Skip to main content
. 2019 Apr 5;9:5746. doi: 10.1038/s41598-019-42276-w

Table 2.

Optimization of the best classifier in multilayer perceptron network (metric 2) and CNN (metric 4) by comparing diagnostic performance in the internal validation set.

Imaging data CE-T1WI + ADC CE-T1WI ADC
MLP network AUC (95% CI)
100-10 0.991 (0.987–0.994) 0.965 (0.959–0.972) 0.969 (0.960–0.978)
500-100-10 0.990 (0.987–0.993) 0.965 (0.960–0.971) 0.968 (0.956–0.979)
500-100-50-10 0.989 (0.985–0.993) 0.956 (0.949–0.962) 0.964 (0.953–0.975)
500-250-100-50-10 0.988 (0.982–0.995) 0.968 (0.964–0.982) 0.965 (0.952–0.977)
750-500-250-100-50-10 0.986 (0.978–0.993) 0.971 (0.967–0.975) 0.960 (0.951–0.969)
CNN Accuracy (Sensitivity/Specificity)
Inception v-3 80.0 (50.0/100) 76.7 (41.6/100) 86.7 (83.3/88.9)

Abbreviations: MLP = multilayer perceptron, CNN = convolutional neural network, CE-T1WI = contrast-enhanced T1 weighted imaging, DWI = diffusion weighted imaging, AUC = area under the receiver operating characteristic curve.