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Eicosanoids play important roles in modulating inflammation throughout the body. The gastrointestinal (GI) tract, in part because
of its intimate relationship with the gut microbiota, is in a constant state of low-grade inflammation. Eicosanoids like PGs, lipoxins
and leukotrienes play essential roles in maintenance of mucosal integrity. On the other hand, in some circumstances, these
mediators can become major drivers of inflammatory processes when the lining of the GI tract is breached. Drugs such as
nonsteroidal anti-inflammatories, by altering the production of various eicosanoids, can dramatically impact the ability of the GI
tract to respond appropriately to injury. Disorders such as inflammatory bowel disease appear to be driven in part by altered
production of eicosanoids. Several classes of drugs have been developed that target eicosanoids.
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The discovery by Sir John Vane that aspirin and other
nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited
the formation of PGs led to a burst of research into the role
of this group of lipid mediators in gastrointestinal (GI)
function (Vane, 1971). Prior to that, Andre Robert and his
colleagues at The Upjohn Company, in the USA, had discov-
ered that PGs were potent inhibitors of gastric acid secretion,
and these lipid mediators could also prevent experimental
ulcer formation (Robert et al., 1968). Robert’s group went on
to characterize the effects of several longer acting synthetic
PG analogues in animals and humans (Konturek et al., 1974;
Robert et al., 1979), and in a landmark paper in 1979,
described the powerful ‘cytoprotective’ effects of these agents
in the stomach and duodenum (Robert et al., 1979).
Remarkably, these very low doses of PGs were reported to
protect the lining of the rat stomach from damage induced
by oral administration of high concentrations of hydrochlo-
ric acid or sodium hydroxide, absolute alcohol and even to
boiling water (Robert et al., 1979).

The first PG analogue to reach the marketplace wasmiso-
prostol, a PGE1 derivative developed by Searle and launched
in 1986. Misoprostol was shown to significantly reduce the
incidence of NSAID-induced gastric ulcers, but only at doses
that suppressed gastric acid secretion (Graham et al., 1988).
At such doses, misoprostol significantly increased the
incidence of diarrhoea, consistent with known stimulatory
effects of PGs on GI epithelial secretion (Matuchansky and
Coutrot, 1978).

COX-1 and COX-2
In 1972, another very important discovery was made by
Roderick Flower and Sir John Vane that would only be
fully appreciated two decades later. They observed that
acetaminophen, which was known not inhibit peripheral
tissue COX activity at therapeutic doses, was able to suppress
PG synthesis in the brain (Flower and Vane, 1972). They
speculated that there may be more than one form of COX,
differentially affected by anti-inflammatory drugs. This
notion lingered in the background until 1991, when two
groups in the USA reported a previously unrecognized,
inducible COX enzyme, which would come to be known as
‘COX-2’ (Kujubu et al., 1991; Xie et al., 1991). These publica-
tions resulted in a burst of research into the factors regulating
expression of the two COX enzymes and their sensitivity to
inhibition by themany NSAIDs already on themarket, as well
as tomany newNSAIDs designed to selectively inhibit COX-2
(Masferrer et al., 1994; Mitchell et al., 1994; Warner et al.,
1999). The latter was based on the notion that PGs derived
from COX-2 accounted for pain and inflammation, while
PGs fromCOX-1 accounted for the cytoprotective effects that
Robert and his colleagues had first observed in the late 1960s
(Robert et al., 1968). Several of the world’s largest pharmaceu-
tical companies raced to develop selective COX-2 inhibitors.
The first to succeed was Searle in 1999 (celecoxib;
Celebrex®), followed less than a year later by Merck
(rofecoxib; Vioxx®). Both were hugely successful from a
commercial standpoint, but less than 5 years after its launch,
Merck removed rofecoxib fromworldwide markets because of
evidence that it caused serious cardiovascular events

(Bombardier et al., 2000; Bresalier et al., 2005). Celecoxib,
which was less selective for COX-2 than rofecoxib (Warner
et al., 1999), has remained on the market and is one of the
most commercially successful drugs. Concerns that the
selective COX-2 inhibitors increased the risk of serious
cardiovascular events led to recommendations from regula-
tors and medical associations for concomitant use of low-
dose aspirin in patients deemed to be at increased risk for
serious cardiovascular events. However, there is clear evi-
dence that co-administration of aspirin with celecoxib
greatly diminishes any reduction of significant GI adverse
events that may have been achieved through use of celecoxib
versus a conventional NSAID (Silverstein et al., 2000; Wallace
et al., 2000).

Animal studies clearly demonstrated that selective
inhibition of COX-2 did not result in significant damage in
the stomach (Masferrer et al., 1994). However, selective
inhibition of COX-1 also did not result in mucosal damage
(Wallace et al., 2000). Selective inhibition of one isoform of
COX results in rapid up-regulation of the other, at least in
the GI tract (Davies et al., 1997; Wallace et al., 2000). Thus,
suppression of both COX enzymes was necessary for gastric
damage to be induced (Wallace et al., 2000) (Figure 1). These
observations from animal models were consistent with the
clinical observations on co-administration of celecoxib and
low-dose aspirin (Silverstein et al., 2000). The ‘COX-2
hypothesis’ was also challenged by evidence that
COX-1-derived PGs contribute significantly to inflammation
(Wallace et al., 1997), and gastric COX-1 is inducible
(Ferraz et al., 1997).

Most of the research in the early ‘COX-2 era’ was
focused on ulceration and bleeding in the stomach and
proximal duodenum. These are the regions most easy to
examine with an endoscope and where the damage is

Figure 1
Induction of haemorrhagic, gastric damage by NSAIDs requires inhi-
bition of both COX-1 and COX-2. Ketorolac at a dose (3 mg·kg�1)
that inhibited COX-1 but not COX-2 did not cause significant gastric
damage. Likewise, celecoxib or DuP-697 at doses that selectively in-
hibit COX-2 (15 mg·kg�1 and 10 mg·kg�1, respectively) did not
cause significant gastric damage. However, the combination of a
COX-1 and COX-2 inhibitor resulted in extensive haemorrhagic
damage in the stomach (*P < 0.05, **P < 0.01 compared with the
groups treated only with a single drug). This figure was constructed
from previously published data (Wallace et al., 2000).

Eicosanoids in the GI tract

British Journal of Pharmacology (2019) 176 1000–1008 1001

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1936
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1936
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5239
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1376
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1375
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2892
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2893


clearly dependent upon the presence of acid. However,
NSAIDs can cause clinically significant ulceration and
bleeding throughout the GI tract (Bjarnason et al., 1993;
Graham et al., 2005; Lanas et al., 2009; Watanabe et al.,
2013; Washio et al., 2016). Several clinical studies demon-
strated that there was no reduction in incidence or severity
of more distal small intestinal damage with a selective
COX-2 inhibitor as compared to that with a conventional
NSAID (McCarthy, 2009; Graham et al., 2011). These obser-
vations were surprising given that selective COX-2 inhibi-
tors do not block platelet aggregation, which would
contribute to GI bleeding. Indeed, endoscopic studies of se-
lective COX-2 inhibitors in healthy volunteers, who typi-
cally exhibit greater resistance to NSAID-induced GI
damage than arthritis patients, have revealed very high
rates of intestinal damage and bleeding (Maiden et al.,
2005; Maiden et al., 2007). Also, while selective COX-2
inhibitors were commercially promoted on the basis of
vastly improved GI safety, they are commonly co-
prescribed with agents that suppress gastric acid secretion.
However, administration of selective COX-2 inhibitors with
proton pump inhibitors or histamine H2 receptor antago-
nists has been shown to markedly increase the severity of
damage in the distal intestine (Wallace et al., 2011; Satoh
et al., 2012; Blackler et al., 2014, Washio et al., 2016). This
is in part due to dramatic shifts in the intestinal
microbiome (Wallace et al., 2011).

Leukotrienes and ulcers
When pharmacological tools for studying leukotrienes (LT)
first became available, there were numerous studies suggest-
ing a role for these mediators in upper GI injury, but most
involved animal models of injury, such as administration of
high concentrations of ethanol, with questionable relevance
to the injury that is most commonly observed in humans.
However, there were some studies identifying increased
mucosal levels of LTB4 and LTC4 in biopsies from humans
infected with Helicobacter pylori (Fukuda et al., 1990; Ahmed
et al., 1992). NSAID-induced ulceration was shown to be a
neutrophil-dependent process in animal studies (Wallace
et al., 1990), leading to the proposal that blockade of COX
activity may result in a shunting of arachidonic acid to
lipoxygenase (LOX) enzymes and that LTs might be key
mediators in activating leukocyte adherence and activation,
as well as contributing to mucosal injury. Indeed, NSAID-
induced leukocyte adherence was shown to be markedly
reduced in rats by a 5-LOX inhibitor and by an LTB4

(BLT1) receptor antagonist (Asako et al., 1992), and
gastric mucosal synthesis of LTB4 was shown to be sig-
nificantly increased in humans taking NSAIDs (Hudson
et al., 1993). The availability of selective antagonists of
LT receptors facilitated several studies of the role of
LTs in animal models of gastric damage. Suppression
of LT synthesis by inhibitors of 5-LOX was found to
significantly reduce the severity of gastric damage in-
duced by an NSAID (Vaananen et al., 1992). However,
treatment with LTB4 or LTC4/LTD4 antagonists had no
effect in these studies.

There does not appear to have been any clinical testing of
LT antagonists or selective 5-LOX inhibitors with respect to
GI safety. Licofelone (ML3000) is a dual COX/5-LOX
inhibitor that was proposed to be a ‘balanced inhibitor’ of
5-LOX and COX with improved GI safety (Jovanovic
et al., 2001), but it ultimately failed in phase III clinical
development.

Prostaglandins and intestinal secretion
The ‘cytoprotective’ effects of PGs can be observed through-
out the GI tract in various animal models of injury. Some of
these effects may be in part attributable to stimulation of
secretion in the gut, which can result in dilution of luminal
irritants or toxins, and contribute to the process of expelling
such agents. Thus, PGE2 can relax colonic circular muscle
via actions on EP2 and EP4 receptors (Martinez-Cutillas
et al., 2014), while smooth muscle contraction can be
increased by PGs acting through the EP1 receptor (Chan
and Mashimo, 2013). With respect to the latter, a PGE1
analogue, lubiprostone, has been employed in humans as
a treatment for constipation-predominant irritable bowel
syndrome (Owen, 2008) and for opioid-induced constipation
(Jamal et al., 2015). On the other hand, EP2 and EP4 receptor
antagonists have been used to suppress diarrhoea, such as
that induced by cholera toxin in infected ileal loops (Satitsri
et al., 2016).

Duodenal bicarbonate secretion is particularly important
for protection of the tissue from high concentrations of
gastric acid, and its mechanisms have been well character-
ized. PGE2 stimulates duodenal bicarbonate secretion in rats
via activation of EP3 and EP4 receptors (Takeuchi et al.,
2010; Said et al., 2015).

Eicosanoids and inflammatory bowel
disease
The ability of PGs to stimulate colonic secretion led some
investigators to propose that PGs may play an important
role in inflammatory bowel disease (IBD) (ulcerative colitis
and Crohn’s disease). As outlined above, PGs may indeed
contribute significantly to IBD-associated diarrhoea. How-
ever, studies of inhibitors of COX activity in human IBD
or in animal models of colitis overwhelmingly suggest im-
portant protective (anti-inflammatory) effects of PGs. Sev-
eral animal studies convincingly demonstrated that
selective inhibition of COX-2 led to a marked exacerbation
of colitis (Reuter et al., 1996; McCartney et al., 1999;
Morteau et al., 2000).

Use of NSAIDs has also been shown to be associated with
microscopic colitis, which is characterized by watery diar-
rhoea (Masclee et al., 2015). It is not clear if this was directly
related to suppression of prostanoid synthesis. Proton pump
inhibitors are similarly associated with an increased risk of
microscopic colitis (Verhaegh et al., 2016). Significant alter-
ations in the gut microbiome may contribute to induction
of microscopic colitis by both NSAIDs and proton pump
inhibitors (Wallace et al., 2011; Wallace, 2013).
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Leukotrienes in inflammatory bowel
disease
The observation by Musch et al. (1982) that LOX products
of arachidonic acid could potently stimulate colonic secre-
tion drew the attention of other researchers to the possibil-
ity of LTs contributing significantly to the pathogenesis of
IBD. Subsequently, a marked increase in colonic synthesis
of LTB4 was documented in patients with IBD (Sharon
and Stenson, 1984), as was a marked increase in peptido-
LTs (i.e. LTC4, LTD4, LTE4) (Peskar et al., 1986). The in-
crease in LTB4 levels in the colonic mucosa of IBD patients
was shown to be due to a significant decrease in
ω-hydroxylase activity and a marked increase in 5-LOX ac-
tivity (Ikehata et al., 1995).

Mesalamine (5-aminosalicylic acid) is a commonly
used, first-line therapy for IBD, with an unknownmechanism
of action. It was shown to markedly reduce peptido-LT syn-
thesis by colonic tissue from patients with IBD (Peskar et al.,
1986). As discussed above, NSAIDs are known to exacerbate
colitis in many IBD patients. Hudson et al. (1993) demon-
strated that NSAID administration to IBD patients resulted
in a significant enhancement of LTB4 synthesis and suggested
that this could be the mechanism underlying the exacerbat-
ing effects of NSAIDs in colitis.

As more selective inhibitors of LT synthesis became
available, they were tested in rodent models of IBD and were
shown to be very effective in suppressing LT synthesis and
accelerating resolution of colitis (Wallace et al., 1989). On
the other hand, intracolonic administration of LTB4

significantly exacerbated experimental colitis (Wallace and
Keenan, 1990).

Despite the promising findings in animal models, re-
sults from clinical trials of inhibitors of LT synthesis were
disappointing. MK-591 was among the first tested. This in-
hibitor of LTB4 synthesis was evaluated in a multi-centre
clinical trial in ulcerative colitis patients (Roberts et al.,
1997). Patients were treated twice daily for 8 weeks and
rectal dialysate LTB4 concentrations and disease activity
scores were assessed at the end of that period. The highest
dose of MK-591 tested in the study (100 mg twice daily)
reduced rectal dialysate LTB4 levels by ~98%, but lower
doses (50 or 12.5 mg twice daily) had no significant effect
on LTB4 levels as compared with placebo-treated patients.
None of the doses of MK-591 produced a significant im-
provement in clinical activity as compared with the
placebo-treated group.

The role of LTB4 in ulcerative colitis was further
examined in a 6-month clinical trial of zileuton, another
selective 5-LOX inhibitor (Hawkey et al., 1997). The patients
were in remission at the start of the study. Treatment with
zileuton (600 mg qid) was compared with treatment with
placebo or mesalamine (400 mg qid). The primary endpoint
was maintenance of remission over the 6-month period. As
in the trial of MK-571, the results of the zileuton trial did
not support a significant role of LTB4 in ulcerative colitis.
The remission rate in patients treated with zileuton (54%)
was not significantly different from that in patients treated
with placebo (43%) or mesalamine (63%). The relapse rate
for patients treated with mesalamine was significantly lower
than the relapse rate for patients on placebo.

PGD2: a stop signal in colitis?
Experimental and clinical data suggest that PGs, while con-
tributing to diarrhoea, can also play an important role in
dampening inflammation during bouts of colitis. On the
other hand, NSAIDs can exacerbate colitis, presumably due
to suppression of ‘cytoprotective’ PGE2 synthesis. However,
while increased PGE2 production is associated with the pro-
motion of oedema formation and pain (Murakami and Kudo,
2006), PGD2 acts in the opposite direction, exerting signifi-
cant anti-inflammatory effects (Gilroy et al., 1999; Ajuebor
et al., 2000; Rajakariar et al., 2007). For example, we demon-
strated that in experimental colitis, markedly elevated PGD2

synthesis was a rapid response to tissue injury, acting as a
‘braking mechanism’ that countered the pro-inflammatory
effects of PGE2 and other chemotaxins (Ajuebor et al., 2000).
Remarkably, during the resolution phase of colitis, when tis-
sue structure and function returned to normal, we observed
a marked elevation of tissue PGD2 synthesis that persisted
for months after the acute colitis had resolved (Ajuebor
et al., 2000; Zamuner et al., 2003). The PGD2 produced in this
setting was derived primarily via COX-2, and selective inhibi-
tion of that enzyme resulted in marked increase in granulo-
cyte infiltration into the mucosa. This infiltration was
significantly reduced by administration of either PGD2 or a
DP receptor agonist (Ajuebor et al., 2000). The prolonged
up-regulation of PGD2 synthesis after resolution of a bout of
colitis was also accompanied by significant changes in co-
lonic epithelial function. Thus, colonic chloride secretory re-
sponses (in vitro) were markedly diminished relative to those
in controls, but could be recovered to normal by treatment
with a selective COX-2 inhibitor (celecoxib), but not selective
COX-1 inhibitor (SC-560) (Zamuner et al., 2003). This
hyporesponsiveness could be mimicked in normal
colonic tissue by exposure to PGD2, but not to its metabolite,
15-deoxy-Δ12-14PGJ2. There was also further evidence for sub-
stantially altered colonic epithelial function in rats that ap-
peared to have fully recovered from colitis: although
appearing healthy and normal, these rats exhibited a 10-fold
increase in bacterial colonization of the colon and more than
a threefold increase in bacterial translocation. The latter
could be reversed by treatment for 1 week with a selective
COX-2 inhibitor (rofecoxib). These studies demonstrate an
important role for COX-2, apparently via generation of
PGD2, in mediating the prolonged barrier and epithelial se-
cretory dysfunction that is evident after apparent resolution
of colitis in the rat (Zamuner et al., 2003).

There are also human data suggestive of an important role
for PGD2 in the resolution of colitis and particularly in main-
tenance of remission. Vong et al. (2010) analysed colonic bi-
opsies from patients with active ulcerative colitis, looking at
pro- and anti-inflammatory PG production, expression of
the major enzymes of synthesis and expression of the key re-
ceptors. They used two groups as controls: healthy subjects
with no prior history of ulcerative colitis and healthy individ-
uals who had previously had ulcerative colitis, but had been
in clinical remission for at least 4 years. As expected, the pa-
tients with active colitis exhibited significant elevations of
colonic synthesis of PGE2 and increased expression (fourfold
to sixfold) of COX-2, IFN-γ and TNF-α (Figure 2). However,
there were some remarkable findings related to PGD2 when
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the group of patients who had been in long-term remission
were examined. In that group alone, there were significant in-
creases in PGD2 synthesis and in expression of mRNA for the
DP1 receptor, but not for the DP2 receptor. PGD2 prefer-
entially binds to DP1 receptors, and its activation is largely
thought to be responsible for the anti-inflammatory effects
of PGD2. These data suggest that the same long-term increase
in colonic PGD2 synthesis that had been observed in rats after
resolution of colitis (Ajuebor et al., 2000; Zamuner et al., 2003)
are also evident in humans who are in long-term remission
after resolution of colitis. Sturm et al. (2014) suggested that
there may be a role for modulation of colitis through block-
ade of the other DP receptor, the DP2 receptor also known as
chemoattractant receptor-homologous molecule expressed
on T-helper type 2 cells (CRTH2). They demonstrated that
blockade of the DP2 receptor (CRTH2) significantly reduced
the severity of colitis in a murine model.

Lipoxins in the GI tract:
anti-inflammatory and protective
Lipoxins (LX) are endogenous, anti-inflammatory molecules
that contribute significantly to reducing tissue injury and
progression from acute to chronic inflammation (Serhan
et al., 2007; 2015). The ‘classical’ LX-generating pathways in-
volve (1) the sequential actions of 5-LOX (in leukocytes) and
12-LOX (in platelets) to produce LXA4 and (2) the sequential
actions of 15-LOX (in epithelial cells) and 5-LOX (in leuko-
cytes) to produce LXB4 (Serhan et al., 2015). A third pathway
for LX synthesis, involving aspirin, is described below.

LXA4 analogues have been synthesized and have shown
promising anti-inflammatory effects in models of colitis. For
example, Gewirtz et al. (2002) demonstrated that LXA4

analogues reduced pro-inflammatory gene expression in
intestinal epithelial cells and significantly attenuated the

severity of experimental colitis in mice. LXA4 and LX
analogues have been shown to down-regulate leukocyte
degranulation (Gewirtz et al., 1999) and chemokine release
(Gewirtz et al., 1998). Moreover, LXA4 has been shown to
dampen intestinal inflammation by inhibiting NF-κB
activity (Kure et al., 2010). LXA4 has also been reported to
be important for driving IL-10 release, thereby producing
additional anti-inflammatory effects (Souza et al., 2007), as
well as mediating the protective effects of an n-6 fatty
acid-enriched diet in ischaemia–reperfusion injury
(Gobbetti et al., 2015).

The oral efficacy of ZK-192, a β-oxidation-resistant
analogue of aspirin-triggered lipoxin, was examined in exper-
imental colitis. Daily oral administration of ZK-192 at 300 or
1,000 μg·kg�1 markedly reduced the severity of colitis in
rodents, whether given in preventive or therapeutic treat-
ment regimens. This included significant reductions of
macroscopic and histological colon injury, weight loss and
mucosal neutrophil infiltration. The observed beneficial
effects of ZK-192 were comparable with those observed with
3 to 10 mg·kg�1 of prednisolone. Expression of a mRNA for
several pro-inflammatory mediators (e.g. inducible NOS,
macrophage inflammatory protein 2, COX-2) was sig-
nificantly decreased by treatment with ZK-192, along with
significantly reduced mucosal mRNA and protein levels of
TNF-α, IL-2 and IFN-γ.

A significant role for LXA2 inmaintenance of remission in
patients with ulcerative colitis was suggested by Vong et al.
(2012). They observed that there were markedly elevated
levels of colonic LXA2 in the patients who were in remission,
but not in healthy controls or in patients with active ulcera-
tive colitis (Figure 3). They also observed significant eleva-
tions of 5-LOX expression in the patients with active colitis,
but no change in 12- or 15-LOX expression (Vong et al.,
2012). These results demonstrated a specific up-regulation
of a pro-resolution circuit in patients who were in remission

Figure 2
Expression of pro- and anti-inflammatory factors in biopsies from healthy volunteers and ulcerative colitis patients. The ‘healthy’ groups include
subjects with no history (Hx) of ulcerative colitis (‘C’) and subjects who had previously had ulcerative colitis, but were in long-term remission (more
than 4 years). Pro-inflammatory markers such as TNF-α, COX-2 and IFN-γ were significantly elevated in the patients with active (Act) colitis. Anti-
inflammatory markers such as PGD2 and the DP1 receptor (DP1) were significantly elevated in patients in long-term remission. *P < 0.05 versus
controls. This figure was constructed from previously published data (Vong et al., 2010).
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from ulcerative colitis, with significant contributions of LXA2

in promoting mucosal homeostasis.
The ability of aspirin to cause damage in the GI tract, par-

ticularly in the stomach, is well known. Acetylation of COX-1
by aspirin results in an irreversible inhibition of that enzyme,
preventing PG synthesis. However, acetylation of COX-2,
while also preventing PG synthesis, does not completely
block the function of the enzyme. Arachidonic acid can still
be modified by acetylated COX-2, leading to the formation
of 15R–HETE (15R–hydroxyeicosatetraenoic acid), which
can be further transformed to ‘aspirin-triggered lipoxin’ (such
as 15-epi-LXA4) via the action of 5-LOX (Serhan et al., 2007).
In the GI tract, aspirin-triggered lipoxins have been shown to
contribute significantly to GI mucosal defence, as well as
exhibiting significant anti-inflammatory effects (Fiorucci
et al., 2002, 2004).

Closing Comment
As in other tissues, eicosanoids are involved in a wide range
of physiological and pathological processes in laboratory
animals and humans. There are a wide range of drugs that
have been developed to enhance or inhibit the actions of
eicosanoids in the GI tract. Despite extensive research for
the past five decades, there remains a need for better under-
standing of the role of eicosanoids in resolution of inflam-
mation in the GI tract. Such research will be an important
part of shifting treatment regimens from a target of

reducing the magnitude of inflammatory processes (largely
symptom control) to an orderly promotion of resolution
of inflammation.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharma-
cology.org, the common portal for data from the IUPHAR/
BPS Guide to PHARMACOLOGY (Harding et al., 2018), and
are permanently archived in the Concise Guide to PHARMA-
COLOGY 2015/16 (Alexander et al., 2017a,b).
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