anton cMD simulations7. 

Moreover, the ligand was constrained to predetermined channels and could not follow the 

“real” pathways7. In comparison, GaMD is a powerful unconstrained enhanced sampling 

technique that allows us to characterize the drug pathways more accurately through 

simulation-derived free energy profiles. GaMD has shown that the pathway connecting the 

orthosteric site and the ECL2/ECL3 opening is energetically favorable for ligand binding to 

the M2 and M3 muscarinic receptors39, 41, 42 and A1AR39, 41, 42, 55. This route appears to be 

a common pathway for drug binding to class A GPCRs. Among the unconstrained enhanced 

sampling methods that do not require predefined collective variables, replica exchange 

simulations have also been successfully applied to predict protein-ligand binding 

structures77–79. Our recent study showed improved enhanced conformational sampling of 

proteins was achieved by combining GaMD with replica exchange (i.e., rex-GaMD)80. It is 

subject to future studies whether rex-GaMD can further help with sampling the drug 

pathways. In summary, GaMD serves as a promising tool for the prediction of drug–receptor 

interactions and will facilitate computer-aided drug design and discovery.
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Article Highlights

• Compared with conventional molecular dynamics, GaMD is a robust 

enhanced sampling technique that accelerates computer simulations by orders 

of magnitude.

• GaMD is advantageous for elucidation of drug pathways based on 

simultaneous unconstrained enhanced sampling and free energy calculations.

• GaMD simulations have successfully captured ligand binding to the HIV 

protease with a minimum RMSD of 2.26 Å compared with the X-ray 

structure.

• GaMD simulations have revealed pathways of both dissociation and binding 

of a partial agonist in the M2 muscarinic GPCR and agonist binding to the M3 

muscarinic receptor.

• GaMD simulations have elucidated binding modes of prototypical allosteric 

modulators and provided important insights into allostery in the adenosine A1 

receptor.
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Figure 1: 
Schematic illustration of Gaussian accelerated molecular dynamics (GaMD): biomolecular 

potential energy surface is smoothed by adding a harmonic boost potential that follows a 

Gaussian distribution. The original potential energy surface is shown in black. The modified 

potential energy surfaces obtained after adding the boost potential with different effective 

harmonic constants k0 are shown in red (0.2), blue (0.4), cyan (0.6), purple (0.8), and yellow 

(1.0). Adapted with permission from Y. Miao, V.A. Feher, J.A. McCammon, Gaussian 

Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy 

Calculation. J. Chem. Theory Comput. 2015, 11(8), 3584–3595.
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Figure 2: 
(A) X-ray structures of the HIV protease in the apo form (PDB: 1HHP, green) and holo form 

that is bound by the XK263 ligand (PDB: 1HVR, blue). The ligand is shown as sticks and 

the protein as ribbons. Protein residues Lys43-Tyr59 in the flaps of two protein monomers 

are colored orange. (B) Simulation starting structure of the HIV protease in which the ligand 

molecule (red sticks) is placed ∼20 Å from the protein surface in the unbound (“U”) state. A 

virtual ligand molecule of the X-ray conformation is colored blue for reference. (C) During 

the “Sim1” GaMD trajectory, the XK263 ligand molecule binds to the active site of the HIV 

protease within 2500 ns, for which the center ring of XK263 is represented by lines and 

colored by simulation time in a red-white-blue (RWB) color scale. The 1HVR X-ray 

conformation is colored blue for reference. (D) Root-mean-square deviations (RMSDs) of 

the ligand molecule and protein flaps relative to the 1HVR X-ray conformation are plotted 

for “Sim1”. Thick lines depict the running average over 5 ns time windows. (E and F) 

Ligand binding pathway and ligand and flap RMSDs obtained from the “Sim2” GaMD 
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trajectory, respectively. Adapted with permission from Miao Y, Huang Y-mM, Walker RC, 

McCammon JA, Chang C-eA. Ligand binding pathways and conformational transitions of 

the HIV protease. Biochemistry. 2018;57(9):1533–41.
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Figure 3: 
GaMD simulations revealed pathways of dissociation and binding of the arecoline (ARC) 

partial agonist in the M2 muscarinic GPCR: (A) timecourse of the distance between ARC 

and residue Asp1033.32 of the M2 receptor during 2030 ns GaMD simulation. Four 

dissociation and three binding events are labeled. (B–H) Schematic representations of the 

ligand pathways during (B) “D1,” (C) “B1,” (D) “B2,” (E) “B3,” (F) “D2,” (G) “D3,” and 

(H) “D4.” The receptor is represented by blue ribbons and the ligand by sticks colored by 

the position along the membrane normal. (I) Ten lowest energy structural clusters of ARC 
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that are labeled and colored in a GWR scale according to the PMF values. Adapted with 

permission from Y. Miao, J.A. McCammon, Graded activation and Free Energy Landscapes 

of a Muscarinic G-Protein-Coupled Receptor. Proc. Natl. Acad. Sci. U. S. A. 2016, 113(43), 

12162–12167.
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Figure 4: 
GaMD simulations captured binding of the acetylcholine (ACh) endogenous agonist to the 

M3 muscarinic GPCR: (A) schematic representation of the computational model, in which 

the receptor is shown in ribbons (orange), lipid in sticks, ions in small spheres, and four 

ligand molecules in large spheres, (B) trace of the ACh (the N atom in blue dots) diffusing in 

the bulk solvent and bound to the M3 receptor (orange ribbons), in which the Glide docking 

pose of ACh is shown in green sticks, (C) the RMSD of the diffusing ACh relative to the 

Glide docking pose calculated from the 400 ns GaMD simulation, and (D) ten lowest energy 

structural clusters of ACh that are labeled and colored in a green–white–red (GWR) scale 

according to the PMF values obtained from reweighting of the GaMD simulation. 

Reproduced with permission from Y.T. Pang, Y. Miao, Y. Wang, J.A. McCammon, Gaussian 

Accelerated Molecular Dynamics in NAMD. J. Chem. Theory Comput. 2017, 13(1), 9–19.
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Table 1:

Parameters of GaMD simulations performed on drug binding to target receptors.

System
a Program Boost

b cMD (ns) GaMD Equilibration (ns) GaMD Production (ns)

HIV Protease AMBER Dual 10 50 2500, 2500, 2436, 2434, 1445, 500, 500, 500, 500, 500

M2-QNB AMBER Dual 10 50 400, 400, 400

M2-ARC AMBER Dual 10 50 2030, 1520, 1190, 650, 650, 650, 620, 600, 600, 540

M2-IXO AMBER Dual 10 50 1050, 1000, 940, 500, 500, 500, 500, 480, 450, 410

M3 NAMD Dual 10 50 400, 300, 300

A1AR

AMBER Dual 2 50 500, 500, 500, 500, 500

NAMD Dual 2 50 300, 300, 300, 300, 300

NAMD Dihedral 2 50 200, 200, 200, 200, 200

a
QNB is the 3-quinuclidinyl-benzilate inverse agonist, ARC is the arecoline partial agonist and IXO is the iperoxo full agonist of the M2 

muscarinic receptor.

b
The “Dual” and “Dihedral” stand for dual-boost and dihedral-boost GaMD simulations, respectively.
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