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ABSTRACT We introduce a new, to our knowledge, numerical model based on spectral methods for analysis of fluorescence
recovery after photobleaching data. The model covers pure diffusion and diffusion and binding (reaction-diffusion) with immobile
binding sites, as well as arbitrary bleach region shapes. Fitting of the model is supported using both conventional recovery-
curve-based estimation and pixel-based estimation, in which all individual pixels in the data are utilized. The model explicitly
accounts for multiple bleach frames, diffusion (and binding) during bleaching, and bleaching during imaging. To our knowledge,
no other fluorescence recovery after photobleaching framework incorporates all these model features and estimation methods.
We thoroughly validate the model by comparison to stochastic simulations of particle dynamics and find it to be highly accurate.
We perform simulation studies to compare recovery-curve-based estimation and pixel-based estimation in realistic settings and
show that pixel-based estimation is the better method for parameter estimation as well as for distinguishing pure diffusion from
diffusion and binding. We show that accounting for multiple bleach frames is important and that the effect of neglecting this is
qualitatively different for the two estimation methods. We perform a simple experimental validation showing that pixel-based esti-
mation provides better agreement with literature values than recovery-curve-based estimation and that accounting for multiple
bleach frames improves the result. Further, the software developed in this work is freely available online.
INTRODUCTION
Diffusive transport properties in complex, soft matter fluc-
tuate spatially and temporally and depend strongly on the
degree of heterogeneity, obstruction effects, structural dy-
namics, and interactions with a matrix, e.g., binding effects
(1). Understanding complex diffusion phenomena is a
recurring problem in several fields, and fluorescence recov-
ery after photobleaching (FRAP) has emerged as a power-
ful technique to this end (2). Having been used for
estimation of diffusion coefficients since the 1970s (3),
FRAP has later been put to use on reaction-diffusion sys-
tems, joint estimation of diffusion coefficients, and (on
and off) binding rate constants, i.e., association and disas-
sociation rate constants. Different approaches to FRAP for
quantifying diffusion and binding interactions have shed
light on how proteins interact with binding sites within
the cell and nucleus (4–6), the transcription factor mobility
in the nucleus (7) and its interaction with chromatin (8,9),
interactions of membrane-associated proteins (10–12), and
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probe diffusion in b-lactoglobulin gels and solutions (13),
just to mention a few.

In a typical FRAP experiment, a fluorescent species is
irreversibly photobleached in either a circular or a rectan-
gular bleach region. Unbleached particles will move into
the bleach region at a rate governed by the mobility and
interaction parameters. This leads to a recovery of fluores-
cence in the bleach region. Assuming that the bleaching
does not significantly change the total amount of fluores-
cence in the sample and that no particles are immobile,
the recovery will eventually be complete. A confocal laser
scanning microscope (CLSM) is typically used to image
the time evolution of the recovery, using the same laser
for imaging and bleaching but with different intensity.
Quantitative information is obtained by fitting a model for
the fluorescence recovery to the experimental data. The
physical/mathematical assumptions of the FRAP models
as well as how the fitting is performed vary greatly between
different approaches but boil down to representing the solu-
tion to a (reaction-)diffusion equation for the fluorescent
species, analytically or numerically. We give a brief account
of the literature for the factors that matter for the work
below but refer the reader to the review in (2) for a more
detailed account.
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Pixel-Based Numerical FRAP Model
First, the prototypical FRAP approaches assuming pure
diffusion are heavily used, but the generalizations incorpo-
rating interactions with binding sites facilitate the use of
FRAP in more complex systems like cells and hydrogels.
The governing model becomes a reaction-diffusion equation
system with a ‘‘free’’ diffusion coefficient, binding and un-
binding rate parameters, and possibly a ‘‘bound’’ diffusion
coefficient, the latter depending on whether the binding sites
are modeled as mobile (11,12,14) or immobile (6–9).

Second, the bleach region theoretically has uniform inten-
sity and is typically either a circle or a rectangle. For a uni-
form circular bleach region, the average intensity in the
bleach region as a function of time after bleaching (i.e.,
the recovery curve) can be expressed in closed form using
Bessel functions (15,16). However, to obtain a closed-
form expression for the full diffusion equation, i.e., the
spatiotemporal evolution of the fluorescence intensity, a cir-
cular bleach region has to be approximated, e.g., by a
Gaussian (17) or a nonparametric profile (18). For the rect-
angular case, the full solution to the diffusion equation is
available in closed form (19,20). Arbitrary bleach region
shapes are in principle not a problem if numerical or Monte
Carlo methods are used (21). Some approaches account for
the effective, finite bleach resolution (because of a nonuni-
form laser beam) by convolving the bleach region by a
Gaussian (16,19).

Third, the duration of bleaching is non-negligible, and
therefore diffusion (and binding) during bleaching affects
the observed fluorescence recovery (22). The fact that
very often multiple bleach frames are used (to increase the
amount of bleaching and hence the contrast and signal/
noise) and the fact that the laser moves in a raster scan
pattern during bleaching (and imaging) both contribute to
this effect. Diffusion during a single bleach frame can be ac-
counted for implicitly to some extent by incorporating a
bleach resolution parameter as a free fitting parameter
(because both diffusion and the ‘‘smearing’’ of the bleach re-
gion by convolution with a Gaussian are mathematically
equivalent) (19). It can also be accounted for explicitly by
modifying the diffusion equation accordingly (11,23). Mul-
tiple bleach frames have also been implemented (24). Avery
comprehensive model for the raster scan motion of the laser
during bleaching (and imaging) is developed by (9). How-
ever, that approach results in computation times of several
days for a single parameter set, and they are forced to rely
on a database of precomputed numerical solutions instead
of traditional estimation methods. Also (24) investigates
the importance of modeling the scanning motion but con-
cludes that diffusion during the typically multiple bleach
frames is more important to model than diffusion during
the scanning time of a single bleach frame. This is in line
with a previous investigation of our own, which also sug-
gested that the scanning motion during bleaching is to
some extent counteracted by the scanning motion during
imaging (25).
Fourth, bleaching during imaging can have substantial
impact on the observed data and hence on estimated param-
eters and is frequently corrected for as part of the prepro-
cessing by (exponential) rescaling and normalization.
However, as has been pointed out, introducing corrections
may lead to incorrect parameter estimates if the used
FRAP model is not compatible with the correction, in partic-
ular if it is combined with a correction accounting for an
immobile fraction (26). It is also crucial that corrections
are performed in the appropriate order. Therefore, it is ad-
vantageous to explicitly incorporate bleaching during imag-
ing into the model (27).

Fifth, estimation of parameters can be performed in a va-
riety of ways. Most approaches use conventional recovery-
curve-based estimation, meaning that the model is fitted to
the time series of average fluorescence within the bleach
region. However, models that provide the spatiotemporal
evolution of concentration, i.e., the full solution to the (reac-
tion-)diffusion equation, can be fitted using the intensity
values of all individual pixels, utilizing spatiotemporal in-
formation instead of just temporal information (17–
20,28,29). Further, whereas ordinary least squares with the
assumption of constant noise variance is very common,
real experimental noise is more complex (16,30), and
some methods assume more realistically that the noise vari-
ance is proportional to the mean intensity (reflecting the un-
derlying Poisson nature of the photon counts) (19) or a sum
of the two (20).

In this work, we introduce a new, to our knowledge, nu-
merical model based on spectral methods for analysis of
FRAP data. Further, the model covers pure diffusion and
diffusion and binding (reaction-diffusion) with immobile
binding sites. Both circular and rectangular bleach regions
are supported, with the option of supplying an arbitrary
user-defined bleach region shape as well. Further, a bleach
and imaging resolution parameter is included in the model.
Fitting of the model is supported using both conventional re-
covery-curve-based estimation and pixel-based estimation,
in which all individual pixels in the data are utilized. The
model explicitly accounts for multiple bleach frames, diffu-
sion (and binding) during bleaching, and bleaching during
imaging. To our knowledge, no other FRAP framework in-
corporates all these model features and estimation methods.
First, we thoroughly validate the model by comparison to
stochastic simulations of particle dynamics and find it to
be highly accurate. Second, we perform simulation studies
to compare recovery-curve-based estimation and pixel-
based estimation in realistic settings and show that pixel-
based estimation is the better method for parameter
estimation as well as for distinguishing pure diffusion
from diffusion and binding. Third, we show that accounting
for multiple bleach frames is important and that the effect of
neglecting this is qualitatively different for the two estima-
tion methods. Fourth, we study computational speed of the
different models and estimation methods. Fifth, we perform
Biophysical Journal 116, 1348–1361, April 2, 2019 1349
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a simple experimental validation using sodium fluorescein
dissolved in water, showing that pixel-based estimation pro-
vides better agreement with literature values than recovery-
curve-based estimation and that accounting for multiple
bleach frames improves the result. The FRAP analysis
code as well as the stochastic simulation code is freely avail-
able online at https://github.com/roding/frap_matlab.
METHODS

Model

In a FRAPmeasurement, a fluorescent species is irreversibly photobleached

in typically either a circular or a rectangular bleach region. Unbleached par-

ticles will move into the bleach region and bleached particles will move out

at a rate governed by the mobility and interaction parameters. This leads to

a recovery of fluorescence through the time evolution of the concentration

of the (still) fluorescent species, c(x, y, t), from which quantitative informa-

tion can be extracted.

Assuming that the bleach region is sufficiently extended in the axial

dimension (by means of a small numerical aperture), net diffusion in the

z direction, i.e., orthogonal to the focal plane, can be neglected, and only

two-dimensional motion has to be considered. The concentration is initially

c(x, y) ¼ c0 everywhere. Immediately after the first bleach frame, the con-

centration is

cðx; yÞ ¼
�
c0a ; ðx; yÞ˛U
c0 ; ðx; yÞ;U

; (1)

where a is a bleaching parameter and U is the bleach region, centered in

(x , y ) and either circular with radius r or rectangular with dimensions l
c c x

and ly. If more than one bleach frame is used, it becomes more complicated,

and we cover that case in the numerical implementation below. For pure

diffusion with a diffusion coefficient D, the evolution of the concentration

c(x, y, t) is described by the standard diffusion equation

vc

vt
¼ DV2c: (2)

Complementing the diffusion with an interaction between unbound par-

ticles (U) and binding sites (S) that together form bound complexes (B),
U þ S#
k+on

koff
B; (3)

the observed concentration is the sum of the unbound and bound concentra-

tions, c ¼ u þ b. Here, k is the off-binding rate and k+ is the on-binding
off on

rate. Assuming a sufficiently high concentration of uniformly distributed

immobile binding sites, the evolution of the concentration is described by

two coupled first-order reaction-diffusion equations,

vu

vt
¼ DV2u� konuþ koffb

vb

vt
¼ konu� koffb:

(4)

Here, kon ¼ k+onseq, where seq is the equilibrium concentration of binding
sites (we will use on-binding rate to denote kon from now on). It follows that

the average times of a fluorophore being unbound and bound are (7,13,31)

mu ¼ 1=kon:
mb ¼ 1

�
koff

(5)
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Also, it follows that the equilibrium concentrations of unbound and

bound species are u ¼ puc and b ¼ pbc, where

pu ¼ koff
kon þ koff

:

pb ¼ kon
kon þ koff

(6)

Numerical solution

For the numerical solution, let the final simulated frame size be N � N

(N ¼ 256 throughout this work). Assume that the fluorescent species is

contained in a two-dimensional box with periodic boundary conditions.

To avoid periodicity artifacts, we perform the computations on an

(N þ 2M) � (N þ 2M) grid, where M is the padding (M ¼ 128 throughout

this work). We solve Eqs. 2 and 4 using spectral methods. Time stepping is

performed in the Fourier domain, and bleaching (including bleaching dur-

ing imaging) is performed in the spatial domain. The numerical solution can

be computed for arbitrary numbers of prebleach frames nprebleach, bleach

frames nbleach, and postbleach frames npostbleach, with time lag Dt between

consecutive frames. Bleaching is represented by an (N þ 2M) �
(N þ 2M) matrix, which is 1 outside the bleach region, a inside, and

some intermediate value for edge pixels. To accurately represent the edges

of the bleach region, this matrix is supersampled, initialized at 15 times the

final resolution, and downsampled through an averaging filter. Bleaching

during imaging, governed by a parameter b, is represented by a similar ma-

trix set to 1 in the padding area and b in the image frame region. Finite

bleach and finite imaging resolutions are accounted for by convolving the

bleach matrix with a Gaussian filter with SD g (performed before the down-

sampling and hence in practice using a SD of 15 g). Although we refer to g

as a bleach and imaging resolution parameter, it is rather an inverse resolu-

tion parameter. As described previously (16,19), the bleach resolution and

the imaging resolution are physically two different things and not equal.

However, the Gaussian filtering of the bleach region, as it is implemented

here, is mathematically equal to a Gaussian filtering of the entire image

and accounts for the combined effect of a finite bleach and a finite imaging

resolution under the assumption of linear photobleaching, i.e., that both

bleaching and imaging are single-photon processes.

For the pure diffusion case in Eq. 2, the numerical solution proceeds as

follows. The concentration c(x, y, t), with t corresponding to an arbitrary

prebleach, bleach, or postbleach frame, is transformed to its spectral repre-

sentation bcðx; h; tÞ using fast Fourier transform. In the spectral domain, the

single partial differential equation becomes (N þ 2M)2 independent ordi-

nary differential equations of the form

vbcðx; h; tÞ
vt

¼ ��x2 þ h2
�
Dbcðx; h; tÞ; (7)

one for each grid point (x, h). The solution is explicitly available for any

time (step), and because we want to make a jump Dt in time, it takes the

form

bcðx; h; t þ DtÞ ¼ e�ðx2þh2ÞDDtbcðx; h; tÞ: (8)

After time stepping, inverse fast Fourier transform is applied to obtain

c(x, y, t þ Dt). Bleaching (including bleaching during imaging) is applied

by element-wise multiplication of the solution and either (or both) of the

two bleach matrices (bleaching could, in principle, be applied in the Fourier

domain but would involve a very costly convolution operation). To account

for an immobile fraction of particles, a fraction fm % 1 of mobile particles

may be chosen. Diffusion propagation is performed only for the fraction

fm % 1, which is mobile. The immobile fraction is handled separately

https://github.com/roding/frap_matlab


TABLE 1 Listing of All Parameters Used in the Models

Pixel-Based Numerical FRAP Model
and entirely in the spatial domain (because the spectral domain is only used

for diffusion propagation); the immobile particles are only bleached, and

they neither diffuse nor bind.

For the diffusion and binding case in Eq. 4, the concentrations of un-

bound and bound species, u(x, y, t) and b(x, y, t), are transformed to their

spectral counterparts buðx;h; tÞ and bbðx;h; tÞ. Consequently, the single par-
tial differential equation system becomes (N þ 2M)2 independent (vector-

valued) ordinary differential equations of the form

v

vt

�buðx; h; tÞbbðx; h; tÞ
�

¼ A

� buðx; h; tÞbbðx; h; tÞ
�
; (9)

one for each grid point (x, h), where

A ¼
�
��x2 þ h2

�
D� kon koff

kon �koff

�
: (10)

The solution is once again explicitly available for any time (step), and

because we want to make a jump Dt in time, it takes the form� buðx; h; t þ DtÞbbðx; h; t þ DtÞ
�

¼ eADt
� buðx; h; tÞbbðx; h; tÞ

�
; (11)

where

eAt ¼
XN
m¼ 0

1

m!
Amtm (12)

is a matrix exponential. We make use of the eigendecomposition A ¼
QLQ�1 to obtain

eAt ¼ Q

�
eLð1;1Þt 0

0 eLð2;2Þt

�
Q�1; (13)

for a diagonal eigenvalue matrix L (32). The elements of these matrices

can be computed analytically as functions of D, kon, koff, x, and h (see

Appendix A), providing for fast computations for the time stepping. Imple-

mentation of bleaching and an immobile fraction is performed identically to

the pure diffusion case.

The numerical solver is implemented in MATLAB (The MathWorks,

Natick, MA). The spectral method was found drastically more computa-

tionally efficient than finite difference methods, both explicit and implicit

in time; further, the spectral method was found to work well and converge

in the ‘‘native’’ resolution, i.e., the resolution of the final generated image,

whereas our investigation into the other methods suggested that they would

have to have been applied in higher spatial resolution and then down-

sampled, which would have been very costly. As will be shown below,

the solutions are in excellent agreement with validation simulations.
Parameters used in both models

D diffusion coefficient

fm mobile fraction

c0 initial concentration/intensity

a bleach parameter

b imaging bleach parameter

g bleach and imaging resolution

A constant noise parameter

b proportional noise parameter

Parameters used only for diffusion and binding

kon on-binding rate

koff off-binding rate
Stochastic simulation

For validation purposes, we also implement a stochastic model, where

nparticles individual particles are simulated in a domain of size

(N þ 2M) � (N þ 2M) with periodic boundary conditions directly corre-

sponding to the computational grid in the numerical solver. The time evo-

lution of a single particle is modeled as a discrete-time, continuous-space

stochastic process with time step Dtsim ¼ Dt/n (n ¼ 32 for diffusion and

binding, and n ¼ 1 for pure diffusion). A two-state (hidden) Markov model

accounts for random switching between the unbound and bound states. The

stationary distribution of the Markov chain, i.e., the marginal probabilities,

is given by Eq. 6, according to which a random initial state is selected. The

transition probabilities are dependent on the time step and equal to
pu/b ¼ Dtsim=mu

pb/u ¼ Dtsim=mb:
(14)

The residence time distributions for the states are geometric with means

given by Eq. 5 (in continuous time, the distributions would instead be expo-
nential, with the same means). The initial particle position is uniformly

distributed in the domain. In each time step, if the particle is at present un-

bound, it is displaced with a normal distributed increment with variance

2DDtsim in each direction; otherwise, it does not move. Also, a fraction

1 � fm of all particles remain fixed throughout the simulation. In every

nth time step, if the particle is in the image frame (i.e., in [M, N þ M] �
[M, NþM]) and if it is not bleached, it is added to the corresponding pixel.

The simulated FRAP image frame is formed as a histogram of particle po-

sitions. The algorithm is provided in a parallel implementation written in

Julia 1.0.0 (www.julialang.org) (33). Most features of the numerical model

are implemented in the stochastic model (one exception being finite bleach

and imaging resolution for circular bleach regions).
Noise models and parameter estimation

For a FRAP measurement with acquired data cexp(x, y, t) (t ¼ 0 being the

time of the first prebleach frame), estimation of parameters is performed

in the following fashion. Because of the linearity of Eqs. 2 and 4 and

because of the assumption that fluorescence is proportional to concentra-

tion, concentration and image intensity can be used interchangeably

(although they are certainly not the same; the actual concentration is inac-

cessible in a FRAP measurement and not necessary for the modeling,

either). Assume that the experimental noise is normally distributed and in-

dependent between pixels, with zero mean, and that the intensity variance

s2(c(x, y, t)) for a concentration c(x, y, t) is generally of the form

s2ðcðx; y; tÞÞ ¼ aþ bcðx; y; tÞ; (15)

where a represents constant noise and b represents noise proportional to

the mean intensity (reflecting the underlying Poisson nature of the
photon counts) (16,19,20,30). Let q be the parameter vector, equal to

q ¼ (D, fm, c0, a, b, g, a, b) (pure diffusion) or q ¼ (D, kon, koff, fm, c0,

a, b, g, a, b) (diffusion and binding). For clarity, Table 1 lists all the param-

eters used in the models.

Typically, not all parameters have to be estimated from the data. For

example, sometimes it is known that fm ¼ 1 because the presence of an

immobile fraction would be unphysical or that b is sufficiently close to 1

to set b ¼ 1 because there are no signs of bleaching during imaging.

Also, the resolution g can be estimated from independent calibration data

as described by Smisdom et al. (16), in which the bleach resolution contri-

bution is estimated from a line-FRAP measurement using a reference solu-

tion with known diffusion coefficient (34), and the imaging resolution

contribution is estimated from imaging of fixed subresolution beads
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(however, Smisdom et al. (16) recommend estimation directly from the

FRAP data using a series of bleach region sizes; this option is not imple-

mented in the current version of our code). Further, if constant noise vari-

ance is assumed, b ¼ 0. If b > 0, a and b would preferably be estimated

from independent calibration data from a homogeneous fluorescent solu-

tion, with varying laser intensities, otherwise using settings identical to

those for the FRAP experiment (20). In consequence, the dimensionality

of q would often be reduced from the above ‘‘worst cases.’’

For pixel-based estimation, the likelihood function (i.e., the joint proba-

bility distribution of all pixel intensities)

LðqÞ ¼
Y
x;y;t

1

ð2ps2ðcðx; y; tÞÞÞ1=2

� exp

 
�
�
cexpðx; y; tÞ � cðx; y; tÞ�2

2s2ðcðx; y; tÞÞ

! (16)

or rather, the log-likelihood,
lðqÞ ¼ logLðqÞ ¼ �1

2

X
x;y;t

log
�
2ps2ðcðx; y; tÞÞ�

� 1

2

X
x;y;t

�
cexpðx; y; tÞ � cðx; y; tÞ�2

s2ðcðx; y; tÞÞ ;

(17)

is used (Eq. 17) (we suppress that c(x, y, t) depends on q in the notation).

Here, the product and the sums are over all the pixels in all (prebleach
and postbleach) frames. Maximization of l(q) yields maximal likelihood

parameter estimates. For b ¼ 0, i.e., when the noise variance is assumed

to be constant, the log-likelihood function simplifies to the negative sum

of squared residuals, and maximal likelihood estimation simplifies to ordi-

nary least squares.

For recovery-curve-based estimation, we first compute the experimental

recovery curve Fexp(t) by

FexpðtÞ ¼
X
x;y

wðx; yÞcexpðx; y; tÞ: (18)

Here, w(x, y) is a normalized indicator function (matrix) of the bleach

region such that Eq. 18 produces the average intensity inside the bleach re-
gion. The model recovery curve F(t) is computed similarly. The assumption

of zero-mean normal distributed noise at the pixel level implies zero-mean

normal distributed noise also at the recovery curve level. The variance can

be computed by

s2ðFðtÞÞ ¼
X
x;y

wðx; yÞ2ðaþ bcðx; y; tÞÞ; (19)

leading to the log-likelihood
lðqÞ ¼ �1

2

X
t

log
�
2ps2ðFðtÞÞ�� 1

2

X
x

�
FexpðtÞ � FðtÞ�2

s2ðFðtÞÞ
(20)

(we suppress that F(t) depends on q in the notation). Once again, for b ¼ 0

(i.e., when the noise variance is assumed to be constant), the log-likelihood
function simplifies to the negative sum of squared residuals, and maximal

likelihood estimation coincides with ordinary least squares estimation.

Even for recovery-curve-based estimation, a and b describe the pixel inten-

sity noise.

In this context, it is worth to also point out the common problem of laser

intensity fluctuations during the measurement. The fluctuations cannot be

modeled but rather have to be empirically corrected for as a preprocessing
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step by normalizing the intensity in each frame with respect to a reference

region (a set of pixels) placed sufficiently far away from the bleach region

(19). This will also compensate for imaging bleach, and hence b should be

set to 1 in the fitting.

The estimation is implemented in MATLAB (The MathWorks). If b is set

to zero, lsqnonlin is used; otherwise, fmincon is used. If prebleach data is

provided as input, which is optional, it is used for the estimation; prebleach

data does not provide information aboutD, kon, koff, a, or g but does provide

information about fm, c0, and b (and a and b).
Limitations of the framework

We briefly summarize assumptions made in our FRAP framework to clarify

its limitations: we assume 1) that the bleach region has a uniform intensity,

2) that binding sites are immobile (and also that they are uniformly distrib-

uted), 3) that the raster scanning motion of the CLSM during both bleaching

and imaging has negligible impact on the acquired data (in terms of intro-

ducing asymmetry), 4) that the bleach region is sufficiently extended in the

axial dimension by means of a small numerical aperture (so that only two-

dimensional motion has to be considered), 5) that photobleaching is linear,

6) that finite bleaching and imaging resolution can be accurately summa-

rized in a single resolution parameter, and 7) that noise can be accurately

modeled as independent Gaussian noise with a variance generally having

both constant and intensity-proportional terms. Otherwise, our FRAP

framework is highly generic and should be able to accurately model any

FRAP measurement.
RESULTS AND DISCUSSION

In all simulation studies, unless stated otherwise, we use a
resolution N ¼ 256 (256 � 256 pixel image frames) and
pixel size Dx ¼ 0.75 mm (providing a field of view of
192 � 192 mm), time lag Dt ¼ 0.2 s between consecutive
frames, and an initial concentration c0 ¼ 1 (arbitrary units),
whereas other parameters vary. Diffusion coefficients will
vary from 5 � 10�12 to 5 � 10�10 m2/s; this is the range
we typically observe in experiments. Rate constants kon
and koff will vary from 0.05 to 5 s�1; the rationale is that
the timescales covered by the data ranges from Dt ¼ 0.2 s
to 100Dt ¼ 20 s (50Dt ¼ 10 s in some cases), and the recip-
rocals of these values, i.e., 5 and 0.05 s�1, give an indication
as to the range in which rate constants should be estimable
using these data. These ranges for D, kon, and koff are further
selected because they cover the typical range of values we
have observed in soft materials, e.g., in gels (13); other sys-
tems, e.g., cells, will result in different typical parameter
ranges but also in different experimental settings to begin
with, such as pixel size and bleach region size.
Model validation

We validate the numerical solver by performing a compre-
hensive comparison between numerical solutions to Eqs. 2
and 4 and stochastic solutions for many different parameter
values. We simulate with nprebleach ¼ 10 and npostbleach ¼
50, using nbleach ¼ 4 with bleach parameter a ¼ 0.9,
resolution parameter g ¼ 0, and a circular bleach region
with r ¼ 25 mm. Simulations are performed for D values
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{5 � 10�12, 10�11, 5 � 10�11, 10�10, 5 � 10�10} m2/s, fm

values {0.8, 1}, and b values {0.998, 1}, both for pure
diffusion and for diffusion and binding with kon and koff
in {0.05, 0.1, 0.5, 1, 5} s�1 (but only for the combinations
in which the difference between kon and koff is at most a
factor of 10; this is due to the fact that if the difference is
larger, the fraction of mobile particles will be close to
either 0 or 1, and hence those cases are less interesting).
Hence, the numerical and stochastic solutions are studied
for 400 different parameter values. The stochastic simula-
tions are performed using nparticles ¼ 109 particles, which
takes on average 8 min using a dual Intel Xeon E5-2699
v4 running 88 threads. Because the resulting image
frames from the stochastic simulations are histograms of
particle counts, they are normalized by multiplying with
(N þ M)2c0/nparticles to be directly comparable with the nu-
merical solutions. The mean-squared residual difference
between the pixel-wise values of the numerical and stochas-
tic solutions are approximately 2.5 � 10�4 for all simula-
tions. One example is shown in Fig. 1 for diffusion and
binding with D ¼ 5 � 10�11 m2/s, kon ¼ 0.05 s�1, koff ¼
0.5 s�1, fm ¼ 1, and b ¼ 0.998. It is worth noting that the
apparent square-like concentration profile 10 s after bleach-
ing in this case is due to imaging bleach and not due to arti-
ficial periodicity/boundary effects. Indeed, we compute the
numerical solution for the same parameters but with a
padding of 2048 pixels instead of 128: the largest pixel-
wise difference in absolute value between the two solutions
is 1.6� 10�10, proving that periodicity/boundary effects are
negligible. In addition, we investigate different bleach re-
FIGURE 1 Comparison of numerical solution (top) and stochastic solution (b

between the pixel-wise values of the numerical and stochastic solutions is appro

bleach frame. To see this figure in color, go online.
gion sizes, rectangular bleach regions, finite bleach and im-
aging resolutions (g > 0), and other numbers of bleach
frames, but not as systematically as above. One example
is shown in Fig. 2 for diffusion with D ¼ 10�10 m2/s,
fm ¼ 0.8, and b ¼ 1, using a rectangular (square) bleach re-
gion with l ¼ 50 mm, g ¼ 2 pixels, and nbleach ¼ 1 with
bleach parameter a ¼ 0.7. Here, nparticles ¼ 1011 particles,
which takes�5 h; for this large number of particles, the sto-
chastic simulation is virtually indistinguishable from the nu-
merical solution.

Another example is found in Fig. 3 and is more akin to
how FRAP is performed in cells, with diffusion coefficient
D ¼ 10�11 m2/s, using a rectangular bleach region with
l ¼ 3 mm, a modified pixel size Dx ¼ 0.1 mm (providing a
field of view of 25.6 � 25.6 mm to be able to study the dy-
namics around this smaller bleach region more accurately),
a bleach and imaging resolution parameter g ¼ 10 pixels
(equal to 1 mm), and nbleach ¼ 1 with bleach parameter
a ¼ 0.7. Only the first four postbleach frames are shown
in this case because the bleach region effectively vanishes
very quickly (note also that although the bleach region is
rectangular, it obtains a near-circular profile already in the
first postbleach frame). The difference between the numer-
ical and stochastic solutions is as small as for the other
validation cases. The validation confirms that there is no
problem with the numerical scheme (such as numerical
diffusion) and that the bleach region is represented with
high accuracy. That the pixel-wise difference is small im-
plies that the difference in terms of recovery curves is also
small.
ottom) using nparticles ¼ 109 particles. The mean-squared residual difference

ximately 2.5 � 10�4. The times indicated are relative to the time of the last
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FIGURE 2 Comparison of numerical solution (top) and stochastic solution (bottom) using nparticles ¼ 1011 particles. The mean-squared residual difference

between the pixel-wise values of the numerical and stochastic solutions is approximately 2.5� 10�6. The times indicated are relative to the time of the bleach

frame. To see this figure in color, go online.

Röding et al.
Comparison of estimation methods

We perform a comparison of pixel-based estimation and re-
covery-curve-based estimation by generating large numbers
of simulated data sets for each of a number of parameters,
FIGURE 3 Comparison of numerical solution (top) and stochastic solution (b

between the pixel-wise values of the numerical and stochastic solutions is approx

frame. The field of view is 25.6 � 25.6 mm, which is different from the other va

region with l ¼ 3 mm more accurately. To see this figure in color, go online.
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adding noise, and estimating the parameters using both esti-
mation methods. With zero noise, both methods will return
the exact, true parameter values, i.e., both methods will
perform equally. For nonzero noise, they will behave differ-
ently, however.
ottom) using nparticles ¼ 109 particles. The mean-squared residual difference

imately 2.5� 10�4. The times indicated are relative to the time of the bleach

lidation cases to study the dynamics around this smaller rectangular bleach



Pixel-Based Numerical FRAP Model
We generate data with nprebleach¼ 10 and npostbleach¼ 100,
using nbleach ¼ 4 with bleach parameter a¼ 0.70.25 (to make
the total bleaching roughly equivalent to 30%, which is a
realistic value and well below 50%, which is a rough upper
limit for ensuring linear bleaching) and a circular bleach
region with r ¼ 15 mm. Data is generated for D values
{5 � 10�12, 10�11, 5 � 10�11, 10�10, 5 � 10�10} m2/s,
both for pure diffusion and for diffusion and binding with
kon and koff in {0.05, 0.1, 0.5, 1, 5} s

�1 (but only for the com-
binations in which the difference between kon and koff is at
most a factor of 10). This is performed for mobile fraction
fm¼ 1, imaging bleach parameter b¼ 1, and bleach and im-
aging resolutiong¼ 0.We use a constant noise variance, lett-
ing b¼ 0 and using the a-values {0.01, 0.05, 0.1}; see Fig. 4.
In total, this means we investigate 300 different parameters.
For each parameter, n¼ 250 simulations, and subsequent es-
timations are performed. We are only concerned with the es-
timates of D, kon, and koff; for D, the recovery-curve-based

and the pixel-based estimates are denoted bDðrcÞ
and bDðpxÞ

,
respectively, and equivalently for kon and koff. To quantify
the error made in estimation, we compute the means and

SDs of the estimates, denoted MðbDðrcÞÞ and SðbDðrcÞÞ, for
the recovery-based estimates of D, and equivalently for
the others, and we also compute the mean-squared error
defined by

MSE
�bDðrcÞ� ¼

D�bDðrcÞ � D
�2E

; (21)

where D is the true value, and equivalently for all other

cases. The mean-squared error is the sum of the variance
and the squared bias of the estimate and hence is a summary
of both precision (variance) and accuracy (bias). We need
the mean-squared errors for comparison of the recovery-
curve-based and the pixel-based estimates, for which we
compute the so-called relative efficiency (of the pixel-based
versus the recovery-curve-based estimate), which is the ratio
of the mean-squared errors,

ERðDÞ ¼ MSE
�bDðpxÞ��

MSE
�bDðrcÞ�

; (22)
FIGURE 4 Examples of the first postbleach frame for noise levels (A) a ¼ 0
and equivalently for kon and koff. If ER < 1, the pixel-based
estimate performs better, and vice versa. For pure diffusion,
results are shown in Table 2. The ‘‘worst-case’’ result (as in
worst for pixel-based estimation, relative to recovery-based)
is also indicated; hence, it can be seen that the pixel-based
estimation performs better than the recovery-curve-based
estimation in all cases. For diffusion and binding, an exhaus-
tive presentation of all the results would be painstaking, so
we present a small subset of the results for 10 cases, divided
into Tables 3, 4, and 5, for D, kon, and koff, respectively. The
‘‘worst-case’’ results (as in worst for pixel-based estimation,
relative to recovery-based, and for the entire simulation
study, not just for the part shown herein) are also indicated
for each of the three parameters; hence, it can be seen that
the pixel-based estimation performs better than the recov-
ery-curve-based estimation in all cases. It is not surprising
that pixel-based estimation provides better results given
that pixel-based estimation uses the full spatiotemporal
data available. It has been pointed out that recovery-curve-
based parameter estimation in diffusion and binding models
suffers from instability simply because of the fact that a
whole range of parameters yields approximately the same re-
covery curve (11). It appears that this problem can be sub-
stantially reduced by using pixel-based estimation instead.
To further illustrate this, consider Fig. 5, in which the distri-
butions of bkon and bkoff are shown for both estimationmethods
for D ¼ 5 � 10�10 m2/s, kon ¼ 0.5 s�1, koff ¼ 0.5 s�1, and
a ¼ 0.01: pixel-based estimation yields a substantially
more narrow distribution of estimates than recovery-curve-
based estimation. Further, the pixel-based estimates lie
closer to the line kon ¼ koff; because kon and koff are equal
in this example case, the unbound and bound proportions
pu and pb are correctly estimated for parameters along that
line. Indeed, pixel-based estimation yields substantially bet-
ter estimates for the proportions as well (data not shown).

It should be noted that pixel-based estimation will not
give a better fit than recovery-curve-based estimation in
terms of the recovery curve; on the contrary, it will be
slightly worse, although the visual difference is typically
not obvious.
.01, (B) a ¼ 0.05, and (C) a ¼ 0.10. To see this figure in color, go online.
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TABLE 2 Comparison of Recovery-Curve-Based and Pixel-Based Estimation for Pure Diffusion and for Some Different Parameters

D (m2/s) a MðbDðrcÞÞ SðbDðrcÞÞ MðbDðpxÞÞ SðbDðpxÞÞ ER(D)

5 � 10�12 0.01 5.12 � 10�12 1.92 � 10�13 5.01 � 10�12 2.58 � 10�14 0.015

5 � 10�12 0.05 5.30 � 10�12 4.51 � 10�13 5.03 � 10�12 5.58 � 10�14 0.013

5 � 10�12 0.10 5.40 � 10�12 6.33 � 10�13 5.04 � 10�12 8.03 � 10�14 0.014

1 � 10�11 0.01 1.01 � 10�11 2.57 � 10�13 1.00 � 10�11 5.28 � 10�14 0.037

1 � 10�11 0.05 1.03 � 10�11 5.46 � 10�13 1.01 � 10�11 1.15 � 10�13 0.041

1 � 10�11 0.10 1.05 � 10�11 8.33 � 10�13 1.01 � 10�11 1.65 � 10�13 0.035

5 � 10�11 0.01 5.05 � 10�11 1.63 � 10�12 5.01 � 10�11 3.94 � 10�13 0.058a

5 � 10�11 0.05 5.13 � 10�11 3.93 � 10�12 5.02 � 10�11 8.39 � 10�13 0.044

5 � 10�11 0.10 5.15 � 10�11 5.69 � 10�12 5.04 � 10�11 1.28 � 10�12 0.051

1 � 10�10 0.01 1.01 � 10�10 5.37 � 10�12 1.00 � 10�10 1.05 � 10�12 0.038

1 � 10�10 0.05 1.03 � 10�10 1.28 � 10�11 1.01 � 10�10 2.29 � 10�12 0.032

1 � 10�10 0.10 1.05 � 10�10 1.82 � 10�11 1.01 � 10�10 3.28 � 10�12 0.031

5 � 10�10 0.01 5.24 � 10�10 1.31 � 10�10 5.02 � 10�10 1.14 � 10�11 0.007

5 � 10�10 0.05 5.74 � 10�10 2.92 � 10�10 5.04 � 10�10 2.50 � 10�11 0.007

5 � 10�10 0.10 6.77 � 10�10 4.55 � 10�10 5.06 � 10�10 3.36 � 10�11 0.005

aThis number is the ‘‘worst case.’’

Röding et al.
That pixel-based estimation performs better than recov-
ery-curve-based estimation for parameter estimation leads
to the question of whether it performs better for distinguish-
ing between pure diffusion and diffusion and binding as well.
We investigate this using the Akaike information criterion
(AIC) (35) for model selection in a small part of the study
performed above, namely for D ¼ 5 � 10�11 m2/s and bind-
ing with kon and koff in the same combinations as above.
Briefly, the model that minimizes

AIC ¼ 2nparam þ ndatalogRSS (23)

is considered the ‘‘best’’ model (in terms of AIC). Here,

nparam is the number of parameters in the models (three
for pure diffusion and five for diffusion and binding in
this setting), ndata is the number of fitted data points (110
for recovery-curve-based and 110 � 2562 for pixel-based),
and RSS is the residual sum of squares or the sum of squared
differences between the data and the model. In all the inves-
tigated cases, the probability of selecting the correct model
(i.e., diffusion and binding) is higher for pixel-based estima-
tion. We provide a couple of examples in which the differ-
ence is substantial: for kon ¼ 0.05 s�1, koff ¼ 0.5 s�1, and
TABLE 3 Comparison of Recovery-Curve-Based and Pixel-Based E

Parameters, Showing Results for Estimation of D

D (m2/s) kon (s
�1) koff (s

�1) a MðbDðrcÞÞ
5 � 10�12 0.05 0.05 0.01 5.12 � 10�12

5 � 10�12 1.00 5.00 0.01 5.05 � 10�12

1 � 10�11 5.00 1.00 0.10 1.48 � 10�11

5 � 10�11 0.10 0.05 0.01 5.82 � 10�11

5 � 10�11 0.05 0.10 0.05 7.03 � 10�11

1 � 10�10 0.05 0.10 0.05 1.49 � 10�10

1 � 10�10 0.50 5.00 0.10 1.72 � 10�10

5 � 10�10 0.50 0.05 0.01 6.21 � 10�10

5 � 10�10 5.00 0.50 0.01 5.26 � 10�10

1 � 10�10 0.50 5.00 0.01 1.06 � 10�10

aThis number is the ‘‘worst case.’’
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a ¼ 0.05, the probability is 0.09 for recovery-curve-based
and 0.64 for pixel-based estimation, and for kon ¼ 5 s�1,
koff ¼ 5 s�1, and a ¼ 0.05, the probability is 0.02 for recov-
ery-curve-based and 0.73 for pixel-based estimation. This
small investigation provides yet another convincing argu-
ment for using pixel-based estimation.
Bias when neglecting the number of bleach
frames

Because the duration of bleaching is non-negligible, diffu-
sion (and binding) during bleaching will impact parameter
estimation if it is not appropriately accounted for.
Frequently, multiple bleach frames are used, but very few
models explicitly account for it. Here, we study the bias in
parameter estimates as a function of the true number of
bleach frames when the fitted model only assumes a single
bleach frame. We generate data with nprebleach ¼ 10 and
npostbleach¼ 100, using nbleach¼ 1–10 with bleach parameter
a ¼ 0.7(1/nbleach) (to make the total bleaching roughly
equivalent to 30%), and a circular bleach region with
r ¼ 15 mm. Data is generated for D values {5 � 10�12,
10�11, 5 � 10�11, 10�10, 5 � 10�10} m2/s (pure diffusion),
stimation for Diffusion and Binding and for Some Different

SðbDðrcÞÞ MðbDðpxÞÞ SðbDðpxÞÞ ER(D)

8.30 � 10�13 4.99 � 10�12 9.18 � 10�14 0.012

4.12 � 10�13 5.01 � 10�12 1.82 � 10�13 0.192

1.37 � 10�11 1.01 � 10�11 8.85 � 10�13 0.004

2.82 � 10�11 5.01 � 10�11 8.81 � 10�13 0.001

4.38 � 10�11 5.00 � 10�11 1.59 � 10�12 0.001

1.29 � 10�10 1.00 � 10�10 3.23 � 10�12 0.001

1.38 � 10�10 1.01 � 10�10 8.71 � 10�12 0.003

3.37 � 10�10 5.04 � 10�10 2.76 � 10�11 0.006

5.61 � 10�11 5.08 � 10�10 4.02 � 10�11 0.438a

1.33 � 10�11 1.00 � 10�10 3.84 � 10�12 0.070



TABLE 4 Comparison of Recovery-Curve-Based and Pixel-Based Estimation for Diffusion and Binding and for Some Different

Parameters, Showing Results for Estimation of kon

D (m2/s) kon (s
�1) koff (s

�1) a Mðbk ðrcÞon Þ Sðbk ðrcÞon Þ MðbkðpxÞon Þ Sðbk ðpxÞon Þ ER(kon)

5 � 10�12 0.05 0.05 0.01 0.051 0.011 0.050 0.002 0.042

5 � 10�12 1.00 5.00 0.01 0.921 0.208 1.008 0.118 0.280

1 � 10�11 5.00 1.00 0.10 4.580 1.293 5.088 0.466 0.122

5 � 10�11 0.10 0.05 0.01 0.100 0.009 0.101 0.003 0.085

5 � 10�11 0.05 0.10 0.05 0.059 0.017 0.051 0.005 0.058

1 � 10�10 0.05 0.10 0.05 0.053 0.011 0.051 0.004 0.134

1 � 10�10 0.50 5.00 0.10 0.982 1.136 0.574 0.331 0.076

5 � 10�10 0.50 0.05 0.01 0.524 0.166 0.507 0.039 0.057

5 � 10�10 5.00 0.50 0.01 4.870 0.490 5.098 0.480 0.935a

1 � 10�10 0.50 5.00 0.01 0.588 0.326 0.528 0.171 0.263

aThis number is the ‘‘worst case.’’

Pixel-Based Numerical FRAP Model
mobile fraction fm ¼ 1, imaging bleach parameter b ¼ 1,
and bleach and imaging resolution g ¼ 0. We do not add
noise to the data because the aim is to study only the bias
and not the variance of the estimates; hence, a ¼ b ¼ 0.
The model is fitted with the incorrect assumption that
nbleach ¼ 1. We are only concerned with the estimates of
D, i.e., bDðrcÞ

and bDðpxÞ
, and compute the ratio bD=D; see

Fig. 6. Note that if nbleach were correctly specified in the
fitted model, the exact parameter values would be obtained
for any value of nbleach. Obviously, the error increases as
nbleach increases; it also increases as D increases because
the particles diffuse increasingly much during the bleaching
phase. Further, pixel-based estimation yields smaller
errors than recovery-curve-based estimation. Interestingly,
recovery-curve-based estimation produces too small values
of D, whereas pixel-based estimation produces too large
values.
Computational speed

We study the execution time of performing one fit to data in
different conditions. We generate data with nprebleach ¼ 10
and npostbleach ¼ 100, using nbleach ¼ 4 with bleach
parameter a ¼ 0.70.25 and a circular bleach region with
r ¼ 15 mm. Simulations are performed for random values
of the parameters, with D values chosen log-uniformly
TABLE 5 Comparison of Recovery–Curve-Based and Pixel-Based

Parameters, Showing Results for Estimation of koff

D (m2/s) kon (s
�1) koff (s

�1) a Mðbk ðrof
5 � 10�12 0.05 0.05 0.01 0.05

5 � 10�12 1.00 5.00 0.01 5.63

1 � 10�11 5.00 1.00 0.10 2.20

5 � 10�11 0.10 0.05 0.01 0.05

5 � 10�11 0.05 0.10 0.05 0.10

1 � 10�10 0.05 0.10 0.05 0.10

1 � 10�10 0.50 5.00 0.10 7.49

5 � 10�10 0.50 0.05 0.01 0.05

5 � 10�10 5.00 0.50 0.01 0.48

1 � 10�10 0.50 5.00 0.01 6.26

aThis number is the ‘‘worst case.’’
distributed in the range [5 � 10�12, 5 � 10�10] m2/s, and
for diffusion and binding, with kon and koff in the range
[0.05, 5] s�1. This is performed for mobile fraction
fm ¼ 1, imaging bleach parameter b ¼ 1, and bleach and
imaging resolution g ¼ 0. We use a constant noise variance,
using b¼ 0 and random values of a in the range [0, 0.1]. The
investigation is performed for recovery-curve-based estima-
tion and pixel-based estimation and for npostbleach ¼ 50 and
npostbleach ¼ 100. In each case, n¼ 250 simulations and sub-
sequent estimations are performed. The results are shown in
Fig. 7. Not surprisingly, the diffusion and binding model is
the more computationally demanding, as is the pixel-based
estimation, and uses a larger number of postbleach frames
for estimation. It is worth mentioning in this context that
because of the use of spectral methods, the execution speed
is similar to the analytical pixel-based approach of Deschout
et al. (19), although our approach is much more generic and
performed numerically, and faster than the numerical pixel-
based approach of Jonasson et al. (18) (comparisons not
shown).
Arbitrary bleach region

We briefly illustrate the ability of the FRAP code to, on top
of circular and rectangular bleach regions, support com-
pletely arbitrary bleach region shapes. To illustrate this,
Estimation for Diffusion and Binding and for Some Different

cÞ
f Þ Sðbk ðrcÞoff Þ Mðbk ðpxÞoff Þ SðbkðpxÞoff Þ ER(koff)

2 0.011 0.050 0.001 0.020

9 2.572 5.387 2.445 0.872a

3 3.437 1.022 0.103 0.001

1 0.005 0.050 0.001 0.048

9 0.018 0.103 0.006 0.112

8 0.014 0.103 0.005 0.139

7 11.109 5.885 2.987 0.075

0 0.004 0.050 0.001 0.103

7 0.029 0.502 0.006 0.040

9 5.194 5.249 0.920 0.032
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FIGURE 5 Distribution of bkon and bkoff for both recovery-curve-based

estimation (yellow) and pixel-based estimation (red) for D ¼ 5 �
10�10 m2/s, kon ¼ 0.5 s�1, koff¼ 0.5 s�1, and a ¼ 0.01. The true parameters

are indicated (black plus sign) as well as the line kon ¼ koff (black). To see

this figure in color, go online.

FIGURE 7 Mean execution time for pure diffusion and recovery-curve-

based estimation (D/RC), pure diffusion and pixel-based estimation

(D/PX), diffusion and binding and recovery-curve-based estimation (DB/

RC), and diffusion and binding and pixel-based estimation (DB/PX), for

npostbleach ¼ 50 (left) and npostbleach ¼ 100 (right). To see this figure in color,

go online.

Röding et al.
we generate simulated data nbleach ¼ 1 and a ¼ 0.7,
D ¼ 2.5 � 10�12 m2/s, fm ¼ 1, b ¼ 1, g ¼ 0, and
a¼ 0.0025. The bleach region shape is in this case provided
(by the user) as an indicator matrix of size (N þ 2M) �
(N þ 2M), which is 1 inside the bleach region and 0 outside,
and as can be seen in Fig. 8, the bleach region can then take
any shape, such as a torus or a cat.
Experimental validation

For experimental validation of the method, we perform
FRAP measurements on sodium fluorescein salt (Sigma-
Aldrich, St. Louis, MO) dissolved in water (the concentra-
tion of sodium fluorescein is 100 ppm, or 0.01 w/w %).
Two different samples are prepared by placing 7 mL of the
solution in SecureSeal spacers (Grace Bio Labs, Bend,
OR), and six measurements are performed in each sample
FIGURE 6 Relative estimated values of D, bD=D, for recovery-curve-

based estimation (solid lines) and pixel-based estimation (dashed lines)

assuming that nbleach ¼ 1 and as a function of the true value of nbleach, for

D-values 5 � 10�12 m2/s (yellow), 10�11 m2/s (green), 5 � 10�11 m2/s

(red), 10�10 m2/s (blue), and 5 � 10�10 m2/s (purple). To see this figure in

color, go online.
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on different locations, yielding 12 replicates in total. Mea-
surements are performed at ambient conditions on a Leica
SP5 CLSM (Leica, Heidelberg, Germany) using a Leica
HCX APO 20�/0.50 water immersion lens at zoom 4 and
pinhole size 6 Airy units. A 488 nm laser at 10% power
and 1% acousto-optic tunable filter and a photomultiplier
tube with gain 436 V are used for acquisition in the 500–
650 nm range. The acquired image size is 256 � 256 pixels
with field of view 193.75 mm (pixel size is 0.76 mm), obtain-
ing 20 prebleach and 300 postbleach frames, and using four
bleach frames with a circular bleach region with radius
r ¼ 25 mm. The scan rate is 1000 Hz, yielding Dt ¼
0.265 s. Background subtraction is performed by subtracting
a pixel-wise Gaussian filtered (s ¼ 5 pixels) prebleach
average frame from all pre- and postbleach frames and add-
ing the average prebleach intensity back again. There is lit-
tle to no indication of bleaching during imaging or laser
intensity fluctuations, and hence, no corrections are intro-
duced. The estimated diffusion coefficients are (m 5 SD)
1.47 5 0.17 � 10�10 m2/s using recovery-curve-based esti-
mation and 4.06 5 0.12 � 10�10 m2/s using pixel-based
estimation. In Fig. 9, results from one of the measurements
are shown. We note that the recovery-curve-based estima-
tion yields a better fit to the recovery curve, which is ex-
pected. On the other hand, pixel-based estimation yields a
better fit to the images, i.e., to the actual FRAP data (the re-
sidual images from the recovery-curve-based estimation are
not shown). Although the recovery curve can be replicated
more or less perfectly by the model, there is a lack of fit
observed in the residual images just after bleaching. We
stress that this lack of fit, possibly due to imperfections in
the bleach region definition, usually remains unobserved
because typically only recovery-curve-based estimation is
performed. Therefore, comparison in this regard to other
models is not possible. To give an idea of the magnitude



FIGURE 8 The software also supports arbitrary bleach regions, such as a torus (top) or a cat (bottom). The times indicated are relative to the time of the

bleach frame. To see this figure in color, go online.

Pixel-Based Numerical FRAP Model
of the error, the SD of this first postbleach residual image is
0.05 (for c0z 0.77). Further, the result from the pixel-based
estimation is in much better agreement with literature values
from non-FRAP methods, e.g., 3.9 5 0.4 � 10�10 m2/s us-
ing NMR at 27�C (36) and 4� 10�10 m2/s using two-photon
flash photolysis at 20�C (37) (it is also interesting, although
strictly not for validation, that the value 4.2 � 10�10 m2/s
has been obtained using molecular dynamics simulations
at 300 K (38)). To illustrate the usefulness of explicitly
modeling the true number of bleach frames, we attempt esti-
mation under the incorrect assumption of only one bleach
frame and obtain 1.15 5 0.10 � 10�10 m2/s using recov-
ery-curve-based estimation and 3.59 5 0.10 � 10�10 m2/s
using pixel-based estimation, which in both cases is further
away from the reference values than the results for the true
number of bleach frames. We stress that although the differ-
ence between the two estimation methods illustrates that
pixel-based estimation can indeed be superior to recovery-
curve-based estimation, it is not indicative of the difference
between the estimation methods for all experimental param-
eters and/or samples; the difference may be substantially
smaller in other cases.
CONCLUSIONS

We have implemented a new, to our knowledge, numerical
model based on spectral methods for analysis of FRAP
data. The model is highly generic and covers both pure
diffusion and diffusion and binding (reaction-diffusion)
with immobile binding sites, arbitrary bleach region shapes,
and conventional recovery-curve-based as well as pixel-
based estimation and accounts for multiple bleach frames,
diffusion (and binding) during bleaching, and bleaching dur-
ing imaging. To our knowledge, no other FRAP framework
incorporates all these model features and estimation
methods. The model is thoroughly validated by comparison
FIGURE 9 Estimation results for one of the

experiments, showing recovery curves (left) for re-

covery-curve-based (red) and pixel-based (blue)

estimation, as well as some residual postbleach im-

ages for pixel-based estimation (right). To see this

figure in color, go online.
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to stochastic simulations of particle dynamics and is found
to be highly accurate. Additionally, simulation studies indi-
cated that pixel-based estimation is superior to recovery-
curve-based estimation for parameter estimation as well as
for distinguishing pure diffusion from diffusion and binding.
Further, we demonstrate the importance of accounting for
multiple bleach frames and that the effect of neglecting
this is qualitatively different for the two estimation methods.
Also, we perform a simple experimental validation showing
that pixel-based estimation provides better agreement with
literature values than recovery-curve-based estimation and
that accounting for multiple bleach frames improves the
result. Finally, the developed software is made freely avail-
able online, which facilitates widespread use of this new, to
our knowledge, FRAP model. Interesting further work
would be to characterize the ranges of parameter values in
which reliable estimates can be provided for different exper-
imental settings.
APPENDIX A: EIGENDECOMPOSITION

The matrix A in Eqs. 12 and 13 can be written A ¼ QLQ�1, where

Qð1; 1Þ ¼ �
�
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�
D2
�
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�2
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�
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��.
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�
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	1=2
þD
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�	.ð2konÞ
Qð1; 2Þ ¼ �

�
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