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We are all too familiar with the events that follow a bee sting—heat, redness, swelling,

and pain. These are Celsus' four cardinal signs of inflammation that are driven by very

well‐defined signals and hormones. In fact, targeting the factors that drive this onset

phase is the basis upon which most current anti‐inflammatory therapies were devel-

oped. We are also very well aware that within a few hours, these cardinal signs nor-

mally disappear. In other words, inflammation resolves. When it does not,

inflammation persists, resulting in damaging chronic conditions. While inflammatory

onset is actively driven, so also is its resolution—years of research have identified

novel internal counter‐regulatory signals that work together to switch off inflamma-

tion. Among these signals, lipids are potent signalling molecules that regulate an array

of immune responses including vascular hyper reactivity and pain, as well as leukocyte

trafficking and clearance, so‐called resolution. Here, we collate bioactive lipid research

to date and summarize the major pathways involved in their biosynthesis and their

role in inflammation, as well as resolution.

LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years

from the 1982 Nobel: where are we now? To view the other articles in this section

visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc
1 | INFLAMMATION AND ITS RESOLUTION

Inflammation is a protective response against infection and/or injury.

However, when it becomes dysregulated as a consequence of genetic

abnormalities, the ageing process or environmental factors, our

immune system has the capacity to cause extensive damage. Arthritis,

asthma, chronic obstructive pulmonary disease, Alzheimer's disease,

atherosclerosis, and even cancer, while aetiologically disparate, are

diseases unified by a dysregulated immune component. The current

strategy of treating such diseases is based, largely, upon inhibiting
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HA, docosahexaenoic acid;
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the factors that drive acute inflammation such as nonsteroidal

anti‐inflammatory drugs (NSAIDs—such as naproxen or diclofenac),

steroids (prednisone), and “biological” drugs such as infliximab (anti‐

TNF) and anakinra (anti‐IL‐1). Although these medicines ameliorate

disease symptoms, they do not bring about a “cure” and are ineffective

in a significant subset of patients. Furthermore, side effects can ham-

per endogenous homeostatic systems, predisposing to infection. Thus,

there is a need to develop more efficient and effective therapeutic

agents, with one approach being to harness the body's own healing

process for therapeutic gain.

Consequently, attention has turned to the other end of the

inflammatory spectrum, resolution, in order to understand the endog-

enous processes that switch off inflammation. Our objective has been

to identify novel internal counter‐regulatory systems that terminate

inflammation in order to provide new targets that can be harnessed

pharmacologically to push ongoing inflammation down a pro‐
© 2019 The British Pharmacological Societyal/bph 1009
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resolution pathway. As a result, resolution is now been studied in

great detail with clear evidence suggesting that resolution is an active

process with quantifiable indices and specific requirements. Along

these lines, lipid mediators have emerged as internal regulatory signals

that activate many aspects of the inflammation and resolution cas-

cade, including terminating leukocyte trafficking into tissue once the

inflammatory signal has been removed, scavenging pro‐inflammatory

signals as well as clearing dead cells from the resolves site. Hence, in

this review, the role of lipids in the resolution cascade will be

discussed.

2 | CYCLOOXYGENASE AND PROSTANOIDS

The enzyme cyclooxygenase (COX) converts arachidonic acid (AA) to

form PGG2 (Pagels et al., 1983) with the peroxidase element of the

enzyme further reducing PGG2 to PGH2 (Hamberg & Samuelsson,

1973), which serves as a precursor for all major prostanoid mediators.

There are two principal isoforms involved in the conversion of AA to

prostanoids, namely, COX‐1 and COX‐2. Unlike COX‐1, which is con-

stitutively expressed in most cells and tissues and is broadly involved

in house‐keeping functions, COX‐2 is induced in response to inflam-

matory stimuli (Dubois et al., 1998) being expressed at sites of infec-

tion and injury with the exception of parts of the brain and kidney

(Harris et al., 1994). Formation of prostanoids from PGH2 occurs

through the actions of downstream synthases that are expressed in

a tissue and cell type‐selective fashion including PGD synthase

(Shimizu, Yamamoto, & Hayaishi, 1982) PGE synthase 1, 2, and 3

(Tanaka, Ward, & Smith, 1987), PGF synthase (Hayashi, Fujii,

Watanabe, Urade, & Hayaishi, 1989), prostacyclin synthase, and

thromboxane A synthase (Ullrich & Haurand, 1983), which form

PGD2, PGE2, PGF2α, PGI2 (also known as prostacyclin), and TXA2

respectively. The differential expression of these downstream

enzymes within cells determines the profile and levels of prostanoid

production generated under resting and inflammatory conditions.

Presently, there are nine known prostanoid receptors in mice and

man. These include the PGD receptors, DP1 and DP2; the PGE2 recep-

tors, EP1, EP2, EP3, and EP4; the PGF receptor, FP; the PGI receptor,

IP; and the TXA receptor, TP. In addition, there are splice variants of

the EP3, FP, and TP receptors differentiated only in their C‐terminal

tails. All of these receptors belong to the GPCR superfamily of pro-

teins, with the exception of DP2 (also known as CRTH2), which is a

member of the chemokine receptor family (Hirai et al., 2001). The IP,

DP1, EP2, and EP4 receptors signal through Gs resulting in an increased

intracellular cAMP, whereas the EP3 receptor couples to Gi to reduce

cAMP, while EP1, FP, and TP receptors signal through Gq to induce

calcium mobilization.

The more common prostanoids, PGE2 and PGI2, both enhance

vasodilation (Kaley, Hintze, Panzenbeck, & Messina, 1985), oedema

formation, and vascular permeability, particularly in the presence of

histamine, bradykinin, and 5‐HT (Hata & Breyer, 2004). Mice that

are genetically depleted for their respective receptors (IP, EP2, and

EP3) show reduced pleural exudation following treatment with

inflammogens including carrageenan and zymosan (Yuhki et al., 2004).
Robust evidence from EP‐deficient mice has shown that the

febrile response to PGE2 arises from the actions of PGE2 on its EP3

receptor, which is present on sensory neurons in the periphery and

brain (Dantzer, Konsman, Bluthe, & Kelley, 2000). Equally, PGE2 is a

potent pyretic agent known with elevated concentrations found in

cerebrospinal fluid taken from patients with bacterial or viral infec-

tions (Saxena, Beg, Singhal, & Ahmad, 1979). While none of the

prostanoids cause pain directly, PGI2 and PGE2 reduce the threshold

of nociceptor sensory neurons to stimulation when bound to IP, EP1,

EP3, and EP4 receptors respectively (Ahmadi, Lippross, Neuhuber, &

Zeilhofer, 2002).

Prostanoids also play an important role in protecting against oxida-

tive injury in cardiac tissue and inmaintaining cardiovascular (CV) homeo-

stasis. Indeed, their protective effect has been demonstrated in clinical

studies, which found an increased risk of myocardial infarction (MI),

stroke, systemic and pulmonary hypertension, thrombosis, and sudden

cardiac death following the use of COX‐2‐specific inhibitors (Garcia

Rodriguez, Tacconelli, & Patrignani, 2008). Furthermore, deleting specific

prostanoid synthases and receptors results in an augmentation of

ischaemia–reperfusion injury (Xiao et al., 2001) as well as contributing

to the decline in cardiac function following MI. CV health is regulated

by vasodilatory PGI2 and pro‐thrombotic TXA2 (Bunting, Moncada, &

Vane, 1983), where PGI2 counterbalance the actions of TXA2 (Grosser,

Fries, & FitzGerald, 2006). Indeed, endothelial PGI2 along with NO pre-

ventsTXA2‐induced platelet aggregation and thrombosis. TXA2 is derived

from platelet COX‐1 causing platelet aggregation and vascular smooth

muscle contraction (Ellis et al., 1976). Clinical CV diseases including

unstable angina, MI, and stroke can arise from overproduction of TXA4.

Importantly, the cardio‐protective properties of aspirin can be attributed

to the covalent inhibition of COX‐1 (Rocca et al., 2002).

As well as being pro‐inflammatory, many prostanoids up‐regulate

intracellular cAMP triggering immuno‐suppressive effects. For exam-

ple, PGE2 and PGI2 reduce the ability of inflammatory leukocytes to

phagocytose and kill microorganisms (Aronoff, Canetti, & Peters‐

Golden, 2004), as well as inhibiting the production of downstream

pro‐inflammatory mediators (Aronoff et al., 2007) while, in contrast,

triggering the synthesis of IL‐10 and IL‐6 (Harizi, Juzan, Pitard,

Moreau, & Gualde, 2002). Indeed, in a number of conditions associ-

ated with increased susceptibility to infection, including cancer

(Starczewski, Voigtmann, Peskar, & Peskar, 1984), ageing (Hayek

et al., 1997), and cystic fibrosis (Medjane, Raymond, Wu, & Touqui,

2005), overexpression of PGE2 has been reported. Interestingly, dur-

ing the very early phase of acute inflammation, PGE2 indirectly exerts

pro‐resolution effects by switching on the transcription of enzymes

necessary for the generation of lipoxins (LXs; Levy, Clish, Schmidt,

Gronert, & Serhan, 2001), resolvins (Rvs), and protectins (PDs; Hong,

Gronert, Devchand, Moussignac, & Serhan, 2003). These represent

other classes of lipids mediators with pro‐resolution properties.

While PGD2 can elevate cAMP via its DP1 receptors, PGD2 may

also act independently of its DP1 and DP2 receptors when it non‐

enzymically dehydrates into PGs of the J2 series, such as PGJ2,

Δ12,14‐PGJ2, and 15‐deoxy‐Δ12,14‐PGJ2 [15d‐PGJ2]; Clark et al.,

2000). These cyclopentenone PGs form covalent attachments with
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reactive sulphydryl groups on intracellular regulatory proteins, which

enables modulation of their function. For instance, 15d‐PGJ2 upon

ligation to the nuclear receptor PPAR‐γ (Khan, 1995) decreases pro‐

inflammatory cytokine release and modifies gene expression (Jiang,

Ting, & Seed, 1998) as well as directly inhibiting the actions of IκB

kinase, which is responsible for the activation of NF‐κB (Cernuda‐

Morollon, Pineda‐Molina, Canada, & Perez‐Sala, 2001). 15d‐PGJ2,

identified in rodent peritonitis resolution exudates (Rajakariar et al.,

2007), independently of PPAR‐γ, can preferentially inhibit monocyte,

rather than neutrophil, trafficking through differential regulation of

cell‐adhesion molecule and chemokine expression (Gilroy et al.,

2003); regulate macrophage activation and pro‐inflammatory gene

expression (Lawrence, 2002); and induce leukocyte apoptosis through

a caspase‐dependent mechanism (Bishop‐Bailey & Hla, 1999). More-

over, PGD2‐derived compounds function as endogenous braking sig-

nals for lymphocytes to stimulate resolution (Trivedi et al., 2006).

Table 1 summarises the prostanoids, their biological actions and con-

centrations at sites of inflammation.
3 | PROSTANOIDS AND
POST‐RESOLUTION BIOLOGY

Recently, we demonstrated that classical resolution may not be the end

of the local immune response to infection or injury, but rather that a

third phase subsequent to these exists: post‐resolution (Motwani

et al., 2017). Traditionally, resolution processes were deemed success-

ful if acute inflammation, as described by leukocyte clearance and cyto-

kine catabolism, was terminated. However, they may have a hitherto

unappreciated role in controlling adaptive immune responses andmain-

taining tolerance. Specifically, we found that murine innate immune‐

mediated responses to low‐dose yeast cell wall extract (zymosan,

administered i.p.) or bacteria (Streptococcus pneumoniaeovalbumin‐labelled,

i.p.) were resolved. Interestingly, these low‐dose stimuli elicited a previ-

ously overlooked second wave of leukocyte influx into tissues that

persisted for weeks. These cells comprised three separate populations

of Ly6chi monocyte‐derived macrophages including CD11B+/

CD49d+/CD115+/MHC‐II+ myeloid‐derived suppressor cells,

F4‐80lo/MHC‐II+/CD11c+ dendritic cells, and F4‐80int/CD11Bhi/

CD11c− macrophages. In addition, tissue‐resident (embryonic‐

derived) macrophages, which disappear during the acute inflammatory

response, re‐appear. These diverse populations of macrophages were

observed alongside lymph node expansion and increased numbers of

peripheral blood and tissue memory T and B lymphocytes. Polymor-

phonuclear (PMNs) were not present during this phase. One of the

key events in this process is the sustained synthesis of PGE2, which

is derived from macrophage COX‐1/mPGES and that is triggered by

IFN‐γ. It transpires that this post‐resolution phase of prostanoid

biosynthesis creates a window of susceptibility to repeat infections

on the one hand, while also controlling local adaptive immune

processes on the other (Newson et al., 2017). The nature of these

prostanoid/adaptive immune interactions is being investigated.
4 | CYTOCHROME P450

Cytochrome P450s (CYP450s) are a family of membrane‐bound,

haem‐containing enzymes found in the liver, kidneys, brain, heart,

CV system, and lung and are best characterized for the catalysis of

NADPH‐dependent oxidation of drugs, chemicals, carcinogens, and

hormones (Nelson et al., 1996). The CYP450 family contains 57 genes

in humans, and although approximately one quarter of these have

been shown capable of metabolizing polyunsaturated fatty acids

(PUFAs), the CYP2J2 and CYP2C family members (CYP2C8, 2C9) are

thought to be the major enzymes responsible for lipid mediator pro-

duction (Bishop‐Bailey, Thomson, Askari, Faulkner, & Wheeler‐Jones,

2014). In addition to metabolizing AA (Figure 1), CYP450s also readily

metabolize the related ω6 PUFA linoleic acid (Figure 2) and ω3 PUFAs

(see below also) docosahexaenoic acid (DHA, Figure 3) and

eicosapentaenoic acid (EPA; Figure 4) into a series of related biologi-

cally active mediators (Smilowitz et al., 2013). CYP450 are capable or

metabolizing PUFA substrates by epoxygenase, lipoxygenase (LOX)

and ω‐hydroxylase type of activities (Zeldin, 2001). The epoxygenase

activity inserts a single molecular oxygen in one of the double bonds

of each PUFA, for example, for AA to form one of four regioisomers

of epoxyeicosatrienoic acid (5,6‐, 8,9‐, 11,12‐, or 14,15‐EET; the num-

bers indicating the double bond in AA subject to epoxygenation;

Zeldin, 2001). Each EET can be formed as either an R/S or S/R stereo-

isomer, with ratios of production depending on the generating

CYP450. Stereoisomers of EETs may have different biological activi-

ties, but little research exists to understand the extent of these differ-

ences. CYP450s can also have LOX activity producing mid‐chain

(12[R]‐), and ω‐hydroxylase activity producing terminal (19[S > R]‐,

and 20‐) hydroxyeicosatetraenoic acids (HETEs; Roman, 2002). Once

formed, epoxygenase products in particular are quickly metabolized

by epoxide hydrolases (EH) or reincorporated into membranes (Zeldin,

2001). Soluble EH (sEH) and microsomal EH (encoded by the ephx2

and ephx1, respectively) combine to metabolize virtually all

epoxygenase products in vivo (Edin et al., 2018). For example, EETs

get converted to dihydroxy‐eicosatrienoic acids. Importantly, a num-

ber of sEH inhibitors have been developed that inhibit the breakdown

of epoxygenase products to potentiate their signalling (Hwang,

Wecksler, Wagner, & Hammock, 2013).

AA and related PUFA are metabolized by CYP epoxygenase and

epoxide hydolases in the vascular endothelium (Roman, 2002; Zhang

et al., 2001) and vascular smooth muscle. In vascular smooth muscle,

AA is also catalysed by CYP hydroxylases to 20‐HETE (Wang et al.,

1999). Indeed, CYP4F3A in myeloid tissue catalyses the

ω‐hydroxylation of LTB4 to 20‐hydroxy‐LTB4, an inactivation process

that is critical for the regulation of the inflammatory response (Johnson,

Edson, Totah, & Rettie, 2015). However, it is unknown whether CYP4F3

is the source of 20‐HETE produced by PMNs (Bednar et al., 2000). These

metabolites play a large and complex role in maintaining cardiac, renal,

and pulmonary homeostasis by regulating vascular tone and reactivity,

ion transport, and renal and pulmonary functions as well as growth

responses (Fleming, 2007). Moreover, they have been shown to exert

striking anti‐inflammatory actions (Inceoglu et al., 2008), see below.
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FIGURE 1 Cytochrome p450 metabolism of
arachidonic acid to epoxyeicosatrienoic acids
(EETs) and their subsequent conversion by
soluble epoxide hydrolase to dihydroxy‐
eicosatrienoic acids

FIGURE 2 Cytochrome p450 metabolism of
linoleic acid to epoxy‐octadecenoic acids
(EPOMEs) and dihydroxy‐octadecenoic acids
(DHOMEs)

FIGURE 3 Cytochrome p450 metabolism of
docosahexaenoic acid (DHA) to epoxide
docosapentaenoic acids

FIGURE 4 Cytochrome p450 metabolism of
docosahexaenoic acid to epoxyeicosatrienoic
acids
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5 | CYP450 AND INFLAMMATION

EETs catalysed by CYPs 2C8, 2C9, and 2J2 inhibit the activation of the

transcription factor NF‐κB via the IκB kinase (Node et al., 1999). Con-

sequently, EETs may therefore have the propensity to down‐regulate

various cytokine‐induced, pro‐inflammatory, signalling pathways

downstream of NF‐κB activation. This may explain how EETs prevent

the adhesion of PMNs to the vascular wall by suppressing the expres-

sion of cell adhesion molecules, including intracellular adhesion

molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1)

and E‐selectin on the surface of endothelial cells in response to cyto-

kines (TNF‐α and IL‐1α), and LPS (Fleming, 2007; Figure 5). We

recently reported that epoxygenases are anti‐inflammatory in human

primary monocytes and macrophages (Bystrom et al., 2011), regulate

M1 and M2 phenotype (Bystrom et al., 2011), and promote bacterial

and lipid phagocytosis (Bystrom et al., 2013). In a mouse model of

inflammatory resolution, we took this further using a CYP450

epoxygenase inhibitor SKF525A and sEH knockout mice (Gilroy

et al., 2016). We reported how CYP450 epoxygenase‐derived media-

tors play a crucial role in controlling the infiltration of monocytes into

sites of inflammation and are essential for the pro‐resolution pheno-

type of cells of the monocyte lineage (Gilroy et al., 2016) driving mac-

rophage efferocytosis. Additionally, it was recently reported that EETs

display analgesic bioactions during experimental inflammatory pain

(Inceoglu et al., 2008). In general, CYP450‐derived epoxygenase prod-

ucts are anti‐atherosclerotic, vasodilatory, and anti‐inflammatory

(Chaudhary et al., 2013), with the notable exception of linoleic acid‐

derived/EH product DiHOMEs. DiHOMEs have recently been shown

to mediate thermal hyperalgesia (Zimmer et al., 2018) and, at high

levels, are toxic to PMNs and were originally termed “leukotoxins”

(Moghaddam et al., 1997).

The use of sEH inhibitors and sEH knockout mice has been invalu-

able to understanding the in vivo roles or epoxygenase products.

Inhibiting sEH has revealed protective roles for epoxygenase products

in injury‐induced vascular neointima formation (Revermann et al.,

2010), atherosclerosis and aneurysm formation (Zhang et al., 2009),

and inflammatory cell recruitment (Gilroy et al., 2016). sEH inhibition

or overexpression of producing enzymes such as CYP2J2 are also pro-

tective in various acute inflammatory lung injury models (Revermann
et al., 2009). EETs released from platelets exert anti‐thrombotic prop-

erties by inhibiting platelet aggregation induced by AA and vascular

injury (Briggs, Xiao, Parkin, Shen, & Goldman, 2000). EETs can also

increase the expression of tissue plasminogen activator in a cAMP‐

dependent mechanism, thus suggesting potentially important roles in

controlling the fibrinolytic balance at sites of inflammation (Node

et al., 2001).

The identification of epoxygenase‐product receptors has almost

exclusively focused on AA‐derived EETs and HETEs, with very little

research so far on other n3 and n6‐PUFA products. Putative recep-

tor targets include the TRP channels, the PPARs, and GRP40

(Bishop‐Bailey et al., 2014). EETs can directly activate PPAR‐γ in

endothelial cells (Liu et al., 2005) and PPAR‐α in monocytes with

EET‐mediated anti‐inflammatory effects blocked by PPAR‐γ (Liu

et al., 2005) or PPAR‐α antagonists respectively. PPAR activation

does not however account for all the anti‐inflammatory effects of

EETs. It has been suggested that the anti‐inflammatory properties

of EETs occurred through its ligation to a cell surface receptor. It

was reported that EETs bind with high affinity to an “EET‐receptor”

on the surface of a monocytic cell line, belonging to a specific class

of GPCRs (Behm, Ogbonna, Wu, Burns‐Kurtis, & Douglas, 2009).

GRP40 can be activated by 14,15‐EET (Ma et al., 2015). However,

it must be noted that GRP40 activation only occurred above

10 μM (Ma et al., 2015), whereas most biological effects occur in

the nM range. These receptors are not present in all cells, and their

known actions do not always correlate with the vascular and anti‐

inflammatory activities of epoxygenase products. The identity of this

receptor and its role, if any, in initiating the immuno‐modulatory

actions of EETs is yet to be determined. By contrast, intracellular

signalling pathways are more established. Depending on the model

system used, epoxygenases or its products can reduce cellular acti-

vation by inhibiting NFκB, inhibiting ERK activation, elevate cAMP,

and/or induce cellular hyperpolarization (Thomson, Askari, &

Bishop‐Bailey, 2012). Recently, it has also been proposed that

inhibiting inflammatory endoplasmic reticulum stress may be critical

for the beneficial effects of epoxygenase products, particularly in

neuropathic pain.

As stated above, metabolites of the CYP hydroxylases also pos-

sess anti‐inflammatory properties. For instance, 16‐HETE can block
FIGURE 5 Biological properties of
cytochrome p450 metabolites
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the adhesion of leukocytes to the microvascular endothelium

(Bednar et al., 2000) while also suppressing the synthesis of LTs as

well as inhibiting rises in cerebrospinal fluid pressure, which repre-

sents index of tissue damage and swelling, in thrombo‐embolic

model of stroke in rabbits (Bednar et al., 2000). Moreover, PMN‐

derived 20‐HETE and 16‐HETE also counteract TX‐induced platelet

aggregation (Hill, Fitzpatrick, & Murphy, 1992). Therefore, it can be

surmised that not only do metabolites of CYPs maintain CV and

renal systems but also regulate other diverse signalling pathways

pertinent to fibrinolysis, platelet aggregation, inflammation, and cel-

lular injury.
6 | LEUKOTRIENE AND LXs—
BIOSYNTHESIS

LOX enzymes include 5‐, 12‐, or 15‐LOX and are expressed in leu-

kocytes, platelets, and endothelial cells respectively. 5‐LOX, for

instance, metabolizes AA to the slow‐reacting substances of anaphy-

laxis (LTC4, LTD4, and LTE4: potent mediators of the allergic

response; Lewis et al., 1980) as well as LTB4, a powerful PMN and

eosinophil chemoattractant (Borgeat & Samuelsson, 1979).

To date, four subtypes of LT receptors have been described,

namely, the BLT1 and BLT2 and two for the cysteinyl leukotrienes

CysLT1 and CysLT2. Once bound, LTs signal via a G‐protein in the

cytoplasm to increase intracellular calcium and block formation of

cAMP, which then modulates diverse cellular activities ranging from

motility to transcriptional activation. While CysLT1 receptors medi-

ate mucus secretion, oedema accumulation, and broncho‐constriction

in airways (Lynch et al., 1999), the Cys‐LT2 receptors drive inflam-

matory responses, tissue fibrosis in the lung, and vascular permeabil-

ity (Beller et al., 2004). Not surprisingly, CysLT1 receptors are

overexpressed in patients with chronic rhinosinusitis or asthma

who have aspirin sensitivity (Sousa, Parikh, Scadding, Corrigan, &

Lee, 2002). By comparison, the BLT1 receptor is a high‐affinity

receptor for LTB4 and mediates its chemo‐attractant and pro‐

inflammatory properties (Tager & Luster, 2003). Although BLT2

receptors act in a similar fashion to BLT1 receptors, LTB4 affinity

towards BLT1 receptors is much higher.

In contrast, LXs are a series of trihydroxytetraene‐containing

bioactive eicosanoids that were first isolated from human leukocytes

in the mid‐1980s (Serhan, Hamberg, & Samuelsson, 1984). However,

in contrast to LTs, which are manufactured by intracellular biosyn-

thesis, LXs are generated through cell–cell interactions by a process

known as transcellular biosynthesis. In different human cell types,

during the first biosynthetic step of LX biosynthesis, LOX inserts

molecular oxygen into AA. This can be achieved by two major

routes—the first pathway occurs in eosinophils, monocytes, or epi-

thelial cells and involves the oxygenation of AA at C‐15 by 15‐

LOX yielding 15S‐HPETE. Secreted 15S‐HPETE is then taken up by

monocytes or PMNs and converted to 5,6‐epoxytetraene by 5‐

LOX, which is then hydrolysed within these cells by either LXA4 or

LXB4 hydrolase to LXA4 or LXB4. Activation of this pathway
concomitantly reduces LT synthesis, which requires 5‐LOX to con-

vert AA into LTA4 (Claria & Serhan, 1995). The second major route

of LX biosynthesis occurs in an LTA4‐dependent manner and

involves platelet–leukocyte interactions. 5‐LOX within leukocytes

converts AA into LTA4, which when secreted is taken up by platelets

adhering on the surface of the leukocyte and is subsequently trans-

formed to LXA4 and LXB4. This occurs via the LX synthase activity

of human 12‐LOX (Romano & Serhan, 1992). A third pathway of

LX generation was discovered following aspirin ingestion, which irre-

versibly acetylates COX‐2 in endothelial cells and other activated

cell types; this is a property specific to aspirin and not shared with

other NSAIDs. Consequently, instead of COX‐2 converting AA into

PGG2, aspirin acetylation reprograms the enzyme resulting in the

transformation of AA into 15R‐HETE (C‐15 alcohol carried in the

R‐configuration). This is then metabolized in a transcellular manner

by adherent leukocyte, vascular endothelial, or epithelial 5‐LOX to

form 15 epimeric‐LX (15‐epi‐LX) or aspirin‐trigged LXs that carry

their C‐15 alcohol in the R configuration rather than 15S native

LX. Although initially thought to be only aspirin triggered, a pathway

of endogenous 15‐epi‐LX generation has recently been described,

where neuronal sphingosine kinase 1 mediates this COX‐2 acetyla-

tion (Lee et al., 2018). Aspirin‐triggered LXs share many of the

immune regulatory characteristics of native LXs.
7 | LXs—RECEPTORS AND BIO‐ACTIONS

The biological actions of LXA4 and 15‐epi‐LXs are mediated through

ALX receptors, which are specific GPCRs, isolated and cloned in

mouse, human, and rat tissues (Chiang, Takano, Arita, Watanabe, &

Serhan, 2003). The ALX receptor is also known as the FPR2 receptor.

Human ALX was identified and cloned in various leukocyte popula-

tions including T cells (Ariel, Chiang, Arita, Petasis, & Serhan, 2003),

monocytes (Maddox et al., 1997), and tissue‐resident macrophages,

synovial fibroblasts (Sodin‐Semrl, Taddeo, Tseng, Varga, & Fiore,

2000), and intestinal epithelial cells (Gronert, Gewirtz, Madara, &

Serhan, 1998). LXA4 and 15‐epi‐LX A4 (but not LXB4, LTB4, LTD4, or

PGE2) show high affinity towards ALX receptors (Kd = 1.7 nM). ALX

receptors also have the ability to interact with other small

peptides/proteins such as Ac2‐26 and glucocorticoid‐derived

annexin‐1, which carry out similar anti‐inflammatory effects as the

LXs and 15‐epi‐LXs. Studies in transgenic mice over‐expressing human

ALX receptors showed that the protective and immune modulatory

effects of LXs and 15‐epi‐LXs were ligand‐ and receptor‐dependent

(Devchand et al., 2003). In a peritonitis model of zymosan‐induced

acute inflammation, infiltration of neutrophils was substantially dimin-

ished in ALX transgenic mice compared to their wild‐type equivalents

(Devchand et al., 2003) with the site of LX action identified as the

leukocyte/endothelial interface mediated by the generation of the

anti‐adhesive actions of NO (Paul‐Clark, Van Cao, Moradi‐Bidhendi,

Cooper, & Gilroy, 2004).

15‐Epi‐LX analogues also regulate an ALX‐dependent p38/MAPK

cascade, known to promote chemotaxis by inhibiting leukocyte‐
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specific AP‐1 phosphorylation and activation (Ohira et al., 2004). In

addition to ALX receptors, LXs also function as partial agonists to a

subclass of rhodopsin receptors (Cys‐LT1) more commonly activated

by LTs, mediating bioactions in several tissues and cell types other

than leukocytes (Badr, DeBoer, Schwartzberg, & Serhan, 1989). At

nanomolar concentrations, LXA4 competes for binding with LTD4 on

mesangial cells (Badr et al., 1989) and HUVECs (Fiore, Romano,

Reardon, & Serhan, 1993) as well as opposing the pro‐inflammatory

effects of LTD4. There is also evidence that another intracellular

receptor, the Ah receptor, mediates the biological actions of LXs; Ah

receptor is a ligand‐activated transcription factor that can trigger such

anti‐inflammatory events as the expression of suppressor of cytokine

signalling 2 (Aliberti, Serhan, & Sher, 2002).

LXs are anti‐inflammatory at nanomolar concentrations control-

ling both granulocyte and myeloid cell entry into sites of inflammation.

Indeed, the ability of LXs to diminish neutrophil trafficking was cor-

roborated when an analogue of 15‐epi‐LX was intravenously admin-

istered to BLT1 receptor knockout mice, that have dramatically

elevated neutrophils in the lungs after high limb ischaemia–

reperfusion (Chiang et al., 1999). Furthermore, research in our labo-

ratory has found, in humans, that 15‐epi‐LXs regulate PMN influx in

forearm blisters, accounting for low‐dose aspirin's anti‐inflammatory

properties (Morris et al., 2009). Our additional work on resolving

inflammation has revealed that humans fall into two categories,

those who resolved their acute inflammatory responses in an imme-

diate manner and those that show a more delayed or prolonged

healing process, with the severity and duration controlled by expres-

sion of endogenous epi‐LXs or ALX receptors (Morris et al., 2010).

Paradoxically, while they inhibit neutrophil and eosinophil transmi-

gration (Maddox et al., 1998), LXs promote monocyte infiltration into

sites of inflammation, which when differentiated into macrophages

bring about some of the key aspects of resolution and wound

healing (Maddox & Serhan, 1996) without inducing neutrophil

degranulation or release of other ROS (Jozsef, Zouki, Petasis, Serhan,

& Filep, 2002).

Once at the site of inflammation and resolution, monocyte‐

derived macrophages are stimulated by LXs to ingest and clear apo-

ptotic neutrophils (Godson et al., 2000), which may be facilitated by

changes in the actin cytoskeleton (Maderna et al., 2002). Moreover,

LXs increase levels of the anti‐inflammatory cytokine TGF‐β1, which,

in turn, dampens a range of pro‐inflammatory pathways (Bannenberg

et al., 2005). LXs are also anti‐fibrotic, thereby improving tissue

remodelling by reducing the proliferation of fibroblasts and mesanglial

cells induced by a numbers of factors, including connective‐tissue

growth factor, platelet‐derived growth factor, TNF‐α, LTD4, and

TGF‐β (Leonard et al., 2002). 15‐Epi‐LXs exert the same biological

effects as endogenously produced LXs, but with additional properties

including causing increased vasorelaxation (Serhan, 1994) and endo-

thelial cell production of anti‐inflammatory NO synthesis (Paul‐Clark

et al., 2004). In addition, 15‐epi‐LX A4 inhibits TNF‐α‐induced IL‐1β

in periodontitis in vivo (Hachicha, Pouliot, Petasis, & Serhan, 1999),

down‐regulates suppressor of cytokine signalling 2 signalling

(Machado et al., 2006), and dampens TNF‐α‐induced IL‐8 biosynthesis
(Gronert et al., 1998). As expected, LXs and 15‐epi‐LXs exert benefi-

cial effects in a range of experimental models of inflammation and

human diseases including cystic fibrosis (Karp, Flick, Yang, Uddin, &

Petasis, 2005), glomerulonephritis (Munger et al., 1999), periodontitis

(Pouliot, Clish, Petasis, Van Dyke, & Serhan, 2000), ischaemia–

reperfusion injury (Chiang et al., 1999), various cutaneous inflamma-

tion models (Schottelius et al., 2002), pleuritis (Paul‐Clark et al.,

2004), asthma (Levy et al., 2005), wound healing processes in the

eye (Gronert et al., 2005), colitis, inflammation‐induced hyperalgesia

in rats, and microbial infection in mice (Aliberti, Hieny, Reis e Sousa,

Serhan, & Sher, 2002). See Table 1 for specialized pro‐resolving lipid

mediators, their biological actions and concentrations at sites of

inflammation.
8 | SPECIALIZED PRO‐RESOLVING LIPID
MEDIATORS—BIOSYNTHESIS

Omega‐3 polyunsaturated fatty acids, including EPA and DHA, are

known not only to maintain organ function and health but also to

reduce the severity of inflammatory reactions and incidences of

infection (Arita et al., 2005). Although also now known to be metab-

olized by COX, LOX, and CYP450 pathways into distinct lipid medi-

ators, a novel series of ω‐3 PUFA products were identified in the

resolving exudate of a mouse dorsal air pouch or peritonitis model

using lipidomic and bio‐informatic analysis (Lu, Hong, Tjonahen, &

Serhan, 2005). These endogenous mediators are called Rvs, PDs,

and maresins (MaR).

EPA or DHA generate the Rvs and are categorized as members

of the E‐series (from EPA) or D‐series (from DHA). Both series of

Rvs were initially isolated from murine dorsal air pouches treated

with EPA or DHA as well as aspirin. Transcellular formation of E‐

series Rvs occurs with the conversion of EPA to 18R‐

hydroxyeicosapentanoic acid by COX‐2 expressed within endothelial

cells treated with aspirin. Similar to 15R‐HETE in 15‐epi‐LX formation,

18R‐hydroxyeicosapentanoic acid is released from endothelial cells to

neighbouring leukocytes for its conversion by 5‐LOX to either RvE1

or RvE2, via a 5 (Ariel et al., 2006) epoxide‐containing intermediate

(Arita, Clish, & Serhan, 2005). This interaction is blocked by selective

COX‐2 inhibition but not by indomethacin or paracetamol (Serhan

et al., 2000). Although this transcellular route was proposed as the syn-

thetic pathway for Rvs, intracellular production of Rvs and MaR have

been observed in macrophages without the need for transcellular inter-

actions. RvE1 is spontaneously produced in healthy subjects with levels

increasing after treatment with either aspirin or EPA (Arita et al., 2005).

D‐series Rvs, aspirin‐triggered resolvin D1 (RvD1; AT‐RvD1), and

RvD1, are synthesized via a pathway involving sequential oxygena-

tions, initiated by 15‐LOX or aspirin‐acetylated COX‐2 in the microvas-

culature , respectively, followed by 5‐LOX in human neutrophils with an

epoxide containing intermediate. For AT‐RvD1s, DHA is initially

converted to epimeric 17R‐hydroxydocosahexaenoic acid. In the

absence of aspirin, however, DHA is enzymically converted to 17S‐

hydroxydocosahexaenoic acid (Hong et al., 2003). Interestingly,
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generation of E‐series Rvs can also be mediated by microbial and mam-

malian CYP450 enzymes, which convert EPA into 18‐HEPE. 18‐HEPE

can then be transformed by human neutrophils into either RvE1 or

RvE2 (Serhan et al., 2000). Hence, it is possible that microbes at sites

of infection may contribute to the production of Rvs in a similar

pathway.

DHA is also a precursor for the generation of PDs being enzymi-

cally converted by 15‐LOX to a 17S‐hydroperoxide‐containing inter-

mediate. This intermediate is then converted by leukocytes into a

16(17)‐epoxide that is subsequently converted in these cells to a

10,17‐dihydroxy‐containing compound (Hong et al., 2003). PDs are

distinguished by the presence of a conjugated triene double bond

and by their potent bioactivity. One specific DHA‐derived lipid medi-

ator, 10,17S‐docosatriene, was termed protectin D1 (PD1), which

when generated in neural tissue is called neuroprotectin D1. More-

over, PD1 exhibits tissue‐specific bioactivity as, in humans, this lipid

is synthesized by peripheral blood mononuclear cells and Th2 CD4+

T‐cells, while, in mice, it has been isolated from exudates and brain

cells, human microglial cells (Serhan et al., 2002), and in peripheral

blood (Hong et al., 2003).
9 | SPECIALIZED PRO‐RESOLVING LIPID
MEDIATORS IN INFLAMMATION AND
RESOLUTION

One of the broader immunomodulatory properties of RvE1 is its ability

to inhibit the accumulation of neutrophils and dendritic cells at sites of

inflammation. This occurs by blocking trans‐endothelial migration of

these cells across the microvascular endothelium as well as enhancing

their clearance from inflammatory sites (Arita, Bianchini, et al., 2005).

Other actions of RvE1 includes inhibition of ROS production from

neutrophils in response to bacterial peptide, fMLP and TNFα (Gronert

et al., 2004); inhibition of LTB4‐BLT1 receptor signalling via NF‐κB and

hence the biosynthesis of pro‐inflammatory chemokine and cytokines

(Arita et al., 2007); enhancement of macrophage efferocytosis of

apoptotic bodies (Schwab, Chiang, Arita, & Serhan, 2007); and up‐

regulation of the chemokine receptor CCR5 on late apoptotic

neutrophils (Ariel et al., 2006), which, in turn, blocks chemokine sig-

nalling. RvE1 also regulates leukocyte pro‐inflammatory cell surface

markers including L‐selectin, while selectively disrupting TX‐mediated

platelet aggregation (Dona et al., 2008), adding further insight into

its anti‐inflammatory/pro‐resolution properties. In disease states,

RvE1 suppresses Porphyromonas gingivalis‐induced oral inflammation

and bone loss during periodontitis (Hasturk et al., 2006), is protec-

tive in trinitrobenzene‐sulphonic acid‐induced colitis in rodents

(Arita, Yoshida, et al., 2005), and mediates re‐epithelisation of mouse

cornea after thermal‐injury (Gronert et al., 2005). Taken together,

RvE1 triggers various aspects of the pro‐resolution cascade ranging

from the timely inhibition of granulocyte accumulation at sites of

inflammation to the efferocytosis or clearance of inflammatory

debris (see Serhan, 2008).
RvE1 binds to ChemR23 ( now Chemerin1 receptors, with high

affinity (Kd = 48.3 nm) resulting in the down‐regulation of NF‐κB activ-

ity and consequently the synthesis of pro‐inflammatory cytokines

such as TNF‐α as well as modulating pathways involved in MAPK sig-

nalling (Arita, Bianchini, et al., 2005). Although it has been found in the

kidney, gastrointestinal system, brain, and CV tissue and cells of the

myeloid lineage, the levels of ChemR23 receptor expression are highly

variable. For example, these receptors are significantly increased on

human monocytes but comparatively less so on neutrophils in

response to anti‐inflammatory mediators such as TGF‐β. As with ALX

receptors, ChemR23 is also a receptor for peptide ligands including

chemerin, which also exerts anti‐inflammatory actions (Cash et al.,

2008). RvE1 also interacts with the LTB4 receptor, BLT1, and is a par-

tial antagonist preventing neutrophil activation (Arita et al., 2007).

Therefore, RvE1 couples to two distinct receptors to suppress pro‐

inflammatory mechanisms while enhancing pro‐resolution pathways.

While structurally distinct from RvE1, RvE2 is a second member

of the EPA‐derived family of E‐series Rvs. In PMNs from human, it is

generated at higher concentrations than RvE1, but is equipotent

when given intravenously and additive when administered alongside

RvE1 (Tjonahen et al., 2006). RvE2 also suppresses PMN migration

into the peritoneum after zymosan (Tjonahen et al., 2006). It is still

unclear what receptor RvE2 couples to, as it mediates resolution

by activating Chemerin1 receptors and antagonizing the LTB4 recep-

tor BLT1.

There are four members of the D‐series Rvs, namely, RvD1,

RvD2, RvD3, and RvD4 (Hong et al., 2003). As with RvE1,

RvD1/D2 exerts both anti‐inflammatory and pro‐resolution proper-

ties by blocking neutrophil infiltration, while also enhancing macro-

phage efferocytosis of apoptotic bodies (Krishnamoorthy et al.,

2010). The latter occurs via the binding of RvD1 to either ALX

receptors or the orphan GPR32, which are present on the surface

of monocytes and PMNs, the expression of which is up‐regulated

by inflammatory stimuli including granulocyte‐macrophage‐colony‐

stimulating factor and zymosan (Krishnamoorthy et al., 2010). Impor-

tantly, in a model of cecal ligation and puncture RvD2, whose recep-

tor is GPR18 (Chiang, Dalli, Colas, & Serhan, 2015), markedly

reduced PMN accumulation, bacteria numbers and proinflammatory

cytokines leading to increased animal survival.

As already mentioned, in addition to D‐series Rvs, DHA also acts

as a precursor for the synthesis of PDs. PD1, for instance, is synthe-

sized in the human brain and microglial (Serhan et al., 2002) and

peripheral blood mononuclear cells (Hong et al., 2003). As with Rvs,

PD1 may also inhibit PMN migration as well as toll‐like receptor‐medi-

ated activation (Duffield et al., 2006) while suppressing Th2 inflamma-

tory cytokines and pro‐inflammatory lipid mediator synthesis (Levy

et al., 2007). PD1 also blocks T‐cell migration in vivo and promotes

T‐cell apoptosis (Ariel et al., 2005). PD1 is protective in experimental

models of oxidative stress (Mukherjee et al., 2007), ischaemic stroke

(Marcheselli et al., 2003), ischaemia–reperfusion renal injury (Duffield

et al., 2006), asthma (Levy et al., 2007), and Alzheimer's (Lukiw et al.,

2005). Indeed, peripheral blood mononuclear cells from Alzheimer's

patients given a DHA‐rich dietary supplement show dampened

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=338


1018 GILROY AND BISHOP‐BAILEYBJP
biosynthesis of IL‐1β, IL‐6, and granulocyte‐colony‐stimulating factor

(Vedin et al., 2008). As with RvE2, a receptor is yet to be identified.

However, it is possible that it couples to a different receptor from that

for RvE1, as its anti‐inflammatory effects are additive with those of

RvE1 in vivo.

MaR1 and MaR2 are produced in tissues by macrophages via

the actions of 12‐LOX, through a 13,14‐epoxide intermediate

(Serhan et al., 2009). MaR1 can also be generated at sites of vascular

inflammation during human platelet–neutrophil interactions via

platelet 12‐LOX conversion of DHA to 13S,14S‐epoxy‐MaR,

followed by neutrophil conversion to MaR1 (Abdulnour et al.,

2014). The receptors for MaR have yet to be identified. Although

MaR have only been recently discovered, it has been reported simi-

lar to Rvs and PD1, MaR1 blocks the infiltration of PMNs while

stimulating macrophage phagocytosis of apoptotic PMNs or

zymosan.
10 | SUMMARY

Inflammation is a good thing; it kills bacteria and helps to heal wounds

while imparting long‐term memory against inciting antigens. Lipids

play a key role in these events and come in many forms, including

those that drive the cardinal signs of inflammation and those that help

to restrain it and bring the response to a timely end. In fact, studying

lipids and their inhibitors, NSAIDs, has given us a great deal of insight

into homeostasis, immune responses to infection/injury and the

wound healing process. Indeed, inflammatory onset has been a histor-

ical point of interest for the development of anti‐inflammatory drug

therapies. Research on the other end of the inflammatory spectrum,

resolution, has provided the opportunity to harness endogenous medi-

ators and their receptors to help drive ongoing inflammation down a

pro‐resolution pathway. Moreover, this is achievable without

compromising host defence. Such complex manipulation of the

immune system provides new opportunities to develop further pro‐

resolution therapies based upon what we have learned from studying

lipids in this setting.

10.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2017/18 (Alexander,

Christopoulos et al., 2017; Alexander, Cidlowski et al., 2017;

Alexander, Striessnig et al., 2017).
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