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Adjustment for index event bias in genome-wide
association studies of subsequent events
Frank Dudbridge1, Richard J. Allen 1, Nuala A. Sheehan1, A. Floriaan Schmidt2,3,4, James C. Lee 5,

R. Gisli Jenkins 6, Louise V. Wain 1,7, Aroon D. Hingorani 3 & Riyaz S. Patel3

Following numerous genome-wide association studies of disease susceptibility, there is

increasing interest in genetic associations with prognosis, survival or other subsequent

events. Such associations are vulnerable to index event bias, by which selection of subjects

according to disease status creates biased associations if common causes of incidence and

prognosis are not accounted for. We propose an adjustment for index event bias using the

residuals from the regression of genetic effects on prognosis on genetic effects on incidence.

Our approach eliminates this bias when direct genetic effects on incidence and prognosis are

independent, and otherwise reduces bias in realistic situations. In a study of idiopathic pul-

monary fibrosis, we reverse a paradoxical association of the strong susceptibility gene

MUC5B with increased survival, suggesting instead a significant association with decreased

survival. In re-analysis of a study of Crohn’s disease prognosis, four regions remain asso-

ciated at genome-wide significance but with increased standard errors.
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The majority of genome-wide association studies (GWAS)
conducted to date have studied susceptibility to disease.
They have provided insights into biological mechanisms

leading to disease, enabled Mendelian randomisation studies of
risk factors and shown promise for population screening1.
However, such studies are not necessarily informative on the
course of disease, so their results cannot immediately be utilised
to identify therapeutic targets or inform clinical management2.
Among a few published GWAS of survival, associated single-
nucleotide polymorphisms (SNPs) have tended to differ from
those associated with susceptibility3–8. With many collections
of disease cases now genotyped by studies of susceptibility, more
GWAS of severity, prognosis and survival are expected in the
coming years.

Association studies of such subsequent events are vulnerable to
index event bias, whereby biased associations can result from
selection of subjects according to their disease status9. This is one
of several types of selection bias whose relevance to genetic epi-
demiology has recently been discussed10,11. Independent causes
of disease become correlated when selecting only the cases of
disease, creating indirect associations between causes of disease
with subsequent events (Fig. 1). A well-known example is the so-
called obesity paradox whereby, among individuals with cardio-
vascular disease (CVD), those with higher body mass index
(BMI) tend to survive longer12. A possible explanation is that,
if an individual with CVD has a high BMI, they may well have
lower levels of other risk factors. If those lower levels tend to
increase survival, then increased BMI may be associated with
longer survival. In the notation of Fig. 1, BMI plays the role of the
SNP G, while X is CVD and Y is survival. It remains controversial
whether this paradox is explained by index event bias13.

We will for simplicity refer to the index event as incidence,
although our arguments also apply to selection or adjustment for
a quantitative trait11. Similarly, we will refer to subsequent events
as prognosis, with the understanding that this could refer to any
phenotype subsequent to, and not a cause of, the index event.

In epidemiological studies, known confounders of incidence and
prognosis have been used to construct propensity scores that
effectively mitigate index event bias14. Such approaches are difficult
in genetic studies, because there may be a substantial polygenic
confounder that can neither be modelled directly nor easily cap-
tured by a propensity score11. Recently, the implications of index
event bias have been discussed in the contexts of genetic association
discovery15 and Mendelian randomisation2. Although the magni-
tude of bias appears small in currently typical settings, it is unclear
how GWAS will be affected as studies increase in magnitude and
polygenic analyses combine effects over thousands of variants.

Previously, expressions for index event bias have been derived
when selecting on a binary disease trait13,16,17 and when adjusting
for a heritable covariate11. These studies, however, have not
identified methods for correcting this bias.

Some authors have considered bias when analysing a risk factor
for the trait under selection17–20. For example, accepting BMI as
a cause of type-2 diabetes, a SNP with a direct effect on type-2
diabetes may have a biased association with BMI when studied
within a case/control sample of type-2 diabetes (Fig. 2). This is
different from the situation considered here as the trait of interest
is a precursor of, and not subsequent to, the index event. This has
also been called an index event bias17, but here we reserve the
term for when the trait of interest is subsequent to the selection
criterion (Fig. 1). Methods are available to adjust analyses of risk
factors for selection into case/control studies18,19,21,22, but they
do not apply here, when selection bias acts entirely through
unobserved confounders.

Here, we propose an adjustment for index event bias in GWAS
of subsequent events. The main insight is that confounder effects
are approximately constant across SNPs and can be estimated
by regressing SNP effects on prognosis on SNP effects on inci-
dence. We illustrate our approach in a GWAS of survival with
idiopathic pulmonary fibrosis (IPF) and re-analyse a GWAS of
Crohn’s disease prognosis.

Results
Adjustment for index event bias. For a single SNP, we assume
that incidence X is linear in the coded genotype G, the combined
common causes U of incidence and prognosis, and causes EX
unique to X:

X ¼ βGXGþ βUXU þ EX ð1Þ
Similarly, assume that prognosis Y is linear in G and U with an
additional main effect of X:

Y ¼ βGYGþ βUYU þ βXYX þ EY ð2Þ
If X or Y are binary, we continue to argue from linear models
by observing that logistic and probit link functions are approxi-
mately linear for small effects (Methods).

The effect of interest is the direct SNP effect on prognosis
βGY, conditional on incidence X and confounders U. In practice,
however, the relevant confounders may not be observed and
we can only estimate the SNP effect conditional on incidence,
denoted by β′GY . In the Methods we show that this estimand is
the direct effect βGY plus a bias that is linear in the effect on
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X

Fig. 1 Directed acyclic graph of association of SNP G with prognosis
Y conditional on incidence X. U is a composite variable including all
common causes of X and Y, and may include polygenic effects as well as
non-genetic risk factors. In our examples, X is idiopathic pulmonary fibrosis
or Crohn’s disease, and Y is survival or prognosis. Conditioning on X
induces the moralised association between G with U shown by the dotted
line. This creates association between G and Y via the path G� U ! Y in
addition to the direct effect G! Y

G

Y

U

X

Fig. 2 Directed acyclic graph of association of SNP G with risk factor
X conditional on outcome Y. U is as in Fig. 1. For example, X may be body
mass index, and Y may be type-2 diabetes, with the study design being
case/control or a cohort depleted for cases, such as UK Biobank17.
Conditioning on Y induces the moralised association between G and U
shown by the dotted line. This creates association of G with X via the
path G� U ! X, in addition to the direct effect G! X. The direct effect
itself is biased by conditioning on Y, as shown by the additional dotted
line connecting G and X. The resulting selection bias is not the focus of
this paper
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incidence βGX:

β′GY ¼ βGY � varðUÞβUXβUY
var Uð Þβ2UX þ varðEXÞ

βGX ð3Þ

Notably, the coefficient of βGX is negative if the confounder effects
on incidence and prognosis, βUX and βUY, have the same sign and
positive if they have opposing signs.

Now consider Eq. (3) applied to each one of a genome-wide set
of SNPs. Assuming it has no interaction with each SNP, the non-
genetic component of U is constant (Fig. 3). The genetic
component of U equals the entire shared genetic basis of
incidence and prognosis, minus any component due to the SNP
under consideration. For polygenic traits, the variation explained
by individual SNPs is small in relation to the total genetic
variance, so we may assume that the genetic component of U is
approximately constant across SNPs. Therefore we assume that

b ¼ �varðUÞβUXβUY
var Uð Þβ2UXþvarðEX Þ is approximately constant across SNPs, and

may be obtained from the linear regression of β′GY on βGX, giving
the bias-corrected effects

βGY ¼ β′GY � bβGX ð4Þ

In practice, we have finite sample estimates β̂′GY and β̂GX and the
regression will yield an estimate b̂� that is biased towards 0 by
sampling error in β̂GX , consequently under-correcting in Eq. (4).
In the Methods section, we describe two approaches to adjust
for this regression dilution. The first obtains a bias-reduced

estimate of b as b̂ ¼ b̂� varðβ̂GXÞ
varðβGXÞ, where var βGX

� �
is approximated

by the Hedges–Olkin estimator var β̂GX

� �
� Eðσ2GXÞ with σ2GX the

squared standard error of β̂GX . This simple adjustment is
sufficiently accurate for the simulation studies. For the analysis
of data, we developed an improved version of the simulation
extrapolation (SIMEX) algorithm23,24. This is more computa-
tionally intensive but also more accurate, and yields confidence
intervals for b so that varðb̂Þcan be estimated. Details are given in
the Methods and Supplementary Note 1.

From Eq. (4), the variance of the bias-adjusted estimate is
approximately

var β̂′GY

� �
þ var b̂β̂GX

� �
¼ σ2GY þ b̂2σ2GX þ β̂2GXvar b̂

� �
þ σ2GXvar b̂

� �
Although there is no theory that β̂GY is normally distributed, a

normal approximation works well in practice. Further details are
provided in the Methods.

Summarising, we propose the following procedure to correct
index event bias in GWAS of prognosis:

1. For each SNP, obtain its estimated effect on incidence β̂GX
with standard error σGX , and its estimated effect on prognosis
β̂′GY conditional on X with standard error σGY .

2. Obtain b̂� as the slope of the linear regression of β̂′GY on β̂GX .
3. Adjust b̂� for regression dilution using SIMEX (in data) or

Hedges–Olkin adjustment (in simulations), obtaining the
corrected slope estimate b̂.

4. For each SNP, the bias-corrected estimate of its effect on
prognosis is β̂GY ¼ β̂′GY � b̂β̂GX with standard errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2GY þ b̂2σ2GX þ β̂2GXvar b̂

� �
þ σ2GXvar b̂

� �r
.

5. Hypothesis tests and P-values for each SNP may be
computed by referring the ratio of the adjusted estimate
and its standard error to the standard normal distribution.

In the Methods section, we discuss some assumptions upon
which this procedure is based. One implication is that the
regression of step 2 should be performed on independent SNPs.
Therefore, we prune GWAS SNPs by linkage disequilibrium (LD)
as a pre-processing step. However, this is only required to obtain
a valid estimate of the slope b, which once obtained can be
applied to all SNPs.

If there are major genes accounting for substantial covariation
in X and Y, the genetic component of U may not be constant
across SNPs and the assumption of a constant regression slope b
is violated. This problem could be avoided by conditioning the
prognosis associations on the major genes, thereby estimating
the bias through all confounders except those genes. The resulting
correction is then appropriate for all SNPs including those in
major genes (Fig. 3). A similar approach can be taken to polygenic
scores aggregating the small effects of several individual SNPs.

Our most serious assumption is no correlation between effects
on incidence βGX and direct effects on prognosis βGY, for those
SNPs entering the regression of step 2. If incidence and prognosis
have common biological mechanisms then this assumption may
be violated and create bias in b and hence in β̂GY . However,
considering pleiotropy in general some authors have argued that
independence of effects is likely to be the norm in complex
disease25. We explore this assumption in the following simula-
tions and return to this point in the Discussion.

Simulations. Firstly, we simulated 100,000 independent SNPs of
which 5000 (5%) had effects on incidence only, 5000 had effects
on prognosis only and 5000 had effects on both incidence and
prognosis. Incidence and prognosis were simulated as quantita-
tive traits under additive models with 50% heritability (Methods),
with a non-genetic confounder (representing the combined
effects of all such factors) simulated to explain 40% of variation
in both incidence and prognosis. No direct effect of incidence
on prognosis was simulated βXY ¼ 0

� �
. Data were simulated

for 20,000 unrelated individuals. Incidence and prognosis were
analysed as quantitative traits using linear regression, with the
prognosis model adjusting for incidence as a covariate. This
simulation, which reflects the scenario discussed by Aschard
et al.11, satisfies the assumptions of our procedure while creating
a high degree of index event bias (Methods).

Table 1 shows type-1 error rates for the standard unadjusted
analysis and for the adjusted analysis using our procedure. For all
analyses, the rate is close to the nominal level when averaged over
all SNPs; however, the majority of SNPs have no index event bias.

Y

U

X

G3

G2

G1

Gm

Fig. 3 Directed acyclic graph of association of SNPs Gi with prognosis
Y conditional on incidence X. U is as in Fig. 1. Conditioning on X induces the
moralised associations shown by dotted lines. These create association of
each Gi with Y via the path Gi � U ! Y and all paths Gi � Gj ! Y where i≠j.
Under a polygenic model in which individual SNPs explain little covariation
between X and Y, the combined effect of U and all Gj≠i is approximately
constant across SNPs Gi. If a SNP Gk has a major effect on X and/or Y, the
associations of Gj≠k can be conditioned on Gk to prevent the major gene
contributing to index event bias

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09381-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1561 | https://doi.org/10.1038/s41467-019-09381-w | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Among the SNPs with effects on incidence, the type-1 error is
inflated for the unadjusted analysis while our approach achieves
the correct rate when there is no genetic correlation between
incidence and prognosis. Under positive genetic correlation, the
type-1 error increases for all analyses, but is consistently lower
for our adjusted analysis. For some individual SNPs, the type-1
error can be very high under the unadjusted analysis but is
substantially reduced under our approach, and at the nominal
level when there is no genetic correlation. Under strong negative
genetic correlation, our approach has slightly increased type-1
error compared with the unadjusted analysis. However this
situation, if not implausible, is arguably less likely than positive
genetic correlation2. Results for the family-wise error were more
pronounced and followed the same pattern.

Table 1 also shows power for the same simulations. There
is overall a modest drop in power for our approach, except
under strong positive genetic correlation where there is a small
increase. The power loss is greatest under strong negative genetic
correlation. For individual SNPs, substantial differences can
occur between methods. The most extreme cases entail a greater
gain in power for the unadjusted analysis than for our approach,
although this must be offset against the increased type-1 error.
Supplementary Tables 1 and 2 show absolute bias and mean square
error. The pattern is similar in that the adjusted analysis has less
bias, although this is offset by its increased standard error so that
the differences in mean square error are barely discernible.

We then repeated the simulation with no non-genetic
confounding, so that bias only arises through genetic correlation
violating our independence assumption. Table 2 shows that type-
1 error for our approach is similar to that when non-genetic
confounding is present, but for the unadjusted analysis the errors
are reduced and generally closer to the nominal level than for our
approach. Again there is a slight decrease in power under our
approach, with considerable increases and decreases possible
for individual SNPs. Supplementary Tables 3 and 4 show similar
patterns for absolute bias and mean square error.

Tables 3, 4 and Supplementary Tables 5–8 show similar
patterns when the incidence and prognosis traits are binary and
prognosis is analysed in cases only (Methods). Supplementary
Tables 9–12 also show similar patterns when the prognosis is
quantitative and analysed either in cases only or in the full sample
with adjustment for case/control status (Methods). These results
confirm that our approach is applicable when incidence is
analysed by logistic regression, and that it maintains the correct
type-1 error rate when there is no genetic correlation between
incidence and prognosis, and otherwise has a lower type-1 error
rate than the unadjusted analysis, except under strong negative
genetic correlation or no non-genetic correlation. While the

relative strength of genetic and non-genetic confounding is
unknown in practice, we might expect them to act in the same
direction, and the genetic confounding not to dominate the non-
genetic. These are the scenarios in which our approach does
best; furthermore, the type-1 errors are more consistent under
different scenarios under our approach than the unadjusted
analysis. Turning to power, there is again a modest reduction in
general, with more substantial gains and losses possible for
individual SNPs. Overall, we conclude that our approach can be
preferred to an unadjusted analysis.

Idiopathic pulmonary fibrosis. A recent GWAS meta-analysis of
idiopathic pulmonary fibrosis (IPF) confirmed the strong asso-
ciation of mucin 5B (MUC5B) with incidence26. We reanalysed
612 UK cases and 3366 UK controls that we had contributed
to that meta-analysis, obtaining an odds ratio of 5.64 for
the SNP rs35705950 in MUC5B (95% CI: 2.73–6.72; Wald test
P= 2.9e-83), and conducted a GWAS of survival time in 565 of
the cases (Methods). Similar to previous studies27 the risk allele
of rs35705950 was associated with increased survival in our study
(hazard ratio 0.766; 95% CI: 0.634–0.925; Wald test P= 0.0057).
This apparently paradoxical result could arise from index event
bias, given the strong odds ratio for incidence. We applied our
regression-based adjustment using 140,092 LD-pruned SNPs
with imputation R2 � 0:99 (Methods). Here, we focus only on the
effect of rs35705950 in MUC5B; full results of the survival GWAS
will be reported separately.

The regression of survival log hazard ratios on incidence log
odds ratios gave a coefficient of −0.025. The sign of this
coefficient changed under the Hedges–Olkin based adjustment
for regression dilution, which is implausible because regression
dilution bias is the ratio of two variances28. However, applying
our SIMEX based adjustment, the coefficient decreased to −65.63
(95% CI: −65.88 to −5.68). The very wide confidence interval
reflects high standard errors on individual SNP effects. Never-
theless, the coefficient is significantly negative, which implies that
there are common causes of incidence and prognosis that have
the same net direction of effect.

The asymmetry in the confidence interval suggests that a
normal approximation for β̂GY would be inappropriate. We
therefore generated an empirical distribution of β̂GY to assess its
significance (Supplementary Note 1). Of 10,000 simulations of
β̂GY , none were less than zero, suggesting that rs35705950 has a
positive log hazard ratio with P-value of order less than 10–4.
The empirical 95% confidence interval for the log hazard
ratio was 11.58–126.56, suggesting an extremely strong effect
on survival. However, in view of the substantial uncertainty in

Table 1 Power for quantitative incidence and prognosis with non-genetic confounding

Genetic correlation 0 0 0.25 0.25 0.45 0.45 −0.25 −0.25 −0.45 −0.45

Adjustment No Yes No Yes No Yes No Yes No Yes
All SNPs not affecting prognosis 5.12 5.00 5.25 5.06 5.42 5.23 5.05 5.04 5.02 5.10
All SNPs affecting incidence but not prognosis 7.24 5.03 9.59 6.06 12.5 9.15 5.93 5.65 5.38 6.85
SNP with highest type-1 error 33.0 5.7 61.7 19.1 87.9 63.7 20.0 15.0 10.8 28.5
Family-wise type-1 error 22.3 5.5 61.0 12.8 94.8 53.4 12.1 10.0 6.8 16.3
All SNPs affecting prognosis 19.5 16.7 18.7 18.0 16.6 17.2 19.3 13.8 18.7 10.9
All SNPs affecting incidence and prognosis 20.3 16.5 16.7 16.5 10.0 11.9 21.3 13.1 20.6 8.38
SNP with greatest increase in power 6.6 39.2 18.0 50.1 34.8 59.5 6.9 34.8 5.2 14.9
SNP with greatest decrease in power 72.3 19.9 75.0 41.9 20.4 12.1 93.6 19.2 96.1 22.0

Estimates shown as % with P<0:05 over 1000 simulations of 100,000 independent SNPs. Five thousand SNPs have effects on incidence only, 5000 on prognosis only and 5000 on both incidence and
prognosis. Heritability of both incidence and prognosis is 50% with the genetic correlation shown over all SNPs. Common non-genetic factors explain 40% of variation in both incidence and prognosis.
Rows 2–5 show type-1 error rates. All SNPs, mean power across the relevant SNPs. Family-wise error, probability of at least one SNP with effect on incidence but not on prognosis having P< 0:05

5000 ¼ 10�5.
SNP with greatest increase (decrease) in power compares the adjusted analysis to the unadjusted
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β̂GY , we refrain from drawing a strong conclusion beyond the
direction of effect.

Given the strong effect of MUC5B on incidence, it is possible
that it dominates the estimation of index event bias and that
our approach over- or under-corrects the bias in MUC5B
itself (Fig. 3). We therefore repeated the analysis after condition-
ing the survival SNP effects on rs35705950 genotype. The results
were very similar, with the regression of survival effects on
incidence effects now giving a coefficient of −0.028, decreasing
to −59.79 (95% CI: −59.87 to −10.52) after correcting for
regression dilution.

We repeated our simulations using a sample size of 612 cases
and 3366 controls, generating survival times from the exponential
model using the simulated prognosis trait as the log hazard, and
testing association using Cox regression (Supplementary Tables 13
and 14). Adjusted and unadjusted analyses had similar overall
properties, suggesting that our approach could be applicable in
this setting. Together our results suggest that the paradoxical

association of MUC5B with increased survival could indeed be
due to index event bias, and that the risk allele of MUC5B is in
fact associated with decreased survival.

Crohn’s disease. Odds ratios for Crohn’s disease have been
published by the International Inflammatory Bowel Disease
Genetics Consortium29 and for prognosis (binary good/poor) by
a subsequent study by Lee et al.6. The latter study identified
four regions associated with prognosis at genome-wide sig-
nificance P < 5 ´ 10�8ð Þ, none of which were significantly asso-
ciated with disease susceptibility.

We reanalysed the summary statistics using our regression-
based adjustment with 29,715 LD-pruned SNPs with imputation
R2 � 0:99 (Methods). The regression of prognosis log odds ratios
on incidence log odds ratios gave a coefficient of −0.042, which
decreased to −0.264 with SIMEX adjustment for regression
dilution (95% CI: −0.299 to −0.236). Here, the Hedges–Olkin
based adjustment gave a similar result of −0.272. Again the

Table 4 Power for binary incidence and prognosis without non-genetic confounding

Genetic correlation 0 0 0.25 0.25 0.45 0.45 −0.25 −0.25 −0.45 −0.45

Adjustment No Yes No Yes No Yes No Yes No Yes
All SNPs not affecting prognosis 5.00 5.00 5.00 5.01 5.00 5.03 5.00 5.01 5.00 5.03
All SNPs affecting incidence but not prognosis 5.00 5.01 5.02 5.22 5.10 5.70 5.03 5.21 5.11 5.66
SNP with highest type-1 error 7.30 7.30 7.70 8.60 7.70 15.5 8.30 9.10 8.10 14.4
Family-wise type-1 error 3.50 3.70 4.40 5.20 5.60 10.1 4.80 5.50 5.60 9.10
All SNPs affecting prognosis 8.76 8.77 8.60 8.38 8.25 7.58 8.61 8.41 8.25 7.63
All SNPs affecting incidence and prognosis 8.71 8.72 8.38 8.00 7.66 6.45 8.39 8.04 7.66 6.51
SNP with greatest increase in power 13.6 14.9 13.9 18.1 5.90 7.80 8.40 12.5 5.80 7.80
SNP with greatest decrease in power 44.2 42.5 53.3 42.6 48.9 27.7 51.9 43.4 43.1 25.8

Parameters as in Table 3 except that that there are no common non-genetic factors of incidence and prognosis

Table 3 Power for binary incidence and prognosis with non-genetic confounding

Genetic correlation 0 0 0.25 0.25 0.45 0.45 −0.25 −0.25 −0.45 −0.45

Adjustment No Yes No Yes No Yes No Yes No Yes
All SNPs not affecting prognosis 5.02 5.00 5.04 5.01 5.05 5.03 5.01 5.01 5.00 5.03
All SNPs affecting incidence but not prognosis 5.37 5.02 5.66 5.21 5.96 5.68 5.18 5.21 5.05 5.60
SNP with highest type-1 error 11.6 8.20 13.7 8.5 18.2 14.6 8.40 9.20 8.30 14.0
Family-wise type-1 error 5.80 5.60 7.70 5.20 12.0 8.80 4.60 6.20 6.60 8.70
All SNPs affecting prognosis 8.99 8.63 8.32 8.39 7.49 6.48 9.28 8.16 9.29 7.34
All SNPs affecting incidence and prognosis 9.13 8.59 7.80 8.00 10.9 9.60 9.74 7.81 9.77 6.33
SNP with greatest increase in power 36.5 48.1 24.5 34.6 23.0 29.9 7.20 16.6 5.90 8.50
SNP with greatest decrease in power 51.4 33.3 33.0 27.0 10.9 9.60 50.4 20.7 63.2 20.9

Parameters are as in Table 1 with cases defined as subjects in the top 20th percentile of the incidence trait, and poor prognosis as cases in the top 50th percentile of the prognosis trait. Prognosis is
analysed in cases only

Table 2 Power for quantitative incidence and prognosis without non-genetic confounding

Genetic correlation 0 0 0.25 0.25 0.45 0.45 −0.25 −0.25 −0.45 −0.45

Adjustment No Yes No Yes No Yes No Yes No Yes
All SNPs not affecting prognosis 5.00 5.00 5.01 5.04 5.03 5.13 5.01 5.03 5.03 5.12
All SNPs affecting incidence but not prognosis 5.00 5.01 5.17 5.72 5.61 7.30 5.18 5.64 5.61 7.20
SNP with highest type-1 error 8.02 8.02 8.50 15.2 13.0 35.6 8.30 13.7 13.4 33.7
Family-wise type-1 error 4.50 3.90 4.90 8.80 8.00 24.7 5.30 9.20 7.80 22.1
All SNPs affecting prognosis 16.6 16.6 16.2 15.6 15.1 13.3 16.2 15.6 15.1 13.3
All SNPs affecting incidence and prognosis 16.4 16.4 15.4 14.4 13.0 9.75 15.4 14.5 12.9 9.86
SNP with greatest increase in power 31.2 33.3 25.1 36.4 9.20 13.9 18.6 29.4 6.70 10.7
SNP with greatest decrease in power 20.1 17.9 53.9 35.4 62.0 26.2 46.1 31.9 56.6 26.2

Parameters are as in Table 1 except that there are no common non-genetic factors of incidence and prognosis
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negative coefficient implies that there are common causes of
incidence and prognosis with concordant directions of effect.

After adjusting the association of each SNP, the genomic
control inflation parameter was 1.016 compared with 1.024 in the
unadjusted analysis. Of the four reported associations with
prognosis, three of the lead SNPs remained genome-wide
significant, while association of the lead SNP in the MHC region
was attenuated to just short of genome-wide significance.
However, anotherMHC SNP, which was genome-wide significant
in the index study, did remain so after adjustment (Table 5).
Following Lee et al.6, we inspected the associations with prognosis
of 170 SNPs robustly associated with incidence (Supplementary
Data 1). None of these SNPs were significantly associated with
prognosis, after correcting for 170 tests.

Previously, Lee et al. reported a negative genetic correlation
between Crohn’s disease incidence and prognosis6. This is
consistent with the negative coefficient in our regression of
prognosis effects on incidence effects, and so could be explained
by index event bias. However, our adjusted estimates of prognosis
effects are by construction uncorrelated with the incidence effects,
and so any analysis of genetic correlation based on our
adjustments would be misleading.

Discussion
Awareness of index event and related biases2,10,11 has grown as
attention turns to follow-up of GWAS. Our interest in this pro-
blem arose within the GENetIcs of sUbSequent Coronary Heart
Disease (GENIUS-CHD) consortium30, which aims to identify
risk factors for recurrent coronary events in patients with cor-
onary heart disease. In a simulation study15, we showed that
index event bias could be small in GWAS. Here, we have con-
firmed this for Crohn’s disease, but have shown an example in
IPF where a strong effect on susceptibility appears to create a
substantial bias that reverses the survival effect. This illustrates
how index event bias can have variable effects in different studies,
and reinforces the need to adjust for it to be confident in any
genetic associations with prognosis.

The critical assumption of our approach is that direct genetic
effects on prognosis are independent of those on incidence. Since
GWAS of susceptibility have been motivated by the discovery of
novel treatment targets, our assumption may seem incompatible
with the premise of GWAS. Indeed, shared pathways of incidence
and prognosis have been observed in coronary heart disease, in
which statins have proved effective in preventing both initial and
recurrent events31. For phenotypes related to cumulative effects of
long-term exposures, such as CVD but also perhaps some psy-
chiatric traits, such shared pathways may be common. But for
conditions in which prognosis depends upon the response to an
initiating event, as perhaps in cancer or infectious diseases, the
determinants of prognosis are conceivably independent of those
for incidence. Even in CVD, determinants of arterial plaque
development may be independent of those for plaque rupture. For

immune-mediated disease, where a break in immunological tol-
erance is the key event at disease initiation, it is expected that
other pathways drive disease course, since tolerance can only be
broken once to a particular antigen. Also, where developmental
mechanisms contribute to predisposition to late-onset disease, the
determinants of prognosis may plausibly be independent. Some
have argued that independently pleiotropic effects are likely to be
typical for complex disease25: for most pairs of traits, the genetic
effects on the first are independent of the corresponding effects
on the other. However, our independence assumption precludes
any meaningful analysis of genetic correlation between incidence
and prognosis.

Our simulations showed reduced type-1 error rates for our
procedure compared with an unadjusted analysis, except in the
case of strong negative genetic correlation between incidence and
prognosis or no non-genetic correlation. Power is slightly reduced
overall, but may be considerably increased for some individual
SNPs. Again our approach performed more poorly under strong
negative genetic correlation, which is arguably less likely than
positive correlation. We simulated genetic architectures that were
typical of complex diseases32 while allowing a high degree of
index event bias. In smaller studies, however, such as our IPF
survival GWAS, our adjustment may have high variance resulting
in more severely reduced power.

Our analysis of IPF suggests that a paradoxical association of
the strong risk locus MUC5B with increased survival may be due
to index event bias, and that in fact this gene may well cause
decreased survival. It has been hypothesised that carriers of
MUC5B risk alleles experience a milder form of disease, in line
with the clinical heterogeneity of IPF27. While associations with
prognosis can be explained by disease heterogeneity, they remain
susceptible to index event bias whether or not disease subtype is
accounted for (Fig. 4). It is therefore important to account for the
bias to inform the interpretation of genetic associations with
prognosis. Here, the reversal of direction for the MUC5B survival
effect is largely due to its exceptionally high odds ratio for sus-
ceptibility. However, our result, while significant, is imprecise and
based on a sample that is small by current standards. It is crucial
to replicate this result in larger samples or meta-analyses.

We confirmed the genome-wide significance of four regions
previously associated with Crohn’s disease prognosis, but did not
identify any further associations with prognosis. In their index
study, Lee et al.6 adjusted for disease location before inspecting
associations between disease prognosis and 170 susceptibility SNPs.
This was done because some of the criteria used to define severe
disease (e.g., need for recurrent surgery) could lead to an over-
representation of patients with ileal disease, for whom surgery is
more commonly used because the operation carries lower mor-
bidity than colonic surgery and does not leave a permanent stoma.
Considering location as a disease subtype, adjustment for location
might modify the prognosis associations for SNPs with effects on
particular disease locations (Fig. 4). We did not adjust for location
here, as our aims were to identify associations with prognosis

Table 5 P-values for four regions associated with Crohn’s disease prognosis

Chromosome Mb Variant Nearest gene Unadjusted P Adjusted P

X 112.9 rs5929166 XACT 4.56e-9 6.56e-9
6 31.7 rs9279411 MHC 5.46e-9 7.93e-8
6 31.7 rs114575504 MHC 9.37e-9 4.46e-8
6 109.0 rs3778586 FOX03 1.47e-8 2.66e-8
7 45.9 rs75764599 IGFBP1 4.32e-8 4.00e-8

Unadjusted P, Wald test P-value reported by Lee et al.6. Adjusted P, Wald test P-value from our adjusted analysis. The lead variant in MHC in Lee et al., rs9279411 does not achieve genome-wide
significance in our adjusted analysis but is ~72 kb proximal to rs114575504, which does achieve significance
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independently of possible mechanism, and to demonstrate the
utility of our approach on published summary statistics.

Our procedure has some similarity to Egger regression applied
to Mendelian randomisation (MR-Egger)33. Both procedures
assume the structure in Fig. 1, regress SNP effects on one trait on
SNP effects on another, and require an independence assumption.
However, while the focus of MR-Egger is on the slope of the
regression (the causal effect of exposure on outcome), and on
the intercept (the magnitude of directional pleiotropy), our focus
here is on the residuals, which provide the adjusted effect esti-
mates when added to the intercept.

We may draw on the analogy with MR-Egger to contemplate
other approaches based on the ratio of prognosis effects to inci-
dence effects. Such approaches would entail other assumptions
that require careful consideration. For example, a counterpart of
the median ratio estimator34 would assume that at least half of the
SNPs considered have no direct effect on prognosis. Alternative
approaches related to parallel work in Mendelian randomisation
are a promising area for further development.

Our approach is robust to the use of the same subjects in the
prognosis GWAS as in the incidence GWAS. This is because
any correlation in prognosis and incidence phenotypes is by
definition included in U and is therefore accounted for by our
regression procedure. Indeed our simulations used the same
subjects in both GWAS, and obtained the correct type-1 error
rates when expected.

Our analytic result is derived from linear regression models,
and is inexact for traits generated under other models13,17.
However, in practice our approach only requires that the bias is
linear in the incidence effect, which we argue is approximately
true for polygenic traits. This linear relationship is estimated
from data, and while our theory provides an interpretation for
it under some assumptions, our approach requires only that such
a relationship exists. The data in our examples used log odds
ratios and log hazard ratios, and our simulations suggested the
linear approximation was acceptable in these cases.

When the incidence trait is binary, we have mainly considered
a case-only analysis of prognosis. Other approaches are possible,
such as setting the prognosis to a degenerate value for controls
and then analysing cases and controls together, with adjustment
for case/control status18. In our simulations, we found no sys-
tematic difference between the case/control and case-only ana-
lysis. Note that our approach could be applied in conjunction
with the case/control analysis, and possibly with further adjust-
ment for measured confounders of incidence and prognosis. This
would have the desirable effect of reducing index event bias
through several complementary approaches at once.

We have not considered the case in which the trait of interest
is a precursor of the trait under selection (Fig. 2). Selection bias
also occurs in this case10,17,20, but cannot immediately be cor-
rected by our approach because it would require knowledge of
the effects of all confounders (Supplementary Note 2). Methods
exist to adjust for selection in this situation18,19,21,22, although
they do not allow for unmeasured confounders. It may be pos-
sible to combine our approach with these methods to more fully
account for selection bias in this situation.

Other forms of selection bias may be present that are not
addressed by our approach. For example, participation in either
incidence or prognosis GWAS is often conditional on survival
until time of recruitment, but there may be unmeasured common
determinants of survival and incidence/prognosis that create
further biases. We have previously shown survival bias to be
potentially of similar importance to index event bias15, and this
should be borne in mind when performing studies of prognosis,
particularly when the index event may be acute as in coronary
heart disease. Censoring after diagnosis, for example from death
by competing risks, may also create bias if there are common
determinants of incidence, censoring and/or prognosis. Our
approach is developed under a simple model of incidence and
prognosis, but provides a starting point for extensions that model
the disease course more precisely.

Our approach could be applied to correct index event bias of
non-genetic exposures. If the effects of all polygenic SNPs are
estimated conditional on the non-genetic exposure, we can esti-
mate the bias through all confounders other than that exposure.
The effect of the exposure can then be adjusted in the same way
as for the SNPs, giving a new and potentially wide application for
GWAS data.

We have focussed on reducing bias in estimating the direct
effects of SNPs on prognosis, to gain insight into mechanisms of
prognosis. A different goal may be to build prediction models of
prognosis. In that case, it is preferable to work with the unad-
justed effects since they do represent the total associations with
prognosis conditional on incidence.

We have proposed an approach to adjust for index event bias
in GWAS of subsequent events that achieves unbiased results
under an independence assumption and otherwise compares
favourably with the unadjusted analysis. It integrates the identi-
fication and adjustment of the bias in a single statistical proce-
dure. We believe this method can be recommended as a standard
analysis for GWAS of subsequent events.

Methods
Bias adjustment. Recall that we assume incidence X is linear in the coded gen-
otype G, the combined common causes U of incidence and prognosis, and causes
EX unique to X (Eq. (1)):

X ¼ βGXGþ βUXU þ EX

Similarly, assume that prognosis Y is linear in G, U and X (Eq. (2)):

Y ¼ βGYGþ βUYU þ βXYX þ EY

These are not necessarily causal models, but reflect a parameterisation of asso-
ciations between G, U, X and Y that is natural when the conditional independence
structure is as in Fig. 1 without conditioning on X. We assume that G, U, EX and EY
are pairwise uncorrelated and have no interactions in the models for X and Y.
Polygenic effects may contribute to U, EX and EY.

Assume without loss of generality that G, U, EX and EY each have mean zero
and hence also E Xð Þ ¼ E Yð Þ ¼ 0. Let β′GY be the effect of G on Y conditional on X,
but not on U. If β′GY is estimated from the linear regression model

EðYjG;XÞ ¼ β′GYGþ β′XYX

then the asymptotic ordinary least squares estimate is

β′GY
β′XY

" #
¼ var Gð Þ cov G;Xð Þ

cov G;Xð Þ var Xð Þ
� ��1 cov G;Yð Þ

cov X;Yð Þ
� �

G

S Y

U

X

Fig. 4 Association of SNP G with prognosis Y conditional on incidence
X derived from trait S. U is a composite variable as in Fig. 1. For example,
X may be a diagnosis of disease (e.g., Crohn’s disease), and S a subtype
of disease (e.g., ileal, colonic, ileocolonic or healthy). Conditioning on X,
which is a descendant of the collider S, induces the moralised association
between G and U shown by the dotted line. This creates association of
G with Y via the path G� U ! Y in addition to its direct effect via G! Y
and its mediated effect via G ! S ! Y. Further conditioning on S blocks the
mediation path G ! S ! Y, but leaves open the path G� U ! Y creating
index event bias
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¼ 1

var Gð Þvar Xð Þ � covðG;XÞ2
var Xð Þ �cov G;Xð Þ

�cov G;Xð Þ var Gð Þ

� �
cov G;Yð Þ
cov X;Yð Þ

� �
ð5Þ

From Eq. (1), under the assumptions above,

var Xð Þ ¼ β2GXvar Gð Þ þ β2UXvar Uð Þ þ var EXð Þ

cov G;Xð Þ ¼ βGXvar Gð Þ
From Eq. (2),

cov G;Yð Þ ¼ βGYvar Gð Þ þ βXYβGXvarðGÞ

cov X;Yð Þ ¼ βGXβGYvar Gð Þ þ βUXβUYvar Uð Þ þ βXYvar Xð Þ

¼ βGXβXY þ βGY
� �

βGXvar Gð Þ þ βUXβXY þ βUY
� �

βUXvar Uð Þ þ βXYvar EXð Þ
Substituting these covariances into Eq. (5) gives, after some working out, Eq. (3)

β′GY ¼ βGY � varðUÞβUXβUY
var Uð Þβ2UX þ varðEXÞ

βGX

This derivation is similar to that of Aschard et al.2, except that we allow for the
direct effect of X on Y in Eq. (2) and have focussed on the asymptotic estimate of
the true β′GY .

As noted in the Results, we may argue that b ¼ �varðUÞβUXβUY
var Uð Þβ2UXþvarðEX Þ is approximately

constant across SNPs and may be estimated by the linear regression of β′GY on βGX
across many SNPs. In a finite sample, this yields an estimate b̂� that is biased
towards 0 by sampling error in β̂GX . We suggest two approaches to adjust for this
regression dilution bias. Firstly, following a common approach to the problem28,

we can obtain a bias-reduced estimate as b̂ ¼ b̂� varðβ̂GX Þ
varðβGX Þ. In the numerator varðβ̂GXÞ

can be immediately estimated from the data, whereas estimation of varðβGXÞ in the
denominator is a well-studied problem in random effects meta-analysis35. We find
that the Hedges–Olkin estimator

cvar βGX
� � ¼ var β̂GX

� �
� Eðσ2GXÞ

where σ2GX is the (estimated) sampling variance of β̂GX , usually leads to acceptable

estimates b̂ and given its ease of computation, we used this approach in our
simulations.

However, as has been discussed in the context of Mendelian randomisation23,
this approach can have large variance, and can lead to implausible negative
adjustments for regression dilution, as we found in our IPF data. Therefore we
follow Bowden et al.23 in proposing simulation extrapolation24 (SIMEX) for the
analysis of real datasets. Briefly, this approach simulates new estimates β̂GX with
increasing degrees of measurement error, by adding Gaussian noise with variance
λσ2GX to the given β̂GX , for various values of λ. The linear regression of Eq. (3) is

repeated for each simulated dataset, and the estimator of its slope b̂� considered as
a function of λ. Standard applications of SIMEX, including that of Bowden et al.23,
fit a linear or quadratic model relating b̂� to λ, extrapolating to λ=−1 to obtain the
de-biased estimate. For greater accuracy, we developed a maximum-likelihood
estimator of b for simple linear regression models. Our approach yields confidence
intervals for b so that varðb̂Þcan be estimated. The details of our improved SIMEX
approach are given in Supplementary Note 1.

The bias-corrected effect on prognosis is β̂GY ¼ β̂′GY � b̂β̂GX , with variance

var β̂′GY

� �
þ var b̂β̂GX

� �
It is reasonable to assume that b̂ is approximately independent of β̂GX if a large

number of independent SNPs enter the regression of Eq. (3). Therefore

var β̂′GY

� �
þ var b̂β̂GX

� �
¼ σ2GY þ b̂2σ2GX þ β̂2GXvar b̂

� �
þ σ2GXvar b̂

� �
If β̂′GY , β̂GX and b̂ are maximum-likelihood estimates, we may assume that they are
approximately normally distributed about their true values with variance estimates
available. As the product of two normal variates, b̂β̂GX is not itself normal, but a

bootstrap distribution for β̂GY can be generated by simulating β̂′GY , β̂GX and b̂ from
their respective normal distributions, taking the estimated values as the mean. In
the results presented, we generally found that the bootstrap distribution was very
close to the normal and we therefore give P-values based on a normal
approximation for β̂GY . The exception was the analysis of rs35705950 in IPF, for

which we simulated an empirical distribution for b̂ and then β̂GY (Supplementary
Note 1).

The derivation of Eq. (3) assumes that G, U, EX and EY are pairwise uncorrelated,
which is unlikely to hold in general. Although by definition U, EX and EY are
uncorrelated, G may be correlated with any of those variables through LD or gene-
environment correlation. However, we might expect that across all SNPs in a
GWAS, any systematic such correlation will be negligible. Equation (3) also assumes

no statistical interaction between G and U in their effects on X, and between G,
U and X in their effects on Y. Again, and in view of the low number of detectable
interactions in GWAS compared with main effects36, we may safely assume that any
systematic interactions are negligible in comparison with the main effects.

The usual assumptions of linear regression apply to the estimation of b. The
residuals, which are the mean-centred prognosis effects, should be uncorrelated.
When marginal single-SNP effects are considered, as is usual in GWAS, correlation
can arise through LD, and we therefore fit Eq. (3) to a pruned set of approximately
independent SNPs. Even with pruned SNPs, LD can lead to heteroscedasticity,
since a SNP in a region of high LD is expected to have greater variance in its
marginal effect on both incidence and prognosis37. Furthermore, allele frequency
has also been observed to relate to effect size variance38, again creating potential
heteroscedasticity. Residual heteroscedasticity does not affect the bias of b̂� but its
standard error is needed for our SIMEX adjustment, and so we calculate a
heteroscedasticity robust estimate of that standard error (Supplementary Note 1).

Our most serious assumption is that residuals and predictor are uncorrelated in
the regression: that is there is no correlation between a SNP’s effect on incidence
βGX and its direct effect on prognosis βGY. We discuss this assumption in the
Results and Discussion and explore robustness to it in simulations.

Many GWAS will study prognosis among the cases of disease, rather than
adjusting for an index trait as a covariate. The susceptibility GWAS will typically be
performed using logistic regression, rather than linear regression as developed here.
Index event bias has a non-linear form in logistic models, but is approximately
linear for the small effects typical of polygenic traits13; furthermore, small effects on
linear and logistic scales are approximately proportional39. We therefore expect Eq.
(3) to hold approximately when βGX and/or βGY are log odds ratios. Having already
assumed no interaction between G and X in their effects on Y, we further expect Eq.
(3) to hold when analysing only the cases of disease.

Finally, we have considered analyses with only genotype G and incidence X as
predictors. In practice, further covariates will be included, such as principal
components of ancestry. Analytic equivalents of Eq. (3) are more complicated in
this case, but one can often treat the conditional SNP effects as approximately equal
to those on the residuals from a first-stage regression on the further covariates.
With this justification we can apply our procedure to conditional SNP effects on
incidence and prognosis.

Simulations. SNPs were simulated independently under Hardy–Weinberg equili-
brium with minor allele frequencies drawn uniformly from ð0:01; 0:49Þ. SNP
effects, confounders and residual variation in incidence and prognosis were drawn
independently from normal distributions. For heritability of 50% distributed
among 10,000 SNPs with effects on prognosis, each SNP explains, on average,
0.005% of variation. As half of SNPs affecting prognosis also have effects on
incidence, and the total non-genetic confounder variance is 40%, index event bias
arises from confounders that together explain 0:5

2 þ 0:4 ¼ 65% of variation in

prognosis. Estimates of SNP effects on incidence β̂GX were obtained from linear
regression of incidence on genotype, and unadjusted estimates of SNP effects on
prognosis β̂′GY from linear regression of prognosis on genotype and incidence.

Incidence and prognosis traits were simulated from Eqs. (1) and (2), with βGX
and βGY now as the row vectors of effects for all SNPs, G as the column vector of
genotypes and U consisting only of the non-genetic confounders.

We performed 1000 simulations and compared type-1 error at P < 0:05 for the
unadjusted estimator β̂′GY to our adjusted estimator β̂GY , using the Hedges–Olkin
estimator to correct for regression dilution. Type-1 error rates vary among SNPs,
since the index event bias is proportional to the effect on incidence and the
rejection rate for a non-zero bias is greater for allele frequencies nearer 0.5. Firstly,
we estimated the mean type-1 error over all SNPs with no effect on prognosis. As
this is dominated by the large number of SNPs without effects on incidence, and
therefore no index event bias, we also estimated the mean type-1 error over SNPs
with effects on incidence but not on prognosis. To assess lower error rates, we
estimated the family-wise type-1 error over the same SNPs, as the proportion of
simulations in which at least one SNP had P < 0:05 after Bonferroni adjustment for
the number of such SNPs, that is P < 10�5. Finally, we identified the individual SNP
with the highest type-1 error for the unadjusted estimator and compared it to the
type-1 error of our adjusted estimator for the same SNP.

Similarly, we estimated mean power over all SNPs with effects on prognosis,
and all SNPs with effects on both incidence and prognosis. Equation (3) shows that
index event bias may either increase or decrease power according to the particular
values of its variables. Therefore, we identified the individual SNPs with the
greatest increase and decrease in power between the unadjusted and proposed
estimators.

We estimated bias and mean-square error across SNPs in the same ways. Since
we simulated genetic effects with mean zero, Eq. (3) shows that the mean signed
bias will be zero across SNPs, although individual SNPs will have non-zero bias.
Therefore, we estimated the mean absolute bias across SNPs.

We repeated the simulations with correlation between SNP effects on incidence
and prognosis. For the 5000 SNPs with effects on both, we simulated their effects
from a bivariate normal distribution with correlation 0.5, and then from a
distribution with correlation 0.9. These led respectively to genome-wide genetic
correlations between incidence and prognosis of 0.25 and 0.45. We repeated the
simulations with the equivalent negative correlations.
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We simulated a binary selection event by treating the incidence trait as a
liability with a threshold for disease such that 20% of individuals were affected. We
simulated 10,000 cases and 10,000 controls, and obtained estimated effects on
incidence β̂GX from logistic regression of disease on genotype. We then simulated a
binary prognosis by thresholding the prognosis trait at its median, so that half the
individuals had a good prognosis and half a poor prognosis. We obtained
unadjusted estimated effects on prognosis β̂′GY from logistic regression of prognosis
on genotype among cases only.

For the binary selection event, we also analysed the prognosis trait on its
original quantitative scale using linear regression of prognosis on genotype among
cases only, and compared results to the analysis of the combined case/control
sample with statistical adjustment for case/control status, imputing a value of 0 for
prognosis among controls. The latter approach may, in some situations, lead to
reduced bias or increased power in comparison with case-only analysis18.

Genotype data and polygenic phenotypes were simulated using the --simulate
and --score commands in PLINK 1.940, with all other analyses performed in R 3.4.1.

Idiopathic pulmonary fibrosis. 612 cases and 3366 controls previously genotyped
in stage 1 by Allen et al.26 were used. Our secondary analysis is covered by the
existing ethical approvals and informed consent reported for that study. Associa-
tion with disease was adjusted for 10 principal components of ancestry but not for
age or sex, allowing inclusion of 10 cases without data on age. Imputation was
performed to the Haplotype Reference Consortium panel at the Michigan Impu-
tation Server41. We retained variants with imputation R2 of 0.5, minor allele fre-
quency >0.5%, Hardy–Weinberg equilibrium P >10–6, and at least five events for
subjects with allele dosage >0.5. After harmonising the case/control and survival
data, we analysed 7,983,997 variants.

We created LD-pruned sets of SNPs using PLINK 1.940 with R2 threshold of 0.1
within 250 SNP windows. To assess the effect of imputation quality on our
procedure, we created separate pruned sets for SNPs with imputation R2 greater
than 0.9, 0.98 and 0.99 in both incidence and survival GWAS. These sets contained
245,913, 154,095 and 140,092 SNPs, respectively, and the regression of survival log
hazard ratios on incidence log odds ratios gave coefficients of 0.048, −0.022 and
−0.025, respectively. We were surprised to observe the change in sign of the
coefficient as imputation R2 increased from 0.9 to 0.98, because the coefficient
should be the same regardless of which SNPs are used for its estimation.
Imputation introduces genotyping errors that do not follow a classical
measurement error model because allele dosage is bounded in ½0; 2�. Furthermore,
standard imputation methods do not take phenotype into account. As a result,
effect sizes for imputed SNPs are biased in ways that have not been well
characterised. While such biases must be small for well imputed SNPs, and have
not created problems for standard GWAS analyses, the effect seems sufficient to
bias our index event adjustment unless R2 > 0.98 at least. Noting the compatibility
between results for R2 > 0.98 and 0.99, we used pruned SNPs meeting imputation
R2 > 0:99 in both incidence and survival GWAS in all further analyses.

Crohn’s disease. We downloaded summary statistics for incidence29 (5956 cases
and 14,927 controls) and prognosis6 (2734 cases) from the internet and analysed
7,908,787 autosomal markers present in both datasets. Our re-analysis of these
results is covered by the existing ethical approvals and informed consent reported
for those studies. To estimate our regression adjustment we selected a set of 29,715
LD-pruned SNPs, from a total of 1,370,154 SNPs with imputation R2 � 0:99 in
both the Crohn’s disease susceptibility GWAS and our IPF survival GWAS. LD was
estimated using the genotypes of our IPF survival GWAS which has similar UK
ancestry to the Crohn’s disease prognosis GWAS. The pruned set is smaller than
those for IPF because the Crohn’s susceptibility GWAS was imputed to the 1000
Genomes reference, which yields fewer SNPs with high imputation R2 values than
the Haplotype Reference Consortium reference.

Code availability
An open source R package implementing the methods proposed in this report is available
from https://github.com/DudbridgeLab/indexevent. PLINK 1.9 is available from https://
www.cog-genomics.org/plink2/. R 3.4.1 is available from https://cran.r-project.org/bin/
windows/base/old/3.4.1/.

Data availability
The IPF data that support the findings of this study are available from the corresponding
author upon reasonable request. The Crohn’s disease susceptibility data that support the
findings of this study are available from https://www.ibdgenetics.org/downloads.html.
The Crohn’s disease prognosis data that support the findings of this study are available
from ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2016-10-12/
CD_prognosis_GWA_results.csv.zip. All other data are available from the corresponding
author upon reasonable request.
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