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Improved measures for evolutionary conservation
that exploit taxonomy distances
Nawar Malhis 1, Steven J.M. Jones 2,3 & Jörg Gsponer1,4

Selective pressures on protein-coding regions that provide fitness advantages can lead to the

regions' fixation and conservation in genome duplications and speciation events. Conse-

quently, conservation analyses relying on sequence similarities are exploited by a myriad of

applications across all biosciences to identify functionally important protein regions.

While very potent, existing conservation measures based on multiple sequence alignments

are so pervasive that improvements to solutions of many problems have become incremental.

We introduce a new framework for evolutionary conservation with measures that exploit

taxonomy distances across species. Results show that our taxonomy-based framework

comfortably outperforms existing conservation measures in identifying deleterious variants

observed in the human population, including variants located in non-abundant sequence

domains such as intrinsically disordered regions. The predictive power of our approach

emphasizes that the phenotypic effects of sequence variants can be taxonomy-level specific

and thus, conservation needs to be interpreted accordingly.
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D irectional selection leads to an increase in the frequency of
alleles that provide fitness advantages and their con-
servation through speciation events and genome dupli-

cations1. Knowledge of this evolutionary conservation is exploited
across all the biosciences to characterize the structure2–4, func-
tion5–7, interactions8–11, and regulation12–15 of proteins. Fur-
thermore, conservation information has been used to redesign
proteins16,17 as well as to establish their evolutionary trajectories
and relationships18,19. Different measures have been developed to
calculate evolutionary conservation scores from multiple
sequence alignments (MSAs), the most popular of which exploit
variant frequencies in the MSAs20 and/or phylogenetic relation-
ships among preselected subsets of species21. Computational
methods successfully exploit these measures to quantify con-
servation of protein positions and predict the deleteriousness of
variants. Some methods rely solely on conservation measures to
predict the deleteriousness of variants (e.g., SIFT22, PROVEAN23,
EVmutation24, phyloP25, and GERP++26), whereas others
complement conservation measures with features derived from
functional genomic and gene annotation data or are supple-
mented by orthogonal prediction methods (e.g., PolyPhen-227,
CADD28, Eigen29, DANN30, and fitCons31). Despite the success
of these tools, an overreliance on similarly flavored conservation
measures will only permit slight, incremental progress in the
prediction of deleteriousness of protein-coding variants, high-
lighting the need for new conservation measures.

We sought to develop new conservation measures based on the
following concepts and ideas. The contribution of a protein to the
observed phenotype is a complex function that depends on
proper folding and activity as well as cellular localization and
interactions with partners. Importantly, this function is specific to
the cellular environment of each species, and differences in the
environment of homologous proteins are likely to increase with
the taxonomic distance between the species. Thus, when assessing
the deleteriousness of a human amino-acid variant, it is impor-
tant to not only evaluate whether a matching variant has already
been observed in homologs, but also how closely related the
species with the matching variant are, which often correlates with
the similarity between the human and these species’ genomes. We
hypothesize that a variant to a human gene that already exists in
the reference sequence of another species is more likely to be
benign when that species is closely related to human, whereas the
variant is more likely to be deleterious when it is observed in a
distant species. While the first part of the hypothesis is intuitive,
support for the second part comes from the following observa-
tions. Systematic analyses examining the conservation of phos-
phosite residues in proteins have revealed that some of these
residues are highly conserved in higher eukaryotes but replaced
by phospho-mimicking aspartic or glutamic acid in homologous
proteins in lower eukaryotes, prokaryotes and archea32. Impor-
tantly, various phospho-mimicking gain-of-function variants are
known to trigger constitutive activation of proteins and drive
cancerous cell transformation in humans33. Thus, amino acids
that are present in the protein reference sequence of species that
are far from human in the taxonomy tree may cause disease when
present in a human. Consequently, we propose that measures
exploiting the closeness of species are more effective in the
assessment of conservation of sequence positions, and thus the
deleteriousness of variants, than classical conservation measures,
specifically those that rely on variant frequencies across species.

Here, we introduce novel conservation measures. These mea-
sures are used to create LIST, a method that predicts deleter-
iousness of human variants in protein-coding regions based on
Local Identity and Shared Taxa. LIST predictions show a sub-
stantial improvement over methods that rely solely on previously
established conservation measures while also outperforming

methods that combine conservation measures with gene anno-
tations and genomic features.

Results
Taxonomy-based conservation measures. An ideal data set to
test our hypothesis consists of human variants that have been
identified in 60,706 individuals (ExAC data)34 using high-
throughput means (see Methods). Some of the identified variants
are annotated by ClinVar as pathogenic, i.e., deleterious, while
remaining variants that are observed in the human population with
high frequency (≥ 1%) can be assumed benign, i.e., evolutionary
neutral and not deleterious. In accordance with the ideas outlined
in the introduction, the likelihood of finding a matching amino
acid in homologs of species closely related to human should be
lower for deleterious than benign variants. To test this corollary, we
define variant shared taxa (VST) as the first measure of evolu-
tionary conservation within our postulated framework. To calcu-
late VST, we identify the sequence from the MSA with the amino
acid matching the human variant of interest and the highest local
sequence identity (LI) with the human query protein sequence (see
Methods for details). We then select the sequence’s shared taxa
(ST), which we define as the number of branches in the taxonomy
tree that humans share with the species the sequence originates
from (Fig. 1a and Supplementary Table 1). As an example, given
the simplified MSA in Fig. 1b and focusing on the substitution of
the reference residue S at position τ by amino acid A, the VSTτ,A is
22 because A is found in sequences 5 and 6, but sequence 5 has the
highest LI with the query. We calculated VST values as well as raw
frequencies in MSAs for variants with deleterious and benign
effects in humans and generated histograms of the distribution of
these values (Fig. 2a and Supplementary Fig. 1). These histograms
support our hypothesis, namely, that variants of a human protein
that exist in the reference genome of other species are more likely
to be benign when these species are closely related to human but
also more likely deleterious when the species are far away in the
taxonomy tree. Furthermore, a comparison of VST values and raw
frequencies in MSAs reveals that both measures segregate benign
and deleterious variants, but that VST has a slightly higher contrast
for the two classes (r: − 0.282 and − 0.271, Spearman rank
correlation).

We then developed a second measure that assesses the
variability of a sequence position across the taxonomy tree. This
measure was inspired by previously developed conservation
measures that derive positional entropies from the amino acid
frequencies at a given sequence position. However, similar to
VST, we use LI and ST in this new measure that we call shared
taxa profile (STP). STP at position τ is a vector of n= 31, where
each element holds the highest LI of sequences with identical ST,
excluding those with amino acids matching the human reference.
For the case of the simplified MSA provided in Fig. 1b, STP
element 21 gets the value 5 assigned because 5 is the highest LI of
all sequences with ST equal 21. Following the same rationale,
element 22 gets the value 7 assigned, and so on for all other ST
represented in the MSA (Fig. 1c). When averaged over all
sequence positions that harbor deleterious and benign human
variants, respectively, STPs (Fig. 2b) reveal a strong contrast
between deleterious and benign variants. When interpreting this
graph, one needs to keep in mind that STP is calculated only for
positions that display sequence variations compared to the
human reference. It is widely accepted that variants at non-
conserved sequence positions are more likely to be benign than
deleterious. Figure 2b reveals that this is more likely to be true
when the sequence variations at a position have been observed in
closely related species. Thus, similar to VST, STP is a powerful
measure to separate deleterious and benign variants.
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Implementation of the new conservation measures in LIST.
Next, we developed a new tool, LIST, which allows for a robust
comparison of the predictive power of our taxonomy-based and
classical conservation measures. LIST predicts the deleterious-
ness of human variants using three prediction modules, two of
which rely on the new conservation measures VST and STP.
The first module uses VST exclusively and, in essence, assesses
the deleteriousness of a specific human variant by determining
whether a matching amino acid occurs in a homolog of a closely
or distantly-related species. The second module utilizes both
VST and STP to assess how vulnerable a sequence position is to
variations (see Methods for details). Finally, these two modules
are complemented by a third module that exploits how likely
different types of amino-acid substitutions have deleterious

effects, i.e., amino-acid swap-ability. Optimal parameters for
the three modules were learned from a first optimization set
(Supplementary Table 2). Then, these modules were rescaled to
accommodate for alignment depth and combined
hierarchically35,36 (Supplementary Fig. 2). Rescaling and hier-
archical structure parameters were learned from a second
optimization set (See Methods for details). We assembled these
optimization sets by using annotations and variants from
ClinVar and ExAC, respectively (see Methods for details on
their assembly). We contrasted LIST’s performance with that of
existing methods using four different test sets that were derived
from different sources (ClinVar/ExAC, UniProt/gnomAD
(http://gnomad.broadinstitute.org/), Cancer (http://gnomad.
broadinstitute.org/), and HumVar27; see Methods for details).
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Fig. 2 New conservation measures separate benign and deleterious variants. a Distribution of variant shared taxa (VST) for deleterious and benign human
variants that have a matching allele in the raw MSA. For each of the 32 possible VST values that were found in the MSA analysis, the percentages of benign
and deleterious variants are shown. VST values can only be calculated when a matching amino acid is found in the MSA, which defines the number of
benign and deleterious variants that could be used for this plot (see methods for details on data). b The average shared taxa profiles (STP) of deleterious
and benign variants (see methods for details on data)
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Fig. 1 New conservation measures based on alignment identity and taxonomy distances. a Simplified taxonomy tree. Shared taxa (ST) is defined as the
number of taxonomy tree edges that are shared between human and another species. Goldfish, for instance, shares 13 edges with the human taxonomic
lineage, and thus its ST value is 13. It is important to note that a given taxa can include multiple species. For instance, shared taxa 22 contains mouse, rat
and other rodents not listed as well as lagomorphs, treeshrews, colugos, and primates. The entire human taxonomy lineage can be found in Supplementary
Table 1. b Simplified MSA used to illustrate the calculation of different LIST measures that include local identity (LI) and ST. LI for a sequence at a location
τ is computed by counting the number of residues that are identical to the query sequence (shaded in blue) in a window size nine centered at τ, excluding
the residue at τ. c The STP at position τ associated with the simplified MSA presented in b
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It is important to note that variants used for optimization and
testing map to different proteins, thus there is no overlap
between any of the variants used in optimization and testing.

LIST outperforms methods using existing conservation mea-
sures. Performance comparisons with methods that rely exclu-
sively on conservation measures, like LIST, are important for the
assessment of whether our new conservation measures provide
true advantages. Using the ClinVar/ExAC test set, LIST (AUC:
0.888) achieves a substantially higher area under the curve (AUC)
value for receiver operating characteristics (ROC) curves than all
methods of this type tested, including phyloP_V (AUC: 0.820),
SIFT (AUC: 0.818), PROVEAN (AUC: 0.816), and SiPhy37 (AUC:
0.810) (Fig. 3a, Supplementary Table 3 and Supplementary
Note 1). Importantly, LIST has a strikingly higher precision than
the four best performing other methods (phyloP, SIFT, PRO-
VEAN, and SiPhy) at any level of sensitivity (Fig. 3b). Some
methods that rely on conservation measures only, such as
EVmutation24 and LRT38, have specific alignment requirements
and, thus, score considerably lower numbers of variants. EVmu-
tation for instance, takes co-evolution into account, and thus has
higher alignment depth requirements compared to other methods.
Also for the subset of variants scored by EVmutation and LRT,
respectively, LIST achieves higher AUCs (Supplementary Table 3).

We made several controls to ensure that better predictions by
the new measures are not dependent on class definitions. LIST
outperforms existing methods independent of the allele frequency
used to define common (benign) variants in the ClinVar/ExAC
test set (Supplementary Fig. 3, Supplementary Table 4 and
Supplementary Note 2). We also controlled for the independence
of our findings on the selection of the variants used in
optimization and testing (Supplementary Table 5 and Supple-
mentary Note 3). Importantly, we tested LIST’s performance on
the additional test sets UniProt/gnomAD and HumVar, which
have deleterious and benign variant classes collected using
different sources (Supplementary Table 2). LIST continues to
have an advantage over all tested methods (Supplementary
Tables 6, 7), with the exception of the subset of HumVar variants
scored by EVmutation, for which SIFT (AUC: 0.888) and
EVmutation (AUC: 0.890) outperform LIST (AUC: 0.885)
slightly. As one of the rationales for the development of our
new conservation measures is the occurrence of variants in
distant species that have gain-of-function and potential oncogenic
effects in humans, we also tested LIST on the Cancer test set. This
test set has the same benign variants as the UniProt/gnomAD test
set, but the deleterious class contains only cancer-associated
variants (Supplementary Table 2). LIST also outperforms other

methods (Supplementary Fig. 4a, Supplementary Table 8) on this
Cancer test set. The comparisons and controls that we carried out
demonstrate that the new conservation measures implemented in
LIST provide a higher precision in separating benign and
deleterious human variants than classical conservation measures
implemented in established methods.

Methods that combine conservation measures with features
derived from functional genomics studies and/or gene annota-
tions (e.g., Eigen, CADD, DANN, PolyPhen-2, FATHMM-
MKL39, or fitCons) generally perform better in the prediction
of deleterious variants than methods that rely on conservation
measures only. We also contrasted LIST’s performance with that
of these predictors using the ClinVar/ExAC, UniProt/gnomAD,
HumVar, and Cancer test sets. LIST outperforms also these
methods on nearly all these sets (Supplementary Figs. 4b, 5a, and
b, Supplementary Tables 3, 4, 6–8), with the exception of the
HumVar set, where Eigen achieves a slightly higher AUC than
LIST (Supplementary Table 7).

LIST’s advantages over existing methods. Next, we compared
performances for variants that are located in sequence segments of
different alignment depth. Most applications exploiting variant
frequencies struggle at shallow alignment depth (Supplementary
Table 9), therefore, they are less accurate when variants are located
in intrinsically disordered protein regions (IDRs)40, which are
enriched in sequences with low alignment depths (Supplementary
Fig. 6). LIST performs better than SIFT and PROVEAN, which we
took as representative methods, in evaluating variants located in
sequence segments with very low and very high alignment depth
(Supplementary Table 10). LIST also does better than all other
tested methods when evaluating variants in protein parts predicted
to be disordered by ESpritz41 or IUPred42 (Supplementary Fig. 7
and Supplementary Tables 3, 6–8). This said, all methods perform
worse on variants located in IDRs when compared with their
performance on all variants. To assess the relative drop in per-
formance for variants in IDR regions, we calculated
φIDR ¼ ðAUCALL � AUCIDRÞ=ðAUCALL � 0:5Þ. This calculation
revealed that the relative performance drop on the ClinVar/ExAC
test set is only 14.3% for LIST but 20.0%, 26.1%, 20.7%, 24.4%,
21.4%, and 22.9% for PhyloP_V, SIFT, PROVEAN, SiPhy,
GERP++, and phastCons_V, respectively.

Finally, we selected an example that showcases the advantage
of our new conservation measures. The deleterious variant R150Q
of the human recombinase RAD51 is associated with hereditary
breast cancer but predicted by SIFT and PROVEAN to be benign.
The false predictions by SIFT and PROVEAN can be attributed to
the high frequency of amino-acid Q (17.5%) in the MSA, which is
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Fig. 3 LIST performs better than other predictors in separating benign and pathogenic variants. a ROC curves calculated for the predictions by LIST,
phyloP_Vertebrata (phyloP_V), SIFT, PROVEAN, and SiPhy on the variants from the ClinVar/ExAC test set that are scored by all methods compared
(Supplementary Table 3). Shown here are only the best performing methods that solely use conservation measures (see Supplementary Table 3 for the
results of other methods tested). AUC values are provided for each method in parentheses. b Precision-recall curves for the same tools and data set
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even higher than the frequency of the reference amino acid R
(6.1%) (Supplementary Fig. 8a). Interestingly, EVmutation
predicts Q to be more benign than the reference amino acid R.
LIST, by contrast, scores the R150Q variant in RAD51 differently.
Although VST for Q is 17 (Supplementary Fig. 8b), and, thus, the
score of LIST’s first module suggests a neutral to benign character
for R150Q (see Fig. 2), most variants differing from the human
reference allele R occur in homologs of species that are far from
human in the taxonomy tree (Fig. 4), resulting in a high score
from the second LIST module and a high overall score, which
suggests deleteriousness.

Discussion
We introduced a new framework and measures for conservation.
Algorithmic implementations of these new measures in LIST
provide conservation scores that increase precision in the pre-
diction of the deleteriousness of human variants. LIST shows a
substantial improvement over methods, such as SIFT or PRO-
VEAN, that rely solely on established conservation measures.
Although not exploiting functional genomics data or results from
other predictors, LIST also outperforms predictors that use such
information including Eigen, CADD, DANN, and PolyPhen-2.
This result is particularly remarkable when considering that
CADD, for instance, utilizes 10 SVM-linear models trained on 63
distinct features including conservation measures, regulatory, and
transcript information as well as scores computed by other pre-
dictors such as SIFT and PolyPhen-2. It is important to note that
there exists another category of methods, including the predictors
FATHMM-weighted43 and PON-P244, that estimates the dele-
teriousness level of each protein and integrates this information
with variant deleteriousness scores to improve the overall accu-
racy across multiple proteins. PON-P244, for example, achieves
higher precision in separating deleterious and benign variants45

than other methods by utilizing, in addition to conservation and
genomic annotations, GO terms to estimate protein level dele-
teriousness. LIST scores are protein independent and reflect the
deleteriousness based on the likelihood of a mutation to alter
the molecular functions of the mutated protein regardless of the
deleterious level of that protein. Thus, predictors from this
additional category and LIST are categorically different and not
directly comparable. Furthermore, some existing predictors utilize

minor allele frequencies as an input feature46,47 and are also not
directly comparable to LIST.

We built LIST based on the hypothesis that the taxonomic
closeness of species from which sequences in MSAs originate has
to be taken into account when assessing conservation. What this
specifically means is best explained for the case where an amino-
acid matching a human variant of interest is found in the MSA. A
human variant for which such a matching amino acid already
exists in the reference of another species is more likely to be benign
when that species is closely related to human than farther way in
the taxonomy tree. In contrast, the human variant is more likely to
be deleterious when a matching amino acid is present in homo-
logous proteins of a far-related species. Both of these corollaries,
which we demonstrate to be correct, follow the concept that the
overall similarity of species influences the phenotypic impact of
identical amino acids at given positions in homologous protein.

It can be expected that identical amino acids at a specific
sequence position in homologous proteins have similar effects if
two species that harbor these homologs are close in the taxonomy
tree. As a consequence, if an amino acid has a benign effect in one
of these closely related species, thus in its reference sequence, this
amino acid is most likely benign in the other species as well.
However, identical amino acids at the same sequence position of
homologous proteins in two species that are far apart in the
taxonomy tree can have very different effects, as interaction
partners and regulatory mechanisms are likely to be different for
the homologous proteins . The replacement of phosphosite resi-
dues by phospho-mimicking aspartic or glutamic acid in lower
eukaryotes, prokaryotes, and archea32, as mentioned in the
introduction, provides a good example for this case. Although
potentially detrimental in humans33, the replacement of a phos-
phoswitch by a permanent “on-state”, via phospho-mimicking
amino acids, may be tolerated in unicellular organisms because of
different cellular regulatory mechanisms in these organisms and/
or different selective pressures acting on them. In this context, it
is also interesting to note that, based on recent data, it has been
suggested that the aggressive behavior of human cancer cells
might be the result of atavistic processes that bring back uni-
cellular behavior48–51. Whether human variants that have
matching amino acids in homologs of far-related, unicellular
species contribute to the activation of such atavistic processes in
cancer remains to be established. In any case, to provide a first
test for the potential relevance of our new measures in the
identification of cancer-causing variants, we also evaluated LIST
performance on the Cancer test set. We found that LIST indeed
achieves a high AUC on this set, in contrast to most of the
existing methods that drop significantly in performance on this
set. More studies are clearly required to establish whether variants
that are deleterious to humans and occur in the sequence of
species that are far away from them in the taxonomy tree are
indeed more associated with cancer than with other diseases.

In summary, we demonstrate that measures exploiting the
taxonomic closeness of species are more effective for the assess-
ment of the deleteriousness of human variants than measures
exploiting variant frequency across species. Therefore, we believe
that the conservation measures that we introduced will be useful
for many applications investigating the in vivo effect of variants
that change protein-protein interactions, protein regulation and
signaling, or other protein features that are cellular context
dependent. Hence, taxonomy-based conservation measures are
likely to constitute a more reliable alternative to frequency-based
measures for a wide range of applications spanning all biosciences.

Methods
Data sets. Our main data sets are based on exome variants that originate from
60,706 individuals, which were identified through high-throughput methods and
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collected by the Exome Aggregation Consortium34 (ExAC). To avoid multi-
isoform redundancy, we only used variants that mapped to the SwissProt human
protein sequences (downloaded on August 9, 2017). These ExAC variants were
mapped to the human reference genome GRCh37, which is superseded by
GRCh38. To avoid cases where different predictors make predictions for identical
variants based on different sets of underlining sequences, we only used those
variants that map to identical regions in both GCRh37 and GCRh38. Variants of
the first amino acid M and those involving nonstandard amino acids were excluded
for all analyses. We divided the ExAC data and created three sets (optimization sets
1 and 2, ExAC/ClinVar test set) for optimization and initial testing (Supplementary
Table 2). To avoid protein level bias52 during optimization and testing, we first
divided the SwissProt human protein sequences randomly into two equal sets A
and B such that sequences in either set have < 50% identity with those in the other
set. Variants that map to proteins in set A were used for optimization only
(optimization sets 1 and 2), and those that map to proteins in set B were used for
testing only (ExAC/ClinVar; Supplementary Table 2). For optimization set 2 and
the ExAC/ClinVar test set, variants in ExAC that are marked by ClinVar as
pathogenic were placed in the deleterious class and, from the remaining variants,
those that are observed in the human population with an allele frequency (ExAC:
Adjusted Alt allele frequency in total ExAC samples) ≥1% were considered to be
benign and placed in the benign class. The optimization set 2, was used to optimize
the hierarchical structure of LIST. The number of variants in optimization set 2 is
small (deleterious/benign: 2,146/18,109), especially the number of deleterious
variants. Thus, for training of LIST’s individual modules, we generated optimiza-
tion set 1, where the deleterious class is defined as rare variants with allele fre-
quency in the range of 0.015% to 0.03%, and the benign class as frequent variants
with allele frequency ≥ 0.5%. Optimization set 1 contains 24,096 benign and 48,142
deleterious variants. When generating the histograms of VST values and raw fre-
quencies for ExAC variants with deleterious and benign effects (Fig. 2 and Sup-
plementary Fig. 1), we used the Optimization set 2 and excluded variants with
alignment depth < 50. For Fig. 2a and Supplementary Fig. 1, we also excluded those
variants that do not match any amino acid in the raw MSA (43.4% of the dele-
terious and 15.1% of the benign variants with alignment depth ≥ 50 did not match
any amino acid in MSA). Importantly, the trends shown in Fig. 2a and Supple-
mentary Fig. 1 are reproduced when using the entire ExAC/ClinVar data set. The
ExAC/ClinVar test set was used to analyze the performance of LIST and compare it
to other methods. LIST scores all variants in this test set (see Supplementary
Table 2). However, most methods that we compared LIST’s performance with do
not score all variants. Therefore, for each type of analysis presented, we used the
maximal number of variants from the ExAC/ClinVar test set that were scored by all
methods used in the comparison.

We created two additional test sets (gnomAD/UniProt, and Cancer) and also used
the HumVar53 data set. For each of these sets, only variants mapping to protein set B
were used. In the additional test set gnomAD/UniProt, deleterious variants are those
that are marked by UniProt as pathogenic and benign variants are those with an allele
frequency ≥ 1% in the gnomAD data set (Alternative allele frequency in the whole
gnomAD exome samples) and not marked by UniProt as pathogenic. The Cancer test
set is a subset of the gnomAD/UniProt test set. It has the same benign variants as the
UniProt/gnomAD test set, but only those that are associated with cancer are labeled as
deleterious. Finally, the HumVar test set is the subset of HumVar variants provided
by PolyPhen-229 that map to proteins of set B, where deleterious variants include all
variants associated with diseases and loss of activity/function, excluding those
associated with cancer, and benign variants are those that are frequent (allele
frequency ≥ 1%) (Supplementary Table 2). It is important to reiterate that all variants
used in optimization map to proteins of set A and, thus, do not overlap with variants
used for testing because they all map to proteins of set B. As mentioned for the ExAC/
ClinVar test set, most methods that we compared LIST’s performance with do not
score all variants. Therefore, we always used the maximal number of variants from
each set that was scored by all the methods compared.

Multiple sequence alignment. We aligned each of the 20,195 human SwissProt
sequence to the SwissProt/TrEMBL database (downloaded on 9 August 2017) using
blastp54 with the “outfmt” 4 to generate multiple sequence alignments. We used an
e-value cutoff of 0.01, gap opening penalty of 11 and a gap extension penalty of 2.
To avoid scenarios where highly conserved and redundant domains saturate the
alignment process, which would leave partially conserved protein regions under-
aligned or unaligned, we tried not to limit the number of aligned sequences or the
alignment depth. Thus, we set the “num_alignments” and the “num_descriptions”
parameters to 150,000. We marked two aligned residues at each side of gaps as
boundary residues (BND), which are handled differently by our algorithm as
described in the following section. Finally, we filtered-out aligned protein sections
with ≤40% identity to the human query as well as sections shorter than either 70
residues or 70% of the query sequence length; whatever is smaller. We define the
alignment depth at position τ as the number of sequences with LI ≥ 4 at τ.

Measures and LIST modules. LIST uses two key metrics that we have to define
before providing details on the individual modules.

The local identity, LI, of an aligned sequence at τ is defined as the number of
identical residues between that sequence and the human query in a window size 9
centered at τ, excluding the residue at τ. Sequences with a residue labeled as BND at

position τ are assigned a LI of zero. The window size of 9 was learned, using a grid
search, to maximize LIST’s AUC for predictions of variants in the optimization set 1.

Shared taxa ST is defined as the number of edges in the taxonomy tree that are
shared between human and other species (Fig. 1a).

LIST is constructed hierarchically35,36 (Supplementary Fig. 2) from the three
modules PVM, PM, and AM. All modules have been designed such that their
output scores correlate positively with deleteriousness, i.e., higher scores indicate
higher likelihood for deleteriousness.

Position variant module (PVM): PVM exploits the contrast in the variant
shared taxa VST between benign and deleterious variants shown in (Fig. 2a). For
any given variant x at position τ, the PVMτ,x score is computed as

PVMτ;x ¼ 1� VSTτ;x

31 ; LImax � α

1; LImax<α

(
ð1Þ

The variant shared taxa VSTτ,x is the ST value of the sequence of highest LI to the
query and with amino acid x at τ. We assume that the sequence with the highest
local identity around τ comes from a homologous gene. To guarantee a minimal
level of homology, i.e. functional relation, only sequences with LImax > α are
considered. The cutoff α= 4 was obtained by maximizing PVM’s AUC value using
the optimization set 1. If no matching amino acid is found, LI is set to 0 and PVMτ,x

to 1. If the highest LI is shared by several sequences, to break the tie, we use the
highest section identity, SI, to identify the closest homolog. SI of a given sequence is
defined as the number of residues that are identical between the human query and
the section of this sequence that harbors position τ and is continually aligned in the
blastp output. Residues labeled with BND are considered as mismatches in the
calculation of SI. If multiple sequences share the same highest SI (and the same
highest LI), then we select the highest ST from this pool of sequences.

Position module 1 (PM1): PM1τ is the average of the PVMτ,x scores of all
possible amino acids x at position τ excluding the amino acid of the reference

PM1τ ¼
P20

x≠ref PVMτ;x

19
ð2Þ

Position module 2 (PM2): PM2 exploits the contrast between the average STPs
(described earlier) of deleterious and benign variants shown in Fig. 2b. In this
figure, the blue (gray) column at each ST value represents the averaged maximum
LI values of all benign (pathogenic) variants associated with that shared taxa.
Averaged STPs reveal that benign variants have higher LIs at higher STs compared
with deleterious ones. Thus, a simple linear classifier is used to exploit this contrast.

First, we computed the average log STPs of deleterious and benign variants:

LSTPdeleterious;st ¼
P

τ¼deleterious LSTPτ;st

Ndeleterious

ð3Þ

LSTPbenign;st ¼
P

τ¼benign LSTPτ;st

Nbenign
ð4Þ

Where LSTPτ;st ¼ log10 1þ STPτ;st

� �
, and Ndeleterious (Nbenign) is the number of

protein positions in the optimization set 1 with deleterious and no benign variants
(benign and no deleterious variants).

Then, for each ST value, we computed the center of these two profiles and the
span between them:

LSTPcenter;st ¼
LSTPdeleterious;st þ LSTPbenign;st

2
ð5Þ

LSTPspan;st ¼ LSTPdeleterious;st � LSTPbenign;st ð6Þ
And finally, the PM2τ score for any sequence location τ is defined as

PM2τ ¼
P31

st¼1 LSTPτ;st � LSTPcenter;st

� �
� LSTPspan;st

31
ð7Þ

Figure 2b shows that the span between the averaged local identities (LI) of
benign and deleterious variants at ST=7, for example, is close to zero. Therefore, at
ST=7, the STP value has no contribution to the PM2 score. In contrast, the span
calculated at ST=27 is large, and the LI value at that ST has a high impact on the
PM2 score.

The amino acid module (AM): Benign variants are more likely to replace
reference amino acids with new ones that have a similar physiochemical property
(swap-ability) when compared with deleterious variants. The AM scores variants
solely based on the swap-ability between reference and observed amino acids. We
estimated amino-acid swap-ability in the general human population based on
counts in the optimization set 1. We constructed the probability matrices PR (PC)
of rare (common) variants of the optimization set 1 by counting them and then
normalizing over r:

PRr;x ¼
CRr;xP19

xj ;j≠r
CRr;xj

ð8Þ

PCr;x ¼
CCr;xP19

xj ;j≠r
CCr;xj

ð9Þ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09583-2

6 NATURE COMMUNICATIONS |         (2019) 10:1556 | https://doi.org/10.1038/s41467-019-09583-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Where r is the reference amino acid and x is the observed one. PRr,x (PCr,x) is the
probability of observing rare (common) r to x changes. CRr,x (CCr,x) is the count of
rare (common) r to x changes.

Using PRr,x and PCr,x, the AM score is then defined as:

AMr;x ¼
PRr;x

PRr;x þ PCr;x

� � ð10Þ

Compensating for alignment depth. When comparing LIST’s performance to
that of SIFT and PROVEAN for variants of the optimization set 2 that were binned
according to the alignment depth at their locations (Supplementary Table 9), it
became clear that LIST outperforms both predictors at all alignment depths.
However, when LIST was used to predict variants at locations covering the entire
spectrum of alignment depths, LIST performed well but not as well as for the
predictions of variants that were binned according to alignment depths. The reason
for this became obvious when analyzing the median scores of each module for the
different bins. PVM and PM1 median scores were roughly constant across the
different bins, whereas PM2 median scores shifted toward smaller and even
negative values, thus correlating inversely with alignment depth (Supplementary
Table 9). This shift in scores has no significant impact on predictions made only for
variants within a specific bin because each bin spans a small range of the alignment
depth. However, it affects predictions across all alignment depths. Furthermore,
Supplementary Table 9 revealed that variants in regions of higher alignment depth
are more likely to be deleterious compared to those in lower alignment depth. We
are using weighted Bayes rule to integrate the scores of LIST modules hierarchically
into LIST final score. In theory, Bayes rule computes the probability of an event by
combining different, independent, probabilities of that event. In our case, raw
scores computed by individual LIST modules are not real probabilities of the
deleteriousness of variants, and dependencies between these scores are difficult to
estimate. Consequently, we had to process raw scores before integrating them so
that they reflect, as much as possible, real probabilities.

We undertook two processing steps. First, we rescaled PM2 scores to factor out
alignment depth. Specifically, we computed the range of PM2 scores at each
alignment depth using the optimization set 2 and then, when evaluating query
sequences, shifted PM2 score appropriately according to the precomputed range
associated with its alignment depth (Supplementary Note 4). Second, we scaled the
scores of all modules to reflect the fact that variants at higher alignment depth
are more likely to be deleterious compared to those at lower alignment depth, i.e.,
have higher probability of been deleterious. Specifically, we used the optimization set
2 to estimate the probability of deleterious variants for each alignment depth, and
then, to reflect real probabilities, multiplied each of the PVM, PM1, and PM2 scores
by the precomputed probability of deleterious mutations associated with its
alignment depth (Supplementary Note 4). Importantly, the prediction performance
for variants within specific bins changed only marginally for most bins as a result of
this scaling, highlighting that compensating for alignment depth helped mainly in
making scores consistent for predictions across all alignment depths.

Note that many tools do not score mutations at shallow alignment depth. LIST
assigns unscaled, median scores from PVM, PM1, and PM2 to variants at positions
with alignment depth < 3 and then compensates this scores for alignment depth
(first and second explained above). This alignment depth cutoff value of 3 was
learned to maximize AUC using the optimization set 2. Consequently, LIST scores
all variants regardless of the alignment depth.

Optimizing LIST hierarchical structure. We made the following two assumptions:
First, we assumed that, once compensated for alignment depth, each module’s

scores can be loosely considered probabilities after being rescaled to the range
[0+C, 1−C] and then weighted:

rescaled score ¼ C þ 1� 2Cð Þ � score�min
max�min

� �
ð11Þ

where min and max are the minimum and maximum scores for each module observed
in the optimization set 2. C= 0.2 was used to prevent extreme values from dominating
the final outcome. A weight (ω ∈ [0.1,1]) is used to account for the relative prediction
accuracy of each module, and the weighted scores were calculated as:

weighted score ¼ 0:5þ rescaled score� 0:5ð Þ � ωð Þ ð12Þ
Weights ω were learned using a grid search on optimization set 2 to maximize LIST’s
AUC, such that modules with higher accuracy are assigned higher ω values. Low ω
values produce weighted scores that reflect high uncertainty, i.e., probabilities near 50%,
whereas weighted scores resulting from higher ω values have more impact on the final
score that is generated by combining weighted scores using Bayes rule35,36.

Second, the output scores that are generated when combining weighted scores
using Bayes rule are likely to be skewed away from the center because the different
input scores are not completely independent. Thus, in order to use it as an input
probability to the next hierarchical level, these scores are redistributed to fit a
normal distribution centered at Bayes rule identity element 0.5, N(μ= 0.5, σ2=
0.01) and bounded by the range [0+C, 1−C] (Supplementary Note 5,
Supplementary Figs. 9 and 10).

We redistribute LIST’s output scores to fit a uniform distribution (i.e., rank
score), which, we believe, makes the interpretation of these scores simpler. We
learned the redistribution function from optimization set 2. The final ROC curves
representing the performances of each of LIST three sub-modules are shown in
Supplementary Fig. 11.

In the practical use of methods like LIST, variants of interest are scored, and the
subset of variants with highest scores are prioritized for experimental testing or
other ways of validation. Therefore, it is important that predictors score all variants
fairly and with as little bias as possible. Otherwise, the scores of training variants
will dominate and overshadow those that are novel. The hierarchical learning
approach applied here enables the use of simple learning tools (linear models) that
pose limited risk of over-scoring variants used in optimization. Indeed, our results
demonstrate that LIST poses virtually no bias in scoring variants used in its
optimization over those that are used for testing (see Supplementary Note 3,
Supplementary Table 5).

In order to provide access to this new tool, we set up a server with precomputed
LIST predictions of all possible variants in SwissProt human protein sequences:
http://list.msl.ubc.ca/ (Supplementary Fig. 12).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during the current study are available in the UBC Michael Smith
Laboratories Dataverse repository: https://doi.org/10.5683/SP2/BE6AEA Data associated
with figures can be found in the source data file: https://doi.org/10.5683/SP2/3OU15O
LIST can be found at http://list.msl.ubc.ca/ Protein sets used in the optimization and
benchmarking of LIST are available at: https://gsponerlab.msl.ubc.ca/software/list/
SwissProt/TrEMBL protein sequences are available from UniProt: https://www.uniprot.
org/ Taxonomy data are available from NCBI: https://www.ncbi.nlm.nih.gov/guide/
taxonomy/ ExAC and gnomAD allele frequencies and prediction scores for SIFT,
PROVEAN, phyloP, SiPhy, GERP++, phastCons, LRT, Eigen, CADD, Fathmm-MKL,
DANN, MutationTaster, Polyphen-2, MutationAssessor, GenoCanyon, and fitCons were
downloaded from dbNSFPv3.5: https://sites.google.com/site/jpopgen/dbNSFP/
EVmutation scores were downloaded from: https://marks.hms.harvard.edu/evmutation/
All other relevant data are available upon request.

Code availability
LIST’s code is available at: https://github.com/NawarMalhis/LIST.
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